
Accelerating Particle-Particle Particle-
Mesh Methods for Molecular Dynamics

William McDoniel Ahmed E. Ismail Paolo Bientinesi

High Performance and Automatic Computing Group
Aachen Institute for Advanced Study in Computational Engineering Science

RWTH Aachen University

Intel PCC 2016 Fall Forum
Toulouse

Thanks to: Klaus-Dieter Oertel and Georg Zitzlsberger

1

2

Image from wikimedia

Molecular Dynamics

l Simulations the motion of individual
molecules

l Widely used in fields from materials
science to biology

l Computes the interaction forces
between and within molecules
according to potential functions

3

LAMMPS

l Large-scale Atomic-Molecular Massively Parallel Simulator

Sandia National Labs
http://lammps.sandia.gov

Wide collection of potentials

Open source, support for OpenMP,
Xeon Phi, and GPU (CUDA and
OpenCL)

4

Intermolecular Forces

The forces on atoms are commonly taken to be the result of independent pair-
wise interactions.

Lennard-Jones potential:

Where the force on an atom is given by:

But long-range forces can be important!

The electrical potential only decreases as 1/r and doesn’t perfectly cancel for
polar molecules.

Interfaces can also create asymmetries that inhibit cancellation.

𝛷"# = % 4
'()*'+

𝜖
𝜎
𝑟/0

12

−
𝜎
𝑟/0

4

�⃗� = −𝛻𝛷

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5

V
 /

 ε
r / σ

R
e

p
u

ls
iv

e

Attractive

R
e

p
u

ls
iv

e

Attractive

C
u

to
ff

 r
c

5

Particle-Particle Particle-Mesh

l PPPM1 approximates long-range forces without requiring pair-wise
calculations.

Four Steps:

1. Determine the charge distribution ρ by mapping particle charges to a grid.

2. Take the Fourier transform of the charge distribution to find the potential:

3. Obtain forces due to all interactions as the gradient of Φ by inverse Fourier
transform:

4. Map forces back to the particles.

�⃗� = −𝛻𝛷

𝛻2𝛷 = −
𝜌
𝜖9

1. Hockney and Eastwood, 1988

6

Profiling LAMMPS

We use the USER-OMP implementation of LAMMPS as a baseline.
Typically: rc is 6 angstroms, relative error is 0.0001, and stencil size is 5.

The work in FFTs increases rapidly at low cutoffs.
The non-FFT work in PPPM is insensitive to grid size.

7

Profiling LAMMPS

All parts of the code take time proportional to the size of the problem.

Mapping charges and distributing forces are loops over atoms. The number of FFT
grid points is proportional to the domain’s volume.

8

Charge Mapping

Stencil coefficients are polynomials of order stencil size.
3x[stencil size] of them are computed.

Loop over cubic stencil and
contribute to grid points

Loop over atoms in MPI rank

USER-OMP Implementation

9

Charge Mapping

Loop over atoms in MPI rank

USER-OMP Implementation

10

Charge Mapping

Stencil coefficients are polynomials of order stencil size.
3x[stencil size] are computed.

USER-OMP Implementation

11

Charge Mapping

Loop over cubic stencil and contribute to grid points

USER-OMP Implementation

12

Charge Mapping

Our Implementation

Thread over atoms

#pragma simd
for coefficients

USER-OMP Implementation

13

Charge Mapping

Innermost loop vectorized with bigger stencil.
Private grids prevent race conditions.

Our Implementation

14

Charge Mapping

10x speedup over USER-OMP implementation, 5x due to vectorization.
Simulations run using a 7 point stencil.

15

Distributing Forces
Very similar to charge mapping:
Computes stencil coefficients
Loops over stencil points.

More work and accesses more
memory

#pragma simd
around atom loop

Update 3 force
components

Water benchmark:
40.5k atoms
884k FFT grid points

16

Distributing Forces

Update 3 force components

17

Distributing Forces
Inner SIMD

18

Distributing Forces
Inner SIMD

10% faster with
tripcount instead of 7

50% faster with
8 instead of 7

Reduction of force
component arrays

19

Distributing Forces

16-iteration loops are faster
on KNL, even with extra 0s

Repacking vdx and vdy into vdxy, vdz into
vdz0 (done outside atom loop)

3 vector operations instead of 4: 60% faster

20

5-6x speedup over the USER-OMP implementation

Simulations run using a 7 point stencil

Distributing Forces

21

Overall Speedup

22

Overall Speedup

23

Speedups on 1 core between 1.38x and 1.65x

PPPM routines are sped up between 1.48x and 2.65x, sensitive to FFT accuracy.

Overall Speedup

24

Overall Speedup - Parallel

25

Overall Speedup - Parallel

26

Overall Speedup - Parallel

27

Overall Speedup - Parallel

28

Overall Speedup - Parallel

Speedups on 60 cores are about 1.5x for small problems for the
fastest overall parameters.

PPPM routines are still sped up by about 2x for cases with good
parameters

Optimal parameters depend on problem size

29

Future Work

• Study 1D vs 3D FFT MKL calls

• Adjust optimizations for alternative differentation mode

• Apply optimizations to P3M for Lennard-Jones (dispersion)

