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Abstract. The algorithm of Multiple Relatively Robust Representa-
tions (MRRR or MR3) computes k eigenvalues and eigenvectors of a sym-
metric tridiagonal matrix in O(nk) arithmetic operations. Large prob-
lems can be effectively tackled with existing distributed-memory parallel
implementations of MRRR; small and medium size problems can instead
make use of LAPACK’s routine xSTEMR. However, xSTEMR is optimized
for single-core CPUs, and does not take advantage of today’s multi-core
and future many-core architectures. In this paper we discuss some of the
issues and trade-offs arising in the design of MR3–SMP, an algorithm for
multi-core CPUs and SMP systems. Experiments on application matrices
indicate that MR3–SMP is both faster and obtains better speedups than
all the tridiagonal eigensolvers included in LAPACK and Intel’s Math
Kernel Library (MKL).
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1 Introduction

Given a hermitian matrix A ∈ Cn×n, the eigenproblem is finding solutions to
the equation Av = λv with ‖v‖ = 1, where λ ∈ IR is called an eigenvalue and
v ∈ Cn an associated eigenvector. An eigenvalue together with an associated
eigenvector are said to form an eigenpair. The eigenproblem has n solutions,
and since A is hermitian, all the eigenvalues are real and the eigenvectors can
be chosen mutually orthogonal.

Computing all the eigenpairs is equivalent to finding a matrix factorization
A = V ΛV ∗, where Λ ∈ IRn×n is a diagonal matrix containing the eigenvalues as
elements, and V ∈ Cn×n is a unitary matrix whose columns are the associated
eigenvectors. In this paper we focus on the parallel computation of a subset or
all the eigenpairs of a real symmetric tridiagonal matrix.

Several efficient and accurate methods exist for the symmetric tridiagonal
eigenproblem. Among them, Bisection and Inverse Iteration (BI) [1], the QR al-
gorithm (QR) [2, 3], Divide & Conquer (DC) [4, 5], and the algorithm of Multiple
Relatively Robust Representations (MRRR) [6]. Until the introduction of the lat-
ter, the computation of all the eigenpairs required O(n3) flops in the worst case.
With the MRRR algorithm it is instead possible to compute all the eigenpairs in



O(n2) flops. Moreover, similar to the method of Inverse Iterations, MRRR allows
the computation of a subset of the eigenpairs at reduced cost: (nk) flops for k
eigenpairs. In fact, the MRRR algorithm can be seen as a sophisticated vari-
ant of Inverse Iteration that does not require explicit orthogonalization, hence
the quadratic complexity. An informative and detailed performance analysis of
LAPACK’s [7] implementations of the four algorithms can be found in [8].

As multi-core architectures have replaced uni-processors, our goal is to ex-
plore how MRRR, already the fastest sequential algorithm, can make efficient
use of today’s multi-core and future many-core CPUs. A representative example
is given in Fig. 1 (left), where the execution time for a matrix of size n = 4, 289
from quantum chemistry is shown as a function of the number of threads used.
We present results for four routines: MKL’s DC (DSTEDC), both MKL’s and
LAPACK’s sequential MRRR (DSTEMR), and MR3–SMP, the multi-core variant
of the MRRR algorithm that we present in this paper.1 BI with 487 seconds
and QR with timings between 167 and 61 seconds are much slower and are not
shown in the graph.2 While DC casts most of the work in terms of DGEMM and
can take advantage of parallelism by multi-threaded BLAS [9], MRRR’s DSTEMR
is sequential and therefore does not exploit any of parallelism of multi-core pro-
cessors. As a result, DC can become faster than the sequential MRRR as the
amount of available parallelism increases.

While tridiagonal matrices are common in applications, they play a much
bigger role as part of dense and banded eigensolvers. In these cases, when many
of the eigenpairs are to be computed, the most common approach to solve the
eigenproblem consists of three stages: 1) Reduction of A to a real symmetric
tridiagonal matrix T = U∗AU via a unitary matrix U ∈ Cn×n; 2) Solution of
the symmetric tridiagonal eigenproblem Tz = λz; 3) Back-transformation of the
eigenvectors of T into those of A by v = Uz.

When MRRR is used for the tridiagonal stage, the reduction becomes the
computational bottleneck in this procedure, requiring about 16

3 n
3 floating point

operations (flops), only half of which can be cast in terms of fast BLAS-3 kernel
routines. In contrast, the about 8n3 flops required by the back-transformation
stage can be performed efficiently, since the computation can be casted almost
entirely in terms of BLAS-3 routines.

Although negligible in a sequential execution, the time spent in the tridiag-
onal eigensolver becomes significant when multiple cores are used. Fig. 1 (right)
shows the fraction of the total execution time that is spent on each of the three
stages of the dense symmetric eigenproblem of size n = 4, 289 for a varying num-
ber of threads. In the single-threaded execution, the tridiagonal eigensolver is
indeed negligible, while in the multi-threaded executions it can take up to 40%
of the total execution time. In contrast, with 24 threads our multi-core parallel
algorithm MR3–SMP accounts for about 7% of the execution time.

1 More detailed information about the parameter of the experiment can be found
section 4.

2 For the timings of BI and QR Intel MKL 10.2 was used.
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Fig. 1. Left: Timings as function of the number of threads used in the computation.
Qualitatively, the graph is typical for the applications matrices that we tested. The
Divide & Conquer algorithm becomes equally fast or even faster than the sequential
MRRR algorithm. MR3–SMP however is faster and obtains better speedups than DC.
Right: Fraction of time spent in the solution of the corresponding dense symmetric
eigenproblem for the reduction, tridiagonal eigenproblem, and back-transformation.

The paper is organized as follows: Section 2 contains a brief discussion of the
MRRR algorithm. In Section 3 the design of the MRRR algorithm for shared-
memory computer systems, MR3–SMP, is described. In Section 4 the results of
experiments evaluating the performance of MR3–SMP are shown.

2 The MRRR Algorithm

In this section the algorithm of Multiple Relatively Robust Representations is
briefly discussed. A detailed description and justification of the algorithm can
be found in [6] and references therein.

Without loss of generality, the symmetric tridiagonal matrix T ∈ IRn×n is
assumed to be irreducible. That is, no off-diagonal element is smaller in magni-
tude than a certain threshold that warrants setting it to zero. Possible quantities
for such a threshold are discussed in [10]. Otherwise, when T is reducible, each
diagonal block can be treated separately.

The algorithm starts by computing a factorization of T , called a Relatively
Robust Representation (RRR). From this factorization eigenvalue approxima-
tions are computed and finally the associated eigenvectors together with the
possibly refined eigenvalue.

An RRR is a representation of T that has the property that small relative
changes in its non-trivial entries only cause small relative changes in a specific set
of eigenvalues [11]. Such an RRR is given by bidiagonal factorizations T − σI =
LDLT with σ ∈ IR, where L is lower unit bidiagonal and D is diagonal. The
condition for the factorization to be an RRR is given in [11]. However, in the
special case that T − σI = LDLT is definite, the factorization is guaranteed to
be an RRR for all eigenvalues.



After computing an RRR for all desired eigenvalues λj , it is possible to
compute approximations λ̂j to high relative accuracy, that is |λj−λ̂j | = O(ε|λ̂j |),
where ε denotes the machine precision. This can be achieved using O(n) flops via
bisection using a differential quotient-difference transform [12]. In the definite
case, all eigenvalues can be computed to high relative accuracy via the dqds-
algorithm in O(n2) arithmetic operations [13].

Once an eigenvalue λ̂j is computed to high relative accuracy, the associated
eigenvector ẑj is computed by solving (LDLT − λ̂jI)ẑj = γrer, where the right
hand side of the system is a multiple of the r-th standard basis vector. One of the
features of the MRRR algorithm is that it is possible to compute an eigenvector
ẑj , with ‖ẑj‖2 = 1, such that the residual norm satisfies

‖(LDLT − λ̂jI)ẑj‖2 = O(nε|λ̂j |) . (1)

By the gap theorem of Davis and Kahan [14] the error angle to the true eigen-
vector zj is bounded by

| sin 6 (ẑj , zj)| ≤ O(nε)

relgap(λ̂j)
, (2)

where the relative gap of λ̂j is defined as relgap(λ̂j) := mini6=j(|λ̂j − λi|/|λ̂j |) =
gap(λ̂j)/|λ̂j |. This definition and (2) imply that, provided the gap of an eigen-
value λ̂ is of the same order as its magnitude, the computed eigenvector ẑj has
an error angle of O(nε) to the real eigenvector of the RRR. In practice, when
relgap(λ̂j) ≥ tol the eigenvalue is called a singleton and the eigenvector is com-
puted from the RRR.

Eigenvalues that are not singletons form clusters. For each cluster a new
RRR for the eigenvalues in the cluster is computed via the differential stationary
qds (dstqds) transform [12]: LiDiL

T
i = LDLT − σiI. The parameter σi ∈ IR is

thereby chosen in a way that at least one of the eigenvalues in the cluster becomes
a singleton. The shifted eigenvalues λ̂j − σi must be refined to relative accuracy
with respect to the new RRR. Full accuracy is only needed for the singletons,
so that eigenvectors with small relative residual norm can be computed. This
procedure is than applied recursively until all eigenvectors are computed.

A main feature of the MRRR algorithm is that, although the eigenvectors
might be computed from different RRRs, they are numerically orthogonal and no
Gram-Schmidt procedure for orthogonalization has to be invoked. This property
is discussed in detail in [6], where it is shown that the computed quantities satisfy

‖(T − λ̂jI)ẑj‖ = O(nε ‖T‖) and |ẑT
k ẑj | = O(nε), k 6= j . (3)

3 The MRRR Algorithm for Multi-Core Processors

In this section we discuss the design of MR3–SMP, a parallel version of the
MRRR algorithm specifically designed for multi-core and shared-memory archi-
tectures. One of the salient features of such systems is the capability of com-
munication among processors at low costs thanks to shared caches and memory.



As a consequence, both redundancy and costly data exchanges, characteristic to
distributed-memory parallelizations [15, 16], now can and should be avoided in
favor of a fine grain parallelism.

MR3–SMP is based on the routine DSTEMR of LAPACK Version 3.2 and makes
use of POSIX threads for parallelization. A detailed description of DSTEMR and
its design criteria can be found in [17].

3.1 Parallelization Strategy

MR3–SMP achieves parallelism by dynamically dividing the computation into
independent tasks. The tasks are placed into a work queue and can be executed
by many threads in parallel. This form of parallelism may produce a bigger
overhead than a static division of the work, but it is flexible and attains good
load balancing among the processors.

After computing the root representation3, the initial eigenvalue approxima-
tions are either computed by the dqds-algorithm or by parallel bisection, de-
pending on the amount of parallelism available and the number of eigenval-
ues to compute. Bisection is used, when the number of cores c is greater than
12 ·#eigenvalues/n [15]. The dqds-algorithm computes the eigenvalues to full
accuracy, while bisection only does so when only the eigenvalues are desired.

The computation of the eigenvectors and a gradual refinement of the eigen-
values can be represented in form of a representation tree. The associated work
can be naturally divided into tasks: Each node consists of an index set Γp of
associated eigenpairs and depends on the RRR of its parent node. The com-
putation that has to be executed depends entirely on the size of the index set
|Γp|. In the case of |Γp| = 1 the node is a leaf node and represents a singleton.
Otherwise, in the case |Γp| > 1, the node is considered a cluster. For both cases,
singletons and clusters, we created a task type. A third task type is introduced
to add the ability of splitting the work of refining eigenvalues into tasks. The
three task types will be called S-task, C-task and R-task subsequently. The work
associated to each task is discussed next:

1. S-task: As described in Section 2, the eigenvectors associated to singletons
can be computed immediately. This leads to the following computational
task: For a set of singletons Γs ⊆ Γp, compute the eigenvalues to high relative
accuracy and the associated eigenvectors. This is done via Inverse Iteration
with twisted factorizations and Rayleigh Quotient correction [17].

2. C-task: A task is created for each cluster Γc ⊂ Γp: Compute a new RRR for
the eigenvalues in the cluster and refine the eigenvalues to relative accuracy
with respect to the new RRR until a distinction between singletons and
clusters is possible. At this point the new representation can be used to
partition the computation into tasks recursively, that is creating S-tasks and
C-tasks with Γ̃s ⊆ Γc and Γ̃c ⊂ Γc, respectively.

3 If the input matrix is reducible, there will be multiple root nodes and representation
trees.



3. R-task: R-tasks are created when it is advantageous to split and parallelize
the refinement of eigenvalues forming a cluster. The R-tasks are therefore
created during the execution of a C-task, after computing the new RRR
of the cluster. The computation involved in an R-task is: Given an RRR,
refine a subset of Γi ⊂ Γc to relative accuracy with respect to the RRR via
bisection.

3.2 The Work Queue

In order to execute the tasks in parallel, even in cases of different spectra, a work
queue is established, in which the required computation is enqueued in form of
the three types of tasks. Each of the tasks can then be processed by any of the
processor’s cores.

The work queue consists of three levels, one for each task type and im-
plemented as a FIFO queue, with different priorities. R-tasks have the highest
priority, followed by S-tasks. The lowest priority is associated to C-tasks. During
the computation of the eigenvectors, each thread in the thread pool is dequeuing
tasks from the work queue, processing tasks with higher priority first.

The computation is initialized by treating the root node as a special C-task.
In this case there is no need to compute an RRR and refine its eigenvalues.
Since the root representation is not overwritten, no special care has to be taken
to resolve the data dependency of the newly created tasks at depth = 1 in
the representation tree. Therefore the tasks are created fast and fill up the work
queue. To achieve the same for clusters at higher depth, the parent RRR is copied
into the output eigenvector matrix Z for cluster tasks. The task is therefore
created faster than computing the RRR for the cluster first and store it in Z, as
it is done in DSTEMR.

The organization of the work queue is among other things motivated to bound
the amount of memory required during the computation. In the case of a single
thread, the order of computation complies with the DSTEMR routine: at each level
all the singletons are processed before the clusters.

3.3 An Example Matrix

Fig. 2 shows the execution traces of an exemplary eigenvector computation. The
examined matrix of size n = 12, 387 comes from a frequency response analysis of
automobile bodies. Computing the eigenvectors with 16 threads took about 3.3
seconds. In the timeline graph green, blue and yellow sections correspond to the
processing of S-tasks, C-tasks, and R-tasks, respectively. Everything considered
as parallization overhead is colored red.

On average, each thread spends about 66% of the execution time in comput-
ing the eigenvectors of singletons, 19% in computing new RRRs of clusters and
to refine the associated eigenvalues, and additionally 15% for refining eigenval-
ues. Almost no overhead occurs during the computation, due to dynamic task
scheduling.



The first time that the refinement of eigenvalues is split via R-tasks, a cluster
of size 8, 871 is encountered by the bottommost thread. Since the cluster contains
a large part of the eigenvectors that are still to be computed, the refinement
of its eigenvalues is split among all the threads. The number of eigenvalues
to refine within a task is reduced in size when the tasks are created, so that
load balancing among all the threads is achieved. The procedure of splitting the
refinement among all threads is repeated two more times during the computation.
Later during the computation there are also examples where the refinement of
eigenvalues is split, but the computation is not distributed among all threads.

Fig. 2. Execution traces for a matrix of size n = 12, 387, arising in a finite-element
model of an automobile body. The colors green, blue, and yellow represent time spent
in the execution of S-tasks, C-tasks, and R-tasks, respectively.

4 Experimental Results

In this section we present timing results for MR3–SMP. All the tests were run on
a SMP system comprising 4 Intel Xeon 7460 Dunnington multi-core processors.
Each processor has 6 cores and a clock rate of 2.66 GHz. The Intel compilers4

icc and ifort, with optimization level 3 enabled, were used for LAPACK5 and
MR3–SMP. LAPACK’s DSTEMR was linked to MKL’s BLAS. For the all MKL
routines Version 10.2 was used. MR3–SMP was linked to the reference BLAS
implementation.

In Table 1 we show timing results for a set of application matrices. In order
make a fair comparison to DC, we computed all the eigenpairs. However, MR3–
SMP allows the computation of eigenpair subsets at reduced cost.
4 Version 11.1.
5 Version 3.2.1.



While MKL’s and LAPACK’s MRRR are sequential, MKL’s DC and MR3–
SMP can make use of parallelism and the results for 1, 12, and 24 threads are
shown. As can be seen in Fig. 1, the timings for MKL’s and LAPACK’s DSTEMR
are almost identical and therefore only the results of the latter are shown.

Table 1. Execution times in seconds for a set of matrices arising in applications. The
first four matrices are from quantum chemistry and the last four arise in finite element
models.

Matrix Size DC MRRR MR3–SMP
1 12 24 seq. 1 12 24

SiOSi6 1,687 0.95 0.40 0.40 0.52 0.55 0.14 0.12
ZSM-5 2,053 1.47 0.58 0.56 0.94 0.97 0.23 0.15
Juel.k1b 4,237 11.57 3.69 3.60 4.49 4.72 0.97 0.51
Auto.a 7,923 63.50 19.32 17.72 19.51 20.53 3.69 1.92
Auto.b 12,387 219.56 65.70 33.61 56.43 59.10 11.63 4.84
Auto.c 13,786 233.94 70.94 36.32 54.27 60.31 10.63 5.46
Auto.d 16,023 324.47 98.83 92.02 90.27 97.51 20.56 8.31

With the exception of the last matrix, DC executed with 24 threads is faster
than the sequential MRRR. In fact, for the last matrix DC was faster than
MKL’s DSTEMR, which took about 94 seconds. As shown in Table 2, in all tests
MR3–SMP is both faster and obtains better speedup than DSTEDC.

Table 2. Speedup of the total execution time of routine DSTEDC and MR3–SMP. The
reference for DSTEDC is its single threaded execution and for MR3–SMP is the sequential
DSTEMR. The last column shows the factor τ by which MR3–SMP is faster than DC.

Matrix Size DC (MKL) MR3–SMP τ

SiOSi6 1,687 2.4 4.3 3.3
ZSM-5 2,053 2.6 6.3 3.7
Juel.k1b 4,237 3.2 8.8 7.0
Auto.a 7,923 3.6 10.2 9.2
Auto.b 12,387 6.5 11.7 6.9
Auto.c 13,786 6.4 9.9 6.6
Auto.d 16,023 3.5 10.9 11.0

Although the computation was executed on 24 cores, the speedup of MR3–
SMP against the sequential DSTEMR is far from 24. Why the obtained speedup
is nonetheless close to the optimal is discussed through the example of matrix
Auto.b. As it can be seen in Fig. 3 (left), the fast but sequential dqds-algorithm
is used to compute the initial eigenvalue approximations: it requires about 7.3



seconds, and it is used with up to 12 cores. If the dqds-algorithm were always be
used, independently of the number of available cores, according to Amdahl’s law
the total speedup would be limited to 56.4/7.3 ≈ 7.7. This limit can be observed
in Fig. 3 (right) for the total speedup. Instead, in MR3–SMP bisection is used
for more than 12 cores. The computation time for the eigenvalues decreases, but
the input of the eigenvector computation changes. When in the initial eigenvalue
approximation we force to always use either the dqds-algorithm or bisection,
Fig. 3 (right) shows good scalability of the eigenvector computation. Notice that
the graph of the total speedup in Fig. 3 (right) is not yet at a flat asymptote,
and greater speedups can be expected with more parallelism.
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Fig. 3. Left: Time spent in the computation of the eigenvalues and eigenvectors for
the matrix Auto.b of size 12,387. Right: Speedup for the eigenvalue and eigenvector
computation. The total speedup is naturally limited since the sequential dqds-algorithm
is used in the initial eigenvalue approximation with up to 16 cores.

For the sake of brevity, accuracy results are omitted, but we remark that in all
tests the accuracy of MR3–SMP is comparable to that of LAPACK’s sequential
routine DSTEMR.

5 Conclusion

We presented a design to adapt the algorithm of Multiple Relatively Robust
Representations to shared-memory computer systems. The result, MR3–SMP,
is an algorithm specifically tailored for current multi-core and future many-core
architectures, as well as SMP systems made out of them. We compared MR3–
SMP with all tridiagonal eigensolver contained in LAPACK and Intel’s MKL on
a set of matrices arising in real applications: in all cases MR3–SMP resulted the
fastest algorithm and attained the best speedups.
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