
The Tersoff many-body potential:
Sustainable performance through vectorization

Markus Höhnerbach
RWTH Aachen University

Ahmed E. Ismail
West Virginia University

Paolo Bientinesi
RWTH Aachen University

1. INTRODUCTION
We extend the LAMMPS molecular dynamics program

with a new, vectorized implementation of the Tersoff poten-
tial [7]. Given the well-established and well-studied mech-
anisms for parallelism in molecular dynamics programs [1],
our efforts focus on vectorization as a further step to fully
utilize available hardware. This contribution describes how
our implementation achieves sustainable performance across
a number of architectures, most notably the Xeon Phi co-
processor, using vectorization.

On current architectures, vectorization contributes greatly
to the system’s peak performance; this is true for CPUs with
the SSE or AVX instruction set extensions, and especially
for machines with wide vectors, such as the Xeon Phi. Many
successful open-source molecular dynamics packages—e.g. Gro-
macs, NAMD, LAMMPS and ls1 mardyn [6, 9, 8]—take ad-
vantage of vectorization. Implementation methods vary be-
tween hand-written assembly, intrinsics (compiler-provided
functions that closely map to machine instructions), and an-
notations that guide the compiler’s optimization [10].

Typically, only the parts of the calculation that consume
a large fraction of the total runtime are optimized; among
them, the neighbor list construction and the force calcula-
tion. For most simulations, the forces are derived from pair
potentials, such as the Coulomb or Lennard-Jones poten-
tials. Indeed, vectorized implementations of the force cal-
culation due to pair potentials are found in many molecular
dynamics programs.

However, some applications, especially in materials sci-
ence, require many-body potential formulations. With these,
the force between two atoms does not depend solely on the
distance between them, but also on the relative position of
the surrounding atoms. For many-body potentials, the force
calculation is not vectorized in the available molecular dy-
namics programs. There has been previous work on imple-
menting many-body potentials on the GPU [3, 4, 5], but
not on more conventional architectures with vectorization
support.

2. THE TERSOFF POTENTIAL
The Tersoff potential is an example of a many-body poten-

tial [7]. It is an ideal target for a first vectorization attempt:
relatively simple structure, widely used, and still challenging
to optimize.

The Tersoff potential is given by the following formulas

(omitting trivial definitions):

V =
∑
i

∑
j:rij<rC

V (i,j,ζij)︷ ︸︸ ︷
fC(rij) [fR(rij) + bijfA(rij)], (1)

bij = (1 + βηζηij)
− 1

2η , η ∈ R (2)

ζij =
∑

k:rik<rC

fC(rik)g(θijk) exp(λ3(rij − rik))︸ ︷︷ ︸
ζ(i,j,k)

. (3)

Formula 1 indicates that two forces act between each pair
of atoms (i, j), an attractive force modeled by fA, and a
repulsive force modeled by fR. Both depend only on the
distance rij between atom i and atom j. The bond-order
factor bij , however, depends on all the other atoms k sur-
rounding atom i, by means of their distance rik, and an-
gles θijk. Since the contribution of the (i, j) pair depends
on the other atoms k, the Tersoff potential is a many-body
potential. Although the empirical nature of the potential
means that many parameter lookups are necessary, the func-
tions within it (fR, fA, fC , g, exp) are expensive to compute,
which makes it a good target for vectorization.

Algorithm 1 implements the force and energy calcula-
tion, derived from Equations 1–3, in terms of the functions
V (i, j, ζ) and ζ(i, j, k). In a molecular dynamics simulation,
one needs to not only calculate the potential energy, but
also the associated forces on the atoms. Consequently, the
algorithm calculates the derivatives of the potential with re-
spect to the atom positions. Algorithm 1 describes the im-
plementation provided by LAMMPS: For all (i, j) pairs of
atoms, first accumulate ζij , then update the forces based on
the V (i, j, ζij) term, and finally perform the updates due to
the ζ(i, j, k) terms. This means that for each atom i with a
neighbor list of length n, the algorithm visits each neighbors
2n times (in total 2n2).

For the following discussions, it is important to keep the
loop structure of Algorithm 1 in mind: There is an outer
loop I over all atoms, then a loop over all neighbors J , and
inside the latter two more loops over the neighbors K. The
first optimization is to restructure the algorithm such that ζ
and its derivatives are only computed once, in the first loop,
and only the product with δζ is performed in the second
loop. Since ζ and its derivatives—naturally—share terms,
this modification has a measurable impact on performance.

The main vectorization challenge however is the extremely
short neighbor list that is typical for many-body potentials:
In a representative simulation run, the neighbor list for any



for i in local atoms of the current thread do
for j in atoms neighboring i do

ζij ← 0;
for k in atoms neighboring i do

ζij ← ζij + ζ(i, j, k);

E ← E + V (i, j, ζij);
Fi ← Fi − ∂xiV (i, j, ζij);
Fj ← Fj − ∂xjV (i, j, ζij);

δζ ← ∂ζV (i, j, ζij);
for k in atoms neighboring i do

Fi ← Fi − δζ · ∂xiζ(i, j, k);
Fj ← Fj − δζ · ∂xj ζ(i, j, k);
Fk ← Fk − δζ · ∂xkζ(i, j, k)

Algorithm 1: Tersoff potential and forces

given atom will rarely contain more than four atoms. How-
ever, to avoid frequent rebuilds of the neighbor list, this
may include a number of additional atoms; in order to not
waste slots in the actual potential calculation on these skin
atoms, these have to be excluded efficiently. The exact ex-
clusion mechanism constrains the vectorization, because it
determines the amount of necessary control flow in the vec-
torized regions, and the strategy to update the forces.

With most common pair potential formulations, one would
be able to increase the neighbor list’s length by extending
the cutoff radius—the maximum distance for an atom to
be included in another atom’s neighbor list. Increasing the
cutoff shifts work from the long-ranged force calculation to
the short-ranged calculation, and improves accuracy. How-
ever, the potential presented here does not have a long-range
component, and does not even have a cutoff in the conven-
tional sense: The cutoff instead is an intrinsic property of
the chosen parametrization.

3. OPTIMIZATION
From the previous discussion, it is clear that the most

straightforward approach—vectorizing the iteration through
the neighbor list—will not yield desired speedups. The rea-
son is that most entries in the neighbor list are part of the
skin region. They do not actually contribute to the cal-
culation. Including them would lead to many calculations
that would in the end be masked out. The alternative is
to examine all entries to determine if they are in the cutoff
region, and to process only those entries batch-wise, using
a vectorized method. The packing addresses the “sparsity”
of the neighbor list, as it exposes the short length of the re-
sulting packed neighbor list. The missing component is the
vectorized algorithm for batch-wise processing: (1) vectorize
along the J loop, and (2) vectorize along both the I and the
J loop.

In (1), the J loop is vectorized, which is the“middle” loop;
in the more common pair potential case it would be the in-
nermost loop, and thus the natural candidate for vectoriza-
tion. The advantage of this approach is that the atom i is
constant across all lanes. As the K loops iterate through
the neighbor list of atom i, the same neighbor list is tra-
versed across all lanes, leading to an efficient vectorization.
However, with long vectors and short neighbor lists, this
approach is destined to fail on the Xeon Phi.

Method (2) handles the previous shortcoming: Vectoriz-

ing over both the I and the J loop, effectively considering
atom pairs (i, j), again allows for packing. Given that the I
loop iterates over all the atoms in the simulation, this strat-
egy additionally makes it possible to exploit arbitrarily large
vectors. In contrast to (2), with the vectorization of the I
loop, atom i is not constant across all lanes. Consequently,
the innermost loops will iterate over the neighbor lists of dif-
ferent i, leading to a more involved iteration scheme. Even
if this iteration is very efficient, it can not attain the same
performance of an iteration scheme where all vector lanes it-
erate over the same neighbor list. The vectorization of the I
loop invalidated a number of assumptions of the algorithm:
i and k are always identical across all lanes, while j, com-
ing from the same neighbor list, is always distinct. Without
these assumptions, special care has to be taken when accu-
mulating the forces. For the program to be correct under all
circumstances, the updates have to be serialized.

Whether the disadvantages outweigh the advantages or
not is primarily a question of amortization. The answer
to this question depends on the used floating point data
type, the vector length, and the features of the underlying
instruction set.

4. IMPLEMENTATION
Implementations of the two algorithms described in sec-

tion 3 where added to the LAMMPS molecular dynam-
ics program, building upon the USER-INTEL package [6],
which provides basic support for offloading and vectorized
implementations. In production runs, the Xeon Phi is ac-
cessed via offloading, in the same way any other accelerator
is; for benchmarking purposes, the program runs natively
to isolate the effect of vectorization. Parallelism is imple-
mented according to the standard paradigm of the package:
MPI is used for a domain decomposition, and atom decom-
position is used at the OpenMP level.

The Intel Compiler version 16.0 is used. Initially, we
set out to rely on source code annotations and compiler-
supported optimization. However, it seems impossible to
create a compiler-vectorized implementation that follows our
optimization strategies. In particular, the compiler model
assumes that all vector lanes write data to distinct memory
locations; in the innermost loop of our implementations, this
assumption is not satisfied. Instead, as a first prototype, we
created a Xeon Phi double precision intrinsics version. The
usage of intrinsics is problematic, because it leads to ver-
bose, hard to read and debug-unfriendly code. Given that
the creation of the prototype was a considerable effort, creat-
ing further intrinsics programs to cover additional platforms
is not sustainable.

For the final product, both support for different instruc-
tion sets and floating point precision settings are necessary.
It is crucial to also support CPU instruction sets to balance
the load between host and accelerator. Additionally, such a
code enables us to evaluate the influence of vector lengths
and instruction set features on the code performance. Look-
ing at all combinations of instruction sets, data types and
vectorization variants, it is infeasible to implement them in
intrinsics. Instead, a single, tested, correct algorithm is cre-
ated, and paired with a tested, correct vectorization support
library. Consequently, instead of implementing the Tersoff
potential’s algorithm n ·m times (n architectures and m pre-
cision modes), we only need to implement simple building
blocks in the support library.



The vectorization support library is implemented using
C++ templates which are specialized for each targeted ar-
chitecture. The library contains implementations for single,
double and mixed precision using a variety of instruction set
extensions: Scalar, SSE4.2, AVX, AVX2, IMCI (the Xeon
Phi Knights Corner instruction set), as well as experimental
support for AVX-512 and Cilk array notation.

The array notation implementation can help debugging
the code as it can simulate arbitrary vector lengths. Adding
a new architecture is straightforward, although tuning might
take some time. Tuning is simplified as the library is only a
very thin abstraction layer, and provides a number of bigger
building blocks such as wide gather-and-transpose opera-
tions which can be optimized in one go.

Contrary to most other vector libraries, which allow the
programmer to pick a vector length that may be emulated
internally, this vector library allows for algorithms that are
oblivious of the used vector length.

5. BENCHMARKING
The benchmarks use a simplified carbon nanotube stretch-

ing simulation as the model problem. In a carbon nan-
otube, each atom has roughly three nearest neighbors. Con-
sequently, Section 2’s and Section 3’s considerations about
small neighbor lists apply here.

Subsections 5.1 and 5.2 evaluate the vectorization qual-
ity isolated from all other effects. The quality is measured
by running on the bare hardware with a single thread, and
comparing the normal LAMMPS version against our scalar-
optimized version and our vectorized-optimized version. Mea-
suring the runtime of all these versions allows us to isolate
the performance gains due to vectorization from those due
to other optimizations. Running with a single thread allows
us to eliminate threading and offloading overheads. Contin-
uing, Subsection 5.3 also compares entire nodes of varying
system configuration and their respective computing power
for this specific problem. For this purpose, a longer, more
complicated variant of the same simulation is run, utilizing
each available machine at its fullest.

5.1 Vectorization on the Xeon Phi coprocessor
For the Xeon Phi coprocessor, only the “I” algorithm is

considered. The “J” algorithm is not competitive due to
its shortcomings, that were discussed in the previous sec-
tion. The benchmark runs natively on a single core of a
mid-range 5110P Xeon Phi coprocessor, and both single and
double precision performance is measured. All comparisons
are relative to the LAMMPS baseline, which only provides
a double precision implementation, limiting the validity of
single precision speedups.

Table 1b indicates that scalar optimizations lead to a 1.5x
speedup in double precision, and that vectorization is re-
sponsible for another factor of four. As the Phi’s vector
unit is eight double elements wide, this means that the
code achieved a vectorization efficiency—speedup per vec-
tor length—of 50%.

For single precisions, all the speedups are higher than
for double precision, while the vector efficiency decreases
to 33%. The reason for this drop is that certain operations
have to take place on a per-lane basis. Unfortunately there
is no single precision LAMMPS version to compare against.

5.2 Vectorization on the Xeon processor

(a) Timings (in seconds)

Precision LAMMPS I-Scalar I-Vec
double 88.72 58.04 14.18
single — 45.59 8.56

(b) Speedup & Vector Efficiency

Precision LAMMPS
I-Scalar

LAMMPS
I-Vec

I-Scalar
I-Vec

I-Scalar
I-Vec·VL

double 1.53 6.26 4.09 0.51
single (1.95) (10.36) 5.32 0.33

Table 1: Vectorization experiment on a Xeon Phi 5110P,
using the “I” algorithm running directly on the coprocessor
without threading.

Timings (in seconds) & Speedups

Arch. “I” “J” LAMMPS
“I”

LAMMPS
“J”

LAMMPS 28.23 1
Scalar 18.63 14.7 1.52 1.91
SSE 37.15 21.3 0.76 1.32
AVX 23.92 12.5 1.18 2.25
AVX2 16.59 10.9 1.70 2.59

Table 2: Vectorization experiment on a Xeon E5-2680 v3
processor (Haswell generation), in double precision without
threading

Our second benchmark is performed on a Xeon processor
from the Haswell generation. For the evaluate of vectoriza-
tion, the code is run on a single core. On this particular
processor, the benchmark can run with 128-bit vectors and
256-bit vectors, and also utilize AVX2 instructions. Given
this multitude of options, only double precision measure-
ments are given. Consequently, the code has to deal with
vector lengths of 2 (SSE) and 4 (AVX/AVX2) respectively.

Table 2 contrasts the runtime of both the “I” algorithm
and the “J” algorithm, as well as the associated speedups.
Contrary to the Xeon Phi, the majority of speedups here
comes from our sequential optimizations. The speedup from
vectorization is lower than expected on all of the targeted
instruction sets.

For SSE, no speedup is achieved at all in double precision
relative to the scalar version. This is surprising because the
vectorized code performs its calculation using the same in-
structions as its scalar counterpart. There are a number
of reasons why the scalar code outperforms the vectorized
one, including the lack of efficient masking and the need to
spend time in gather operations. To read the correct param-
eters for an atom interaction, the algorithm has to perform a
masked gather operation, which only has hardware support
with the beginning of AVX2. Otherwise, it has to rely on
an expensive emulation.

The same argument also applies to AVX, however the
longer vectors amortize some of that cost. AVX actually
lacks a number of operations in comparison with SSE, such
as integer addition and multiplication, that need to be em-
ulated.

AVX2 relieves most of these problems, as it provides in-
teger operations and gather instructions. As such, perfor-
mance should be similar to the Xeon Phi, with a vector
efficiency of 50%, i.e. a speedup of 2 against the scalar op-
timized code. That speedup however is just 1.35. Reasons
might include the lack of dedicated mask registers or the



Timings (in seconds)

System double single

Sandy Bridge
LAMMPS 395.89
Vec 250.02 229.65

Phi Vec. 170.88 125.14

Haswell
LAMMPS 182.43
Vec. 136.99 103.16

Table 3: Full system comparison: Measured runtimes

comparably slow gather operation (as opposed to the Phi).
In the future, gather operations could be reduced by ex-

plicitly specializing the kernel to the number of atoms types:
For up to four/eight types, gather instructions could be re-
placed with cheaper permutation operations.

5.3 Full system comparison
Finally, this section provides a comparison of complete

systems: These are one Haswell system, with two E5-2680
v3 (24 cores in total), one Sandy Bridge system, with two
E5-2450 (16 cores in total), and the Xeon Phi 5110P (60
cores in total), connected to the Sandy Bridge system. As
opposed to the previous sections, the benchmark utilizes all
cores of the respective system. The production version of the
code is used, which means that the Xeon Phi coprocessor
is accessed via offloading. To keep force reduction times
due to atom decomposition low, a mixture of MPI ranks
and threads on the Xeon Phi per rank are chosen. The
optimal parameters in this case are 8 MPI ranks, with 29
threads each. While part of the domain decomposition work
from the MPI parallelization is done on the host, the force
and energy calculation is performed exclusively on the Xeon
Phi. As opposed to the CPUs, the Xeon Phi benefits from
oversubscription: We run approximately four threads per
core.

All the following measurements are“production”runs that
the full systems at their best vectorization setting, with
parallelization and realistic experimental conditions. For
the Xeon Phi, this includes the overhead due to offload-
ing. The baseline for the following comparisons is LAMMPS’
OpenMP support. A direct comparison is not possible for
the Xeon Phi, as the package does not support offloading.

As expected from the previous sections, the resulting mea-
surements in Table 3 show that our optimizations deliver
a sizable performance improvement against the comparable
LAMMPS variant on any system. The aim of the bench-
mark is to incorporate all the overheads present in a real-
world simulation. Both parallelism and offloading introduce
overheads, that were not present in the previous measure-
ments. As such, the speedups are expected to be lower than
the speedups achieved using vectorization alone.

The ordering among the systems with respect to runtime
is not unexpected given their release dates and computa-
tional power. The Sandy Bridge system is slowest, followed
by the Xeon Phi, and the fastest system is the two years
younger Haswell system. While peak floating point per-
formance is an imperfect measure, it offers some explana-
tion of the ordering. The theoretical peak FLOPS (DP) of
the systems are 269 GFLOPS (DP) for Sandy Bridge, 1011
GFLOPS (DP) for the Xeon Phi, and 960 GFLOPS (DP)
for Haswell. Although our code does run on the prototype of
the “Knights Landing” chip, hard performance data is not

available yet. Given that the chip is expected to deliver
around 3000 GFLOPS (DP), it seems reasonable that it will
outperform the Haswell system.

6. CONCLUSION
We showed that vectorization can achieve considerable

speedups also in complicated simulations which do not im-
mediately lend themselves to the SIMD paradigm. Indeed,
even a many-body potential with a very short neighbor list
benefits from vectorization, especially when using acceler-
ator hardware such as the Xeon Phi coprocessor. To im-
plement the optimized algorithm in a portable way, the
abstraction library has proved useful, because it allows a
clean division between the algorithm implementation and
the hardware support for vectorization. The ideas behind
our optimizations were described, and their effectiveness was
validated by means of realistic use cases. Our results suggest
that the upcoming generation of Xeon Phi chips will lead to
another increase in performance.

7. ACKNOWLEDGMENTS
The authors gratefully acknowledge financial support from

the Deutsche Forschungsgemeinschaft (German Research As-
sociation) through grant GSC 111, and from Intel via the
Intel Parallel Computing Center initiative. We would like
to thank Marcus Schmidt for providing the benchmark used
in this work.

8. OPEN SOURCE
The associated code is available at [11].

9. REFERENCES
[1] S. Plimpton, Fast Parallel Algorithms for Short-Range

Molecular Dynamics, J Comp Phys, 1995.

[2] Wolf et al, Assessing the Performance of OpenMP Programs on
the Intel Xeon Phi, Lecture Notes in Computer Science,
Euro-Par 2013 Parallel Processing, 2013.

[3] Brown et al, An Evaluation of Molecular Dynamics Performance
on the Hybrid Cray XK6 Supercomputer, Procedia Computer
Science, 2012.

[4] Brown at al, Implementing molecular dynamics on hybrid high
performance computers—Three-body potentials, Computer
Physics Communications, 2013.

[5] Hou et al, Efficient GPU-accelerated molecular dynamics
simulation of solid covalent crystals, Computer Physics
Communications, 2013.

[6] Brown et al, Optimizing legacy molecular dynamics software
with directive-based offload, Computer Physics
Communications, 2015.

[7] Tersoff, New empirical approach for the structure and energy of
covalent systems, Phys. Rev. B, 1988.

[8] Heinecke et al, Supercomputing for Molecular Dynamics
Simulations, Springer International Publishing, 2-15.

[9] Páll et al, Tackling Exascale Software Challenges in Molecular
Dynamics with GROMACS, Solving Software Challenges for
Exascale, Lecture Notes in Computer Science, 2015.

[10] Tian et al, Compiling C/C++ SIMD Extensions for Function
and Loop Vectorization on Multicore-SIMD Processors,
IPDPSW, 2012.

[11] http://github.com/HPAC/lammps-tersoff-vector.


