
OpenACC - A Step Towards Heterogeneous
Computing

Paul Springer

German Research School for Simulation Sciences GmbH
Laboratory for Parallel Programming

Paul.Springer@rwth-aachen.de

Supervisor: Sebastian Rinke (s.rinke@grs-sim.de)

Abstract: With the fast growing number of heterogeneous supercomputers, consisting
of massively parallel coprocessors attached to multi-core processors, it becomes increasingly
important to program these heterogeneous systems in a productive manner. Programming
these coprocessors through low-level APIs such as CUDA or OpenCL is often a tedious task
and may result in poor productivity. OpenACC tries to overcome this drawback by allowing
programmers to annotate C/C++ or Fortran code with directives which are then translated
into accelerator-specific code by the compiler. This paper summarizes OpenACC’s features,
its limitations and possible future directions. Moreover, I will present two case studies
where I evaluate OpenACC’s performance and productivity in comparison to CUDA and
OpenMP.

1 Introduction

During the recent years we have witnessed a paradigm shift from single-core CPUs to multi-core CPUs
since it was not feasible to keep increasing the frequency of single-core CPUs due to power constraints.
Alongside this development, we have seen that graphics processing units (GPUs) have continuously
increased their floating point performance and features (e.g. ECC support, caches) which attracted the
attention of the high-performance computing (HPC) community. In the beginning of general-purpose
computing on graphics processing units (GPGPU) these devices had to be programmed through 3D
graphics application programming interfaces (APIs) such as Direct3D and OpenGL which was a te-
dious and counterintuitive way of writing general-purpose applications for GPUs. In order to improve
the programmability of NVIDIA GPUs, NVIDIA introduces the Compute Unified Device Architec-
ture (CUDA) [1] in 2007 which was closely followed by the release of the Open Computing Language
(OpenCL) [2] in 2008. While CUDA is restricted to NVIDIA GPUs, OpenCL is not. However, both
APIs are relatively low-level and cherished the desire for an easy-to-use and portable programming
model for various coprocessors which eventually led to the development of OpenACC.
With the release of the latest Top500 list [3] it is shown that the ongoing trend towards systems

consisting of nodes with multi-core CPUs attached to an accelerator/coprocessor1 continues. As of
today the Top500 list already contains 62 such heterogeneous systems. Most notably is the worlds
fastest supercomputer Titan at Oak Ridge National Laboratory which gains about 90 percent of its
performance from NVIDIA’s K20 GPU accelerator. One driving force behind this ongoing trend is the
good power efficiency of today’s coprocessors [4], since power consumption is an important objective
for future architectures as it is likely to become the limiting factor for Exascale supercomputers.
In parallel to the increasing number of heterogeneous systems we also see a growing diversity of

coprocessors (e.g. NVIDIA GPUs, AMD GPUs, Intel’s Many Integrated Core Architecture (MIC) [5],
Convey’s FPGA solutions, Texas Instruments’ DSPs) which makes it more and more important to

1I use the term coprocessor instead of accelerator because the word accelerator has a promise to it which might not be
true for all applications.

3 OPENACC

write portable code. Another difficulty with respect to coprocessors is that they add yet an additional
level of parallelism to current architectures which makes writing efficient coprocessor applications even
more difficult than writing “ordinary” parallel MPI/OpenMP applications. Even though CUDA and
OpenCL provide the means to program coprocessors, these APIs are relatively low-level and verbose
which might limit productivity. The OpenACC API [6] follows a different approach as it enables the
programmer to offload work to a coprocessor by adding compiler directives to C/C++ or Fortran code.
Hence, the programmer does not have to write low-level code in order to utilize the massive parallelism
of today’s coprocessors. This approach aims at high productivity [7] and provides portability across
different CPUs, operating systems and coprocessors by delegating the responsibility of generating cor-
rect coprocessor code to the compiler.

This paper is structured as follows: Section 2 shows related work. Section 3 introduces OpenACC.
Section 4 presents the performance and productivity results of two case studies. Finally, I comment
on possible future directions of OpenACC in Section 5 and conclude this paper in Section 6.

2 Related Work

In [7], Wienke et al. give two case studies evaluating the performance and productivity of OpenACC
in comparison to hand-tuned OpenCL versions on the example of two real-world applications. Their
OpenACC implementations achieved a performance of 40% and 80% with respect to their OpenCL
counterparts. It is worth mentioning that these case studies used an early version of CRAY’s OpenACC
compiler and are likely to perform better as the OpenACC compiler continues to mature. Moreover,
they conclude that OpenACC is favorable in terms of productivity.

Hart et al. [8] ported an existing Fortran code of a three dimensional Poisson solver to a GPU accel-
erated system. Their OpenACC version is about twice as fast as their hybrid MPI/OpenMP version
running on a comparable CPU-only system. Despite the lack of a comparison between OpenACC and
CUDA, their results are quite promising as they only required little code restructuring to port this
application to a GPU-accelerated system.

Levesque et al. [9] give a case study porting a hybrid MPI/OpenMP implementation of a turbu-
lent combustion solver to the Titan system hosted at Oak Ridge National Laboratory. Based on
their MPI/OpenMP version they stated that “changing to the new OpenACC required only a trivial
change in syntax” [9]. Moreover, comparing the performance of the OpenACC version running on
the GPU-accelerated system against the MPI/OpenMP version running on a comparable CPU-only
system shows that the OpenACC implementation performs ≈50% faster than the CPU-only version.

3 OpenACC

The OpenACC [6] API specifies compiler directives and runtime API functions which enable the
programmer to offload work to one or more coprocessors. These high-level directives are then translated
into coprocessor code by the compiler, which hides the complexity of low-level APIs such as CUDA
or OpenCL. However, OpenACC is not fully automated and requires the programmer to identify
regions of the code that should be offloaded to the coprocessor. Since its introduction by NVIDIA,
PGI (The Portland Group), CAPS and CRAY in November 2011, OpenACC enjoys an increasing
popularity within the HPC community as it mimics the OpenMP [10] syntax (see Listing 1) and
allows programmers to incrementally migrate existing C/C++ or Fortran applications to coprocessors.
Moreover, OpenACC is fully interoperable with MPI and OpenMP which makes it perfectly suited for
large heterogeneous clusters.

2

3 OPENACC

#pragma acc d i r e c t i v e−name [c l au s e [[,] c l au s e] . . .]
{ s t ruc tu r ed block }

Listing 1: OpenACC syntax for C/C++.

While portability and productivity are clearly the main goals of OpenACC, it also allows program-
mers to target different architectures without the need to fork the development process. Even though
directive based programming seems to be a promising approach, OpenACC still has to prove that its
performance is comparable to its low-level API counterparts (see Section 4.3).

At the time of writing the three OpenACC compiler vendors PGI, CAPS and CRAY only support
GPUs as target devices. More precisely, CAPS is currently the only vendor who supports both NVIDIA
and AMDGPUs, while PGI and CRAY only support NVIDIA GPUs (see Section 5 for future direction).
However, OpenACC is designed such that it can support a wide variety of coprocessors. This is possible
because many current coprocessors share several architectural features [11]. Looking at NVIDIA GPUs,
AMD GPUs and Intel’s MIC architecture, all these coprocessors (1) can run asynchronously to the
host (i.e. CPU), (2) have their own shared-memory space and (3) provide a large number of processing
elements (PEs). These PEs run in parallel and can issue SIMD instructions. In terms of NVIDIA’s
Kepler architecture these PEs would map to streaming multiprocessors (SMXs) [12].

3.1 Execution Model

The OpenACC execution model introduces three execution units: gang, worker and vector. With
respect to NVIDIA’s GPUs it is reasonable to think of a gang as a threadblock, worker as a warp and
vector as a thread [12]. Similar to CUDA and OpenCL, OpenACC does not offer an efficient way of
synchronization between gangs. This preserves high performance and enables these APIs to transpar-
ently scale to arbitrary large numbers of PEs which is important for scaling of future architectures.
Moreover, OpenACC offers the opportunity to run device calls (so-called kernels) asynchronously to
the main program which runs on the host. The programmer is able to synchronize these calls through
runtime API functions (see Section 3.4).

3.2 Memory Model

The OpenACC memory model assumes that the host and the coprocessor have separate shared-memory
spaces, meaning that the host is typically not able to access the device memory directly (and vice versa).
Prior to the execution of a kernel (1) memory needs to be allocated on the device and (2) the cor-
responding input data has to be transferred to the coprocessor. These transfers typically use direct
memory access (DMA) [6] and are limited by the bandwidth of the PCIe bus, which is slower than the
interconnect between the PEs and their on-device global memory. (3) After the execution of the kernel
on the device, (4) the output data needs to be copied back to the host and finally (5) the allocated
memory can be freed. Hence, it is good practice to choose computationally intensive loops for acceler-
ation by the coprocessors since these loops typically compensate these additional data transfers.

Moreover, OpenACC uses a weak memory model that does not support memory coherence between
operations executed by different PEs [6]. Programmers have to pay attention to this memory model
since it might affect the correctness of the application.

Furthermore, some coprocessors support software managed caches (low-latency, high-bandwidth
memory) which can be utilized by the compilers. Programmers can improve the utilization of these
caches by specifying special directives.

3

3 OPENACC

Environment Variable Description
ACC_DEVICE_TYPE Sets the desired coprocessor (e.g. NVIDIA).
ACC_DEVICE_NUM Selects a coprocessor ID.
ACC_NOTIFY Print additional information on each kernel launch.
PGI_ACC_TIME∗ Print timings for each kernel and data transfers.

Table 1: OpenACC environment variables. ∗only available for PGI compilers.

#pragma acc kernels #pragma acc parallel #pragma acc loop #pragma acc data
if() if() collapse(int) if()
async([int]) async([int]) gang [(int)]
copy(list) copy(list) worker[(int)] copy(list)
copyin(list) copyin(list) vector[(int)] copyin(list)
copyout(list) copyout(list) seq copyout(list)
create(list) create(list) independent create(list)
pcopy(list) pcopy(list) reduction(op:list) pcopy(list)
pcopyin(list) pcopyin(list) pcopyin(list)
pcopyout(list) pcopyout(list) pcopyout(list)
pcreate(list) pcreate(list) pcreate(list)
deviceptr(list) deviceptr(list)

num_gangs(int)
num_workers(int)
vector_length(int)
private(list) private(list)
firstprivate(list)

Table 2: Clauses for some OpenACC directives. [] denotes optional parameters.

3.3 Basic Features

In the course of this section, I describe the most salient features of OpenACC, which are sufficient to
implement a basic OpenACC application in C/C++. For more advanced OpenACC features please
refer to Section 3.4.

OpenACC specifies environment variables (see Table 1), runtime functions (see Section 3.4) and
many compiler directives (see Table 2), please refer to [6] for a full overview of supported directives.
There are conceptually two different ways to offload work to the coprocessor, namely the parallel

region and the kernels region. The parallel region is similar to the OpenMP parallel region in the
way that both create a parallel region that will be executed redundantly by the spawned gangs if no
work-sharing construct (i.e. #pragma acc loop) is specified. The loop directive is the counterpart to
OpenMP’s for directive and it can be combined with the kernels or parallel directive (see Listing 2),
much like #pragma omp parallel for. This combination is merely a shortcut for a parallel region directly
followed by a loop construct. One important difference between OpenMP’s for and OpenACC’s loop
is that there is no barrier at the end of each loop within a parallel region. This is not so surprising
if you think of this parallel region as a single kernel [13] and recall that OpenACC does not provide
synchronization between gangs. Another difference is that the current OpenACC specification does
not allow a parallel or kernels region inside another parallel or kernels region.
If the compiler encounters a #pragma acc parallel directive, it will try to convert the succeeding

structured block into a single kernel that is executed by the coprocessor. In order to identify por-
tions of the code that are suitable for acceleration and to spot dependencies which might prohibit
parallelization, the compiler has to perform sophisticated analysis of the encapsulated code. Since
OpenACC is prescriptive, much like OpenMP, programmers can override the compilers choices and

4

3 OPENACC

#pragma acc p a r a l l e l loop
f o r (i = 0 ; i < n ; ++i)

x [i] = alpha ∗ x [i] + beta ∗ y [i] ;
Listing 2: Parallel loop on the example of a vector addition.

19 , Acce l e r a to r ke rne l generated
19 , CC 2 .0 : 18 r e g i s t e r s ; 0 shared , 80 constant , 0 l o c a l memory bytes
20 , #pragma acc loop gang , vec to r (256) /∗ blockIdx . x threadIdx . x ∗/

19 , Generating present_or_copy (x [0 : n])
Generating present_or_copyin (y [0 : n])
Generating compute c ap ab i l i t y 2 .0 binary

Listing 3: PGI compiler feedback related to Listing 2.

force parallelization which might result in incorrect code.
Through out this seminar paper, I use PGI’s C compiler pgcc 12.9 and an NVIDIA Quadro 6000 GPU

to compile and execute the shown code snippets. In order to tell the PGI compiler to target NVIDIA
GPUs with compute capability 2.0 the -ta=nvidia,cc20 compiler flag is required. Furthermore, if the
Minfo=accel flag is specified, the compiler provides a detailed feedback (see Listing 3) which is a quite
handy feature that helps programmers to detect possible performance and correctness problems.
Listing 3 shows the compiler feedback generated for Listing 2, it informs the programmer that an

accelerator kernel has been generated2 and that this loop has been work-shared across the gangs, each
with a vector-length of 256 (i.e. in CUDA terms: across multiple threadblocks each consisting of
256 threads). Furthermore, blockId.x and threadIdx.x indicate that the loop has been is scheduled in
x-dimension for both threadblocks and threads. The fact that the compiler is tuning the generated
code for the target architecture is shown by the vector-length of 256. More precisely, work-sharing in
OpenACC is done across gangs, hence, the compiler could have chosen to launch n gangs with one
CUDA thread each, which would have resulted in very poor performance. As it is evident from this
scheduling strategy it is typically a good choice to have stride-1 accesses (i.e. accesses to consecutive
elements in memory) in the inner-most loop and use vector parallelism for this loop such that the
compiler can map consecutive elements to consecutive CUDA threads. We will see the performance
implication of these choices in Section 4.
This small example already depicts some advantages of OpenACC over low-level APIs: (1) Data

dependencies/transfers are automatically detected and the programmer does not have to explicitly deal
with memory allocation, deallocation and transfers, even though this is possible (see Section 3.4). (2)
The loop is automatically strip-mined into chunks of 256 and the compiler takes care of the boundary
cases (i.e. if n is not divisible by 256). (3) The compiler is able to choose the best scheduling strat-
egy for the accelerated region based on it’s analysis of the code and the targeting coprocessor. This
is especially important for two reasons, first, it releases the programmer from the burden to specify
these parameters, which typically requires some knowledge of the underlying architecture and sec-
ond, it allows to target different architectures by merely recompiling the application. It is worthwhile
mentioning that this does not mean that the same code can perform equally good on a variety of
coprocessors. More precisely, in order to achieve high performance for a specific coprocessor typically
some code refactoring is necessary as we will see in Section 4.1.

The acc kernels directive specifies a region that will be compiled into potentially many kernels which
can have different scheduling policies (see Section 3.4) and will be executed in-order on the device.
Typical candidates for these kernels are nested loops within the kernels region (see Listing 4).

2If you don’t get this feedback, your parallel region has not been parallelized!

5

3 OPENACC

#pragma acc k e rn e l s
{

f o r (i = 0 ; i < n ; ++i)
f o r (j = 0 ; j < n ; ++j)

x [i] = alpha ∗ x [i] + beta ∗ y [j] ;

f o r (i = 0 ; i < n ; ++i)
x [i] = alpha ∗ x [i] + beta ∗ y [i] ;

}
Listing 4: Kernels region.

19 , Generating present_or_copy (x [0 : n])
Generating present_or_copyin (y [0 : n])
Generating compute c ap ab i l i t y 2 .0 binary

21 , Loop i s p a r a l l e l i z a b l e
22 , Complex loop c a r r i e d dependence o f ’ ∗(x) ’ prevents p a r a l l e l i z a t i o n

Loop c a r r i e d dependence o f ’ ∗(x) ’ prevents p a r a l l e l i z a t i o n
Loop c a r r i e d backward dependence o f ’ ∗(x) ’ prevents v e c t o r i z a t i o n
Inner s e qu en t i a l loop scheduled on a c c e l e r a t o r
Acce l e r a to r ke rne l generated
21 , #pragma acc loop gang , vec to r (128) /∗ blockIdx . x threadIdx . x ∗/
22 , CC 2 .0 : 23 r e g i s t e r s ; 0 shared , 80 constant , 0 l o c a l memory bytes

25 , Loop i s p a r a l l e l i z a b l e
Acce l e r a to r ke rne l generated
25 , #pragma acc loop gang , vec to r (128) /∗ blockIdx . x threadIdx . x ∗/

CC 2 .0 : 15 r e g i s t e r s ; 0 shared , 80 constant , 0 l o c a l memory bytes
Listing 5: PGI compiler feedback related to Listing 4.

Looking at Listing 4, the PGI compiler is not able to vectorize either loop without further assistance
of the programmer. This was due to the fact that the compiler was not certain that the pointers x and
y do not overlap (i.e. point at the same memory locations), which would prevent parallelization due
to loop carried dependencies. There are different approaches to resolve this issue. One solution would
be to add a loop directive with an independent clause to all independent loops (i.e. in front of both
i loops). Another common solution is to add the restrict keyword to the declaration of the x pointer
(i.e. double * restrict x;).
The compiler feedback for Listing 4 is shown in Listing 5, it indicates that the parallelization of the

inner j loop was not possible due to loop carried dependencies. Since this can have major performance
implications, I show how to resolve these kinds of dependencies in Section 4. For the time being, the
outer loop is distributed among gangs with a vector-length of 128. Furthermore, the compiler was
smart enough to realize that the data is only required at the end of the kernels region hence there is
no communication between host and device after completion of the first kernel.
For a more detailed discussion on the differences between the parallel and kernels directive, please

refer to the well written article by Micheal Wolfe [13].

3.4 Advanced Features

This section introduces some of the more advanced OpenACC features which help to improve the
performance of the application but are not necessary to write correct OpenACC code. The interested
reader is referred to [6] for further information.

6

3 OPENACC

#pragma acc p a r a l l e l copy (x [0 : n]) , copyin (y [0 : n])
f o r (i = 0 ; i < n ; ++i)

x [i] = alpha ∗ x [i] + beta ∗ y [i] ;
Listing 6: Verbose parallel loop on the example of a vector addition.

Writing efficient coprocessor code is not trivial at all, however, there are some guidelines which
generally apply to coprocessor programming [12]:

• Avoid communication between host and device.

• Keep the coprocessor busy.

• Reuse data to avoid memory bandwidth bottlenecks.

One of OpenACC’s features to address these issues is the data region (see Table 2). It enables
programmers to keep data on the coprocessor and avoid needless data transfers and reallocation. For
code examples please refer to Section 4 where I make use of this feature in both of the case studies. In
addition to the data region there are various data clauses (see Table 2) which can be used to specify
data transfers explicitly. This is of special interest if the compiler makes poor decisions for data trans-
fers or if it is not possible to determine the sizes of the data automatically. A more verbose version of
Listing 2 where I explicitly list the data clauses is shown in Listing 6. The syntax for the arguments
to the data clauses in C are: pointer [<lowest index of subarray>: <number of subarray elements>].

Another interesting feature of OpenACC is its interoperability with low-level APIs such as CUDA.
Programmers can hand tune some kernels using CUDA and pass results to the OpenACC-generated
kernels via the deviceptr clause. For instance, a hand-tuned CUDA kernel processes an array x, this
array can be passed to another kernel by specifying deviceptr(x) which indicates that x is already
present on the coprocessor and does not require further data transfers. This feature also allows to
utilize existing CUDA libraries in OpenACC applications.

A parallel or kernels region can execute asynchronously to the host if the async([int]) clause is
present. The optional argument can be used by runtime functions such as acc_async_test() and
acc_async_wait(). Moreover, all asynchronous activities with the same optional parameter will be
executed in-order on the device, this is comparable to a stream in CUDA.
These asynchronous features enable the programmer to utilize the host and the coprocessor at the

same time. This feature is essential for OpenACC’s multi-coprocessor support. Programmers can inter-
act with multiple coprocessors via runtime functions like: acc_get_device_num(), acc_set_device_num(),
acc_set_device_type(), acc_get_device_type(), acc_get_num_devices(). However, current imple-
mentations of PGI’s OpenACC-enabled compilers are not able to use multiple coprocessors for the
same accelerator region [14].

Another important feature is the possibility to explicitly set the scheduling policy. This allows the
programmer to decide whether a loop should be scheduled among gangs, workers or vectors. Listing
7 shows a verbose OpenACC implementation of a matrix-vector multiply y = Ax. The ability to
limit the number of gangs is essentially the same as requesting each gang to carry out more work. In
terms of CUDA this means that each threadblock processes multiple entries of the outer loop which
would require the programmer to distribute this loop manually. This feature can reduce the overhead
involved in scheduling new gangs and might enable the gangs to reuse data. Even though this feature
might improve performance for a special coprocessor it can limit portability and scalability for future
architectures.

7

4 CASE STUDIES

#pragma acc p a r a l l e l num_gangs (128) , vector_length (256)
#pragma acc loop gang

f o r (i = 0 ; i < n ; ++i) {
double tmp = 0 . 0 ;

#pragma acc loop vec to r r educt i on (+:tmp)
f o r (j = 0 ; j < n ; ++j)

tmp += A[i ∗ n + j] ∗ x [j] ;
y [i] = tmp ;

}

Listing 7: Verbose version of a matrix-vector multiplication with the number of gangs set to 128 and the
vector-length fixed at 256.

4 Case Studies

This section presents two case studies - Molecular Dynamics in Section 4.1 and Conjugate Gradient
Method in Section 4.2 - to evaluate the performance and productivity of OpenACC compared to
CUDA and OpenMP. I describe their basic principles, the rough layout of the algorithms and list code
examples if they expose special features or behaviours of OpenACC.

4.1 Molecular Dynamics Simulation

Molecular dynamics (MD) is an important method to deal with classical many-body systems. Its
applications range over various length scales, e.g. the simulation of the universe, motion of galaxies,
motion of planets and down to microscopic systems to describe the motion of gases or liquids.

Molecular dynamics deals with the dynamics of N particles (e.g. planets, atoms) to simulate their
motion and to measure observables such as energy and pressure. The motion of the particles is governed
by Newton’s equation of motion:

~fi = ~aimi = −∇iU(t) ∀i = 1, 2, ..., N (1)

Where ~ai ∈ R3 is the acceleration and mi ∈ R is the mass3 of particle i. Moreover, U(t) is the
interaction potential at time t and is described as follows:

U(t) =
1

2

N∑
i=1

N∑
j=1
j 6=i

Ui,j(‖~ri,j‖) (2)

Where Ui,j is the interaction potential between two particles i and j and ~ri,j ∈ R3 represents the
distance between them. The choice of the proper interaction potential depends on the underlying
physical problem. I use the Lennard-Jones potential (see Equation (3))4 for the simulation of a synthetic
example.

Ui,j(~ri,j)
LJ = 4

[(
σ
‖~ri,j‖

)12
−
(

σ
‖~ri,j‖

)6]
(3)

The most computationally intensive part of an MD simulation is the computation of the potential
in order to compute the forces such that the particles can be integrated in time. The naive approach
to do this, is to compute the sum in Equation (2) which results in a computational complexity of
O(N2). As we are usually interested in systems consisting of millions of particles this approach is
not feasible and there are algorithms available which approximate this sum requiring a complexity of

3For simplicity we assume that all particles have the same mass.
4Used to describe the interaction between molecules of noble gases.

8

4 CASE STUDIES

1 For i:= 1 to m Do :
2 t← t+ dt

3 compute_forces (~r, ~f)
4 i n t e g r a t e (~r, ~f,~v, dt)
5 I f (i % 100 == 0)
6 save_to_f i l e (~r)
7 EndDo

Listing 8: Overview of the main Molecular Dynamics routine. Where ~r = (~r1, ~r2, ..., ~rN), ~f =
(~f1, ~f2, ..., ~fN), ~v = (~v1, ~v2, ...~vN) and m denote the particle position, force, velocity and
the maximum number of iterations, respectively.

1 #pragma acc k e rn e l s loop
2 For i:= 1 to N Do :
3 For j := 1 to N Do :
4 ~ri,j ← ~rj − ~ri
5 ~fi,j ← compute_force (‖~ri,j‖)
6 ~fi ← ~fi + ‖~fi,j‖ ~ri,j
7 EndDo
8 EndDo

Listing 9: Naive OpenACC version for updating the forces ~fi of each particle. Let ~ri denote the position
of particle i and N the total number of particles.

O(Nlog(N)) or even O(N) [15,16]. However, since this case study is concerned about the performance
and productivity of OpenACC in comparison the CUDA and OpenMP, the naive O(N2) approach is
still a reasonable choice.

The remainder of this section lists three different OpenACC implementations of the O(N2) MD
algorithm. Listing 8 depicts the overall control flow of all three implementations. Henceforth, I omit
non-relevant parameters and implementation details for simplicity reasons. Moreover, this MD im-
plementation only ports the computation of the forces (i.e. Line 3) to the GPU. This means that
each iteration requires data transfers between host and device. If we would be interested in a high-
performance MD simulation we would definitely have to pay attention to this issue. However, the
OpenACC implementation closely follows its CUDA counterpart which allows a fair performance com-
parison.
The naive OpenACC implementation of the compute_force(...) routine requires only a single

#pragma acc kernels loop directive to offload the force calculation to the coprocessor (see Listing
9). However, the PGI compiler feedback indicates that only the outer i loop is distributed among
gangs and vectors while the parallelization of the inner j loop was not possible due to loop-carried
dependencies.
An improved OpenACC version which avoids these dependencies at the cost of additional reduc-

tions is shown in Listing 10. Profiling this improved versions reveals that the compiler chooses to
allocate and deallocate the force and position arrays in every iteration. Adding a #pragma acc data
create(particle_force[0 : N], particle_pos[0 : N]) directive in front of Line 1 of Listing 8 creates a data
region which keeps the arrays on the coprocessor and avoids these redundant (de)allocations. This
data region requires additional update directives (see Listing 11) to update the particle positions on
the device and the particle forces on the host, respectively.

9

4 CASE STUDIES

1 #pragma acc k e rn e l s loop
2 For i:= 1 to N Do :

3
~̃
f ← 0

4 #pragma acc loop reduct i on (+: ~̃f)
5 For j := 1 to N Do :
6 ~ri,j ← ~rj − ~ri
7 ~fi,j ← compute_force (‖~ri,j‖)
8

~̃
f ← ~̃

f + ‖~fi,j‖ ~ri,j
9 EndDo

10 ~fi ← ~̃
f

11 EndDo

Listing 10: Improved OpenACC version for updating the forces ~fi of each particle. Let ~ri denote the
position of particle i and N the total number of particles.

1 #pragma acc update dev i c e (~r [0 :N])
2 #pragma acc k e rn e l s loop pre sent (~r [0 :N] , ~f [0 :N])
3 For i:= 1 to N Do :

4
~̃
f ← 0

5 #pragma acc loop reduct i on (+: ~̃f)
6 For j := 1 to N Do :
7 ~ri,j ← ~rj − ~ri
8 ~fi,j ← compute_force (‖~ri,j‖)
9

~̃
f ← ~̃

f + ‖~fi,j‖ ~ri,j
10 EndDo

11 ~fi ← ~̃
f

12 EndDo
13 #pragma acc update host (~f [0 :N])

Listing 11: Final OpenACC version for updating the forces ~fi of each particle. Let ~ri denote the position
of particle i and N the total number of particles.

4.2 Conjugate Gradient Method

The Conjugate Gradient Method (CG) is one of the best known iterative solvers to solve Equation (4)
for x ∈ Kn [17], where A ∈ Kn×n is sparse, symmetric and positive definite (SPD) (i.e. has many zero
entries and all of its eigenvalues are larger than 0) and b ∈ Kn. These kind of problems frequently arise
from the discretization of partial differential equations (PDEs) in physics.

Ax = b (4)

The rough outline of the CG method is shown in Listing 12. Without going into algorithmic details,
it starts from an approximate solution x0 and improve its accuracy from iteration to iteration until
the final result is given by xm. Moreover, the implementation only requires one sparse matrix-vector
multiplication and four n-dimensional vectors x, p, Ap and r.
The overall runtime of a CG method is governed by the sparse-matrix vector multiplication in Line

4. In order to take advantage of the structure of A (i.e. its sparsity)5, I use the Compressed Sparse Row
5This algorithm does not exploit the symmetry of A.

10

4 CASE STUDIES

1 r0 ← b−Ax0
2 p0 ← r0
3 For j := 1 to m Do :
4 αj ← (rj , rj)/(Apj , pj)
5 xj+1 ← xj + αjpj
6 rj+1 ← rj − αjApj
7 βj ← (rj+1, rj+1)/(rj , rj)
8 pj+1 ← rj+1 + βjpj
9 EndDo

Listing 12: Conjugate Gradient Method [17]. Where (.) denotes a scalar product andm is the maximum
dimension of the Krylov Subspace [17].

1 #pragma acc p a r a l l e l vector_length(32)
2 #pragma acc loop gang
3 For i := 1 to n Do :
4 ỹ ← 0
5 #pragma acc loop vec to r r educt i on (+: ỹ)
6 For j := pi to pi+1 Do :
7 ỹ ← ỹ + vjxidxj
8 EndDo
9 yi ← ỹ

10 EndDo

Listing 13: Matrix-vector multiplication using the CSR format. Let n ∈ N denote the number of rows
of A ∈ Rn×n, p ∈ Nn+1, idx ∈ RNNZ , v ∈ RNNZ and y, x ∈ Rn with NNZ being the
number of non-zeros of A. Assume that all arrays are present on the coprocessor. Optional
clause for increased performance.

(CSR) format [17] that only stores the non-zero entries. Even though I don’t list implementation details
for this algorithm, I want to point out that all required vector-vector and matrix-vector operations
have been ported to the GPU and that the OpenACC implementation follows its CUDA counterpart
as closely as possible. For example, it uses the data region before Line 3 (see Listing 12) that moves
all the data (i.e. A, x0 and b) to the GPU and only requires a single data transfer from device to host
(i.e. xm) at the end of the algorithm after Line 9.
Listing 13 shows the outline of the implemented matrix-vector multiplication using the CSR format,

please refer to [17] for more detailed information of the CSR format. To port this matrix-vector
multiplication to the coprocessor I used three OpenACC directives. (1) acc parallel generates an
accelerator region. (2) acc loop gang tells the compiler to schedule the outer i loop across gangs. (3)
acc loop vector instructs the compiler to use vector parallelism for the inner j loop. These directives
are sufficient to offload the matrix-vector multiplication to the coprocessor. However, the compiler
chooses to use a vector-length of 256 for the i loop which results in poor performance (see Section
4.3). The additional vector_length(32) clause modifies this schedule and sets the vector-length to 32
per gang.

4.3 Performance Results

This section outlines the performance of the different versions of the two presented case studies. The
OpenMP versions are run on two Intel Xeon E5-2700 processor each having 8 cores with Simultaneous
multithreading (SMT) support which allows to run two threads per core. The CUDA and OpenACC
versions are executed on two Intel Xeon X5650 processors with 6 cores attached to an NVIDIA Quadro

11

4 CASE STUDIES

1216 2560 4608 8704

100

200

300

400

500

#Particles

R
un

ti
m
e
(s
ec
)

OpenMP
OpenACC naive
OpenACC reduction
OpenACC final
CUDA

Figure 1: Runtime of the MD code for different problem sizes over 10.000 iterations. All calculations are
run in double precision.

fidap011 bcsstk18

1

2

3

4

R
un

ti
m
e
(s
ec
)

OpenMP
OpenACC bad
OpenACC final
CUDA

Figure 2: Runtime of the CG code for two sparse SPD matrices. All calculations are run in double precision.

6000 GPU.

In order to provide a fair comparison I have tuned each version equally well. More precisely, the
OpenMP version of the MD case extensively uses the AVX capabilities of the CPU and is run with 32
threads at these 16 cores and it achieves an almost linear speedup of 14.7× over its serial counterpart.
Moreover, the OpenACC versions are designed such that they are as similar to the CUDA versions as
possible.

Figure 1 provides several interesting facts: (1) Each OpenACC version improves over its prede-
cessor. (2) The final OpenACC version is roughly 40% faster than the OpenMP version. (3) The
OpenACC version achieves roughly 80% of the performance of the CUDA version which is a reason-
able performance for a directive-based approach. Even though it is not evident from Figure 1, I like
to point out that even the naive OpenACC version yields a significant speedup (i.e. ≈ 6.7×) over the
single-threaded OpenMP Version.
Figure 2 shows the runtime of the implemented CG method for two different matrices. The bad

OpenACC version denotes almost the same version as the final OpenACC version (see Listing 13) but
without the additional vector_length(32) clause. These results require further explanations:
(1) The bad OpenACC version performs only at ≈ 55% of the final version. This is due to the

compiler’s choice to use a vector-length of 256, which can be considerably larger than the number of
non-zeros in a single row of the matrix6 (i.e. many cores are idle).

6The compiler does not know the (avg) number of non-zeros per row at compile time.

12

4 CASE STUDIES

(2) The final OpenACC implementation only achieves 36% and 27% of the CUDA performance for
the fidap011 and bcsstk18 matrices, respectively. These results are not really satisfactory and need
further analysis. Profiling both versions (i.e. OpenACC final and CUDA) with NVIDIA’s Visual
Profiler shows hardly any differences between the two implementations. More precisely, (a) both
versions spent roughly 95% of their runtime for the sparse matrix-vector multiplication. (b) They both
use equally many threadblocks, threads and registers. Given their similarities it is hard to say why the
performance of the OpenACC version is so poor in comparison to its CUDA counterpart. It could be
due to a performance issue of the current PGI compiler 12.9 and might get fixed for upcoming versions.
A more elaborate investigation of this performance issue is left as future work.
(3) The OpenMP implementation trails the CUDA version for both matrices. This is actually

not so surprising, since the CUDA version is not fully implemented on the GPU (i.e. it requires
global synchronizations between all threadblocks) and does not utilize any asynchronous computation.
Moreover, the CUDA version might outperform the OpenMP versions for different sparsity patterns
and matrix sizes. A detailed performance analysis of the CG method on GPUs is presented in [18].

4.4 Productivity Results

At the time of writing debugging support was very limited. Even though well-known debuggers
such as RogueWave’s Totalview [19] and Allinea’s DDT [20] support OpenACC for the Cray CCE
8.0 compiler, they lack full support for PGI and CAPS compilers (i.e. they don’t allow to debug the
accelerated regions). A viable workaround is to resort to debugging the logic of the application by
compiling the application without OpenACC support.

One major problem I have encountered is the lack of C++ support of the current PGI compiler
which forced me to port the existing C++ OpenMP code to C before I could start to parallelize it via
OpenACC.

Function calls within accelerator regions are not yet supported by current compilers. However,
they do not prohibit parallelization if the compiler is able to inline them automatically. Even though
this has not been a problem with respect to the two case studies shown in this paper, it might pose
major problems for larger projects where it is not feasible to inline these function calls manually.

A particular productive feature of OpenACC is its capability to deal with “boundary conditions” ,
which means that the compiler takes care of padding arrays or introducing if-statements in the kernel
to avoid out-of-bounds accesses, if necessary. Moreover, memory (de)allocation and data transfers
are very easy to use and save programming time.

Yet another very useful feature of the PGI compiler is its ability to detect data dependencies auto-
matically and issue data transfers or create reduction operations, if necessary. This is a neat approach
that can help to make coprocessor programming more straightforward.

While multi-GPU support is available in OpenACC it is not as automated and intuitive as one
might expect from a directive-based paradigm. It would be desirable7 to specify how many and which
coprocessors should be used for accelerating a single accelerated region and let the OpenACC API
distribute the work among the coprocessors accordingly. However, until now the programmer has this
responsibility, which can be a laborious task.

Since it is hard to measure productivity, I list the added and modified lines of source code for each
case study and version in Figure 3. As it is evident from Figure 3, CUDA requires the most refactoring
of the existing serial code which is mainly due to the explicit data (de)allocation, data movement

7in addition to the current multi-GPU features

13

5 FUTURE DIRECTIONS

MD CG
0

20

40

60

80

100

120

140

160

#
m
od

ifi
ed

co
de

lin
es

OpenMP
OpenACC final
CUDA

Figure 3: Number of added and modified lines of source code for each case study and paradigm with respect
to the serial version.

and restructuring of the existing kernels. However, since I implemented the different versions in the
order (1) OpenMP, (2) OpenACC and (3) CUDA, it is hard to say which paradigm took most of
the development time. More precisely, before I began writing the OpenACC version I already had a
highly tuned OpenMP version running which made the development of the OpenACC version much
easier. The same holds for OpenACC and CUDA, where the implementations were straightforward
because I only had to translated the OpenACC directives into correct CUDA code. With respect to
the MD case study, I would say that both OpenMP and OpenACC required the same programming
effort because the OpenMP version had to deal with manual inlining, alignment and blocking in order
to take advantage of the vectorization capabilities of the processor. However, based on the CG case
study it is fair to say that OpenMP required less programming effort than OpenACC or CUDA. Even
though CUDA was the most time consuming approach, the code changes from the OpenACC versions
to the CUDA versions were trivial. Hence, I would recommend to implement an OpenACC version
first and translate this version into a CUDA version that can be fine-tuned for the given architecture
if the performance results are not satisfactory.

5 Future Directions

We will see more heterogeneous systems in the near future. While Cray is currently occupying the 1st

place of the Top500 with its current supercomputer XK7, Cray’s upcoming supercomputer XC308 will
eventually take advantage of different coprocessors (e.g. Intel Xeon Phi, Convey FPGAs) [21]. Another
indicator for the continuing trend towards heterogeneous computing is the Spampede supercomputer
at the Texas Advanced Computing Center, that will gain most of its performance through Intel Xeon
Phi coprocessors.

Even though GPU programming has been around for quite some time, the OpenMP Architecture
Review Board (ARB) just released a technical report [22] that introduces directives to support co-
processor programming. However, as of now, this is just a technical report, so there might be some
changes to it before it will be incorporated into the OpenMP 4.0 standard somewhere next year.

It is still not 100% clear whether OpenMP 4.0 will eventually substitute OpenACC. However, PGI’s
senior compiler engineer Michael Wolfe said that there is hope that OpenMP and OpenACC will con-
verge [23], if it will be possible to implement the OpenMP standard in an efficient way. For now, it
looks like that both OpenMP and OpenACC are going to exist simultaneously [24].

8that is expected to scale beyond 100 petaflops [21]

14

References

A strong indicator for the continuing development of OpenACC are the proposed additions for
OpenACC 2.0 which were recently released [25]. These additions enrich the features of the current
OpenACC specification. More precisely, OpenACC 2.0 is going to support: (1) Function calls via the
routine directive that can compile functions for the coprocessor (i.e. no more inlining or code refac-
toring required). (2) Nested parallelism (i.e. use of kernels or parallel directive inside an accelerator
region). (3) The tile clause for the loop directive will allow programmers to take advantage of 2D/3D
partitioning of tightly nested loops, that can yield an increased cache utilization. For further informa-
tion on OpenACC 2.0, please refer to [25].

Moreover, PGI announced several interesting developments for the upcoming months. (1) Their
OpenACC-enabled compilers will support NVIDIA’s most recent Tesla K20 GPU accelerator by the
end of this year [26]. (2) Beta support for Intel’s Xeon Phi coprocessor is planed for the first half of
2013 [26]. (3) Support for AMD accelerators and a full implementation of OpenACC 2.0 is expected
for mid 2013 [26].

6 Conclusion

All in all, it is fair to say that OpenACC can make GPU programming more convenient because it
hides the complexity of the low-level APIs. However, if high performance is the main objective the
programmer has to know the target architecture in order to specifically tune the OpenACC kernels
for that coprocessor, which in turn limits portability. Based on the presented case studies, I found
OpenACC to be a very productive tool that might lead to a new development process for coprocessor
code. More precisely, first implementing the OpenACC version and then using this version to develop
the low-level version could be a reasonable approach for future coprocessor programming. Moreover,
we have seen that the OpenACC versions are not able to deliver the same performance as their CUDA
counterparts (i.e. ≈ 80% for MD and only ≈ 30% for CG case study). However, this might change in
the next few months as all OpenACC compilers continue to mature.

References

[1] NVIDIA. CUDA 5.0. http://docs.nvidia.com/cuda/index.html, November 2012. Version 5.0.

[2] Khronos Group. The OpenCL Spezification. http://www.khronos.org/registry/cl/specs/opencl-
1.2.pdf, November 2012. Version 1.2.

[3] Top 500. Supercomputer Site. http://www.Top500.org/, November 2012.

[4] Green 500. http://www.Green500.org/, November 2012.

[5] Intel. Many Integrated Core Architecture. http://software.intel.com/en-us/mic-developer, Novem-
ber 2012.

[6] http://www.openacc-standard.org/. OpenACC Specification, November 2012. Version 1.0.

[7] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC-First Experiences with Real-
World Applications. Euro-Par 2012 Parallel Processing, pages 859–870, 2012.

[8] A Hart, R Ansaloni, and A Gray. Porting and Scaling OpenACC Applications on Massively-
Parallel, GPU-Accelerated Supercomputers. The European Physical Journal Special Topics,
210(1):5–16, September 2012.

[9] John M Levesque, Ramanan Sankaran, and Ray Grout. Hybridizing S3D into an Exascale Appli-
cation Using OpenACC: An Approach for Moving to Multi-Petaflops and Beyond. IEEE Computer
Society Press, November 2012.

15

References

[10] OpenMP. OpenMP Application Program Interface, November 2012. Version 4.0.

[11] Michael Wolfe. The Heterogeneous Programming Jungle. http://www.hpcwire.com/, March 2012.

[12] Rob Farber. The OpenACC Execution Model. http://www.drdobbs.com, August 2012.

[13] Michael Wolfe. OpenACC Kernels and Parallel Constructs .
http://www.pgroup.com/lit/articles/insider/v4n2a1.htm, August 2012.

[14] The Portland Group. PGI Accelerator FAQ. http://www.pgroup.com/resources/accel.htm,
Dezember 2012.

[15] P. Gibbon and G. Sutmann. Long-Range Interactions in Many-Particle Simulation. Quantum
Simulations of Many-Body Systems: From Theory to Algorithm. Eds. J. Grotendorst, D. Marx
and A. Muramatsu. NIC-series, 10:467–506, 2002.

[16] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, and K. Schulten. Accelerating
Molecular Modeling Applications with Graphics Processors. Journal of computational chemistry,
28(16):2618–2640, 2007.

[17] Y. Saad and Y. Saad. Iterative Methods for Sparse Linear Systems, volume 620. PWS publishing
company Boston, 1996.

[18] M. VERSCHOOR and AC JALBA. Analysis and Performance Estimation of the Conjugate
Gradient Method on Multiple GPUs. Parallel Computing, 2012.

[19] RogueWave. Totalview. http://www.roguewave.com/technologies/openacc.aspx, Dezember 2012.

[20] Allinea. DDT User Guide. http://content.allinea.com/downloads/userguide.pdf, Dezember 2012.
Version 3.2.1.

[21] Michael Feldman. Cray Launches Cascade, Embraces Intel-Based Supercomputing.
http://www.hpcwire.com/, November 2012.

[22] http://www.openmp.org/. Technical Report on Directives for Attached Accelerators, November
2012.

[23] Michael Wolfe. PGI’s Michael Wolfe on OpenACC Directives for GPUs.
http://www.insidehpc.com/, November 2012.

[24] Michael Feldman. OpenMP Takes To Accelerated Computing. http://www.hpcwire.com/, Novem-
ber 2012.

[25] http://www.openacc standard.org/. Proposed Additions for OpenACC 2.0, Dezember 2012. Ver-
sion 2.0.

[26] The Portland Group. PGI News. http://www.pgroup.com/about/news.htm, Dezember 2012.

16

	Introduction
	Related Work
	OpenACC
	Execution Model
	Memory Model
	Basic Features
	Advanced Features

	Case Studies
	Molecular Dynamics Simulation
	Conjugate Gradient Method
	Performance Results
	Productivity Results

	Future Directions
	Conclusion

