
Cholesky factorization/decomposition

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

May 29, 2018

High-level description

LLT = A L := Γ(A)

L =

(
LTL

LBL LBR

)
= ?

Paolo Bientinesi | HPMC 2

High-level description

LLT = A L := Γ(A)

L =

(
LTL

LBL LBR

)
= ?

(
LTL

LBL LBR

)(
LT

TL LT
BL

LT
BR

)
=

(
ATL AT

BL

ABL ABR

)

Paolo Bientinesi | HPMC 2

High-level description

LLT = A L := Γ(A)

L =

(
LTL

LBL LBR

)
= ?

(
LTLL

T
TL = ATL

LBLL
T
TL = ABL LBLL

T
BL + LBRL

T
BR = ABR

)

Paolo Bientinesi | HPMC 2

High-level description

LLT = A L := Γ(A)

L =

(
LTL

LBL LBR

)
= ?

Partitioned Matrix Expression (PME):(
LTL = Γ(ATL)

LBL = ABLL
−T
TL LBR = Γ

(
ABR − LBLL

T
BL

))

Paolo Bientinesi | HPMC 2

High-level description

LLT = A L := Γ(A)

L =

(
LTL

LBL LBR

)
= ?

Operations: (
1) LTL = CHOL

2) LBL = TRSM 3) LBR = CHOL(SYRK)

)

Paolo Bientinesi | HPMC 2

High-level description

LLT = A L := Γ(A)

L =

(
LTL

LBL LBR

)
= ?

Dependencies: (
LTL = Γ(ATL)

LBL = ABLL
−T
TL LBR = Γ

(
ABR − LBLL

T
BL

))

Paolo Bientinesi | HPMC 2

Algorithm #1
Iteration i: completed

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@
@
@@

@
@
@

@
@
@

@
@@

@
@
@@@@

DONE

Paolo Bientinesi | HPMC 3

Algorithm #1

State of the matrix: (
LTL = CHOL

)

Final state: (
LTL = CHOL

LBL = TRSM LBR = CHOL(SYRK)

)

Paolo Bientinesi | HPMC 3

Algorithm #1
Iteration i: completed

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@
@
@@

@
@
@

@
@
@

@
@@

@
@
@@@@

DONE

Paolo Bientinesi | HPMC 3

Algorithm #1
Iteration i+1: repartitioning. Blocked vs. unblocked!

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@
@
@@

@
@
@

@
@
@

@
@@

@
@
@@@@

Paolo Bientinesi | HPMC 3

Algorithm #1
Iteration i+1: computation

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@
@
@@

@
@
@

@
@
@

@
@@

@
@
@@@@

CHOL
TRSM

SYRK

Paolo Bientinesi | HPMC 3

Algorithm #1
Iteration i+1: completed (boundary shift)

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

@
@
@
@

@
@
@
@

@
@
@
@@

@
@
@
@
@

@
@
@
@
@@

@
@
@
@
@@

@
@
@
@
@
@

@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@@

@
@
@
@
@
@

@
@
@
@
@@

@
@
@
@
@@

@
@
@
@
@

@
@
@
@@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

DONE

Paolo Bientinesi | HPMC 3

A Different Algorithm?

Paolo Bientinesi | HPMC 4

Algorithm #2
Iteration i: completed

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

DONE

DONE

Paolo Bientinesi | HPMC 4

Algorithm #2

State of the matrix: (
LTL = CHOL

LBL = TRSM

)

Final State: (
LTL = CHOL

LBL = TRSM LBR = CHOL(SYRK)

)

Paolo Bientinesi | HPMC 4

Algorithm #2
Iteration i+1: repartitioning

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

Paolo Bientinesi | HPMC 4

Algorithm #2
Iteration i+1: computation

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

SYRK

CHOL

GEMM

TRSM

Paolo Bientinesi | HPMC 4

Algorithm #2
Iteration i+1: completed (boundary shift)

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@

@
@
@
@
@

@
@

@
@
@
@
@

@
@

@
@
@
@@

@
@

@
@
@
@

@
@
@
@
@@

@
@

@
@
@@

@
@

@
@
@

@
@

@
@@

@
@

@
@

@
@
@
@

@
@

@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

@
@
@
@

@
@
@
@

@
@
@
@@

@
@
@
@
@

@
@
@
@
@@

@
@
@
@
@@

@
@
@
@
@
@

@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

DONE

DONE

Paolo Bientinesi | HPMC 4

Yet Another Algorithm!

Paolo Bientinesi | HPMC 5

Algorithm #3

State of the matrix: (
LTL = CHOL

LBL = TRSM LBR = SYRK

)

Final state: (
LTL = CHOL

LBL = TRSM LBR = CHOL(SYRK)

)

Paolo Bientinesi | HPMC 5

Algorithm #3
Iteration i: completed

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

DONE

DONE
PARTIALLY

COMPUTED

Paolo Bientinesi | HPMC 5

Algorithm #3
Iteration i+1: repartitioning

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

Paolo Bientinesi | HPMC 5

Algorithm #3
Iteration i+1: computation

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@

@
@
@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

CHOL

TRSM SYRK

Paolo Bientinesi | HPMC 5

Algorithm #3
Iteration i+1: completed (boundary shift)

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@

@
@
@
@
@

@
@

@
@
@
@
@

@
@

@
@
@
@@

@
@

@
@
@
@

@
@
@
@
@@

@
@

@
@
@@

@
@

@
@
@

@
@

@
@@

@
@

@
@

@
@
@
@

@
@

@@

@
@
@

@
@
@

@
@@

@
@@@@@

@@@@@
@

@
@@

@
@
@

@
@
@

@
@
@@

@
@
@
@

@
@
@
@

@
@
@
@@

@
@
@
@
@

@
@
@
@
@@

@
@
@
@
@@

@
@
@
@
@
@

@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

DONE

DONE
PARTIALLY

COMPUTED

Paolo Bientinesi | HPMC 5

Algorithms

Paolo Bientinesi | HPMC 6

Algorithm Progression
Iteration i: completed

Paolo Bientinesi | HPMC 7

Algorithm Progression
Iteration i+1: repartitioning

Paolo Bientinesi | HPMC 7

Algorithm Progression
Iteration i+1: computation

?

?

?

?

? ?

Paolo Bientinesi | HPMC 7

Algorithm Progression
Iteration i+1: completed (boundary shift)

Paolo Bientinesi | HPMC 7

Algorithm Progression
Iteration i+2: repartitioning

Paolo Bientinesi | HPMC 7

Algorithm Progression
Iteration i+2: computation

?

?

?

?

? ?

Paolo Bientinesi | HPMC 7

Algorithm Progression
Iteration i+2: complete (boundary shift)

Paolo Bientinesi | HPMC 7

Traditional code

C, triple loop, unblocked.

for (j = 0; j < n; j++)
{

A[j,j] = sqrt(A[j,j]);

for (i = j+1; i < n; i++)
A[i,j] = A[i,j] / A[j,j];

for (k = j+1; k < n; k++)
for (i = k; i < n; i++)

A[i,k] = A[i,k] - A[i,j] * A[k,j];
}

Paolo Bientinesi | HPMC 8

Traditional code

Matlab, blocked.

for j = 1:nb:n,
b = min(n-j+1, nb);

A(j:j+b-1, j:j+b-1) = Chol(A(j:j+b-1, j:j+b-1));

A(j+b:n, j:j+b-1) = A(j+b:n, j:j+b-1)/A(j:j+b-1, j:j+b-1)’;

A(j+b:n, j+b:n) = A(j+b:n, j+b:n) -
tril(A(j+b:n, j:j+b-1)) A(j+b:n, j:j+b-1)’;

end

Paolo Bientinesi | HPMC 9

Traditional code: LAPACK, blocked

SUBROUTINE DPOTRF(UPLO, N, A, LDA, INFO)
[..]

DO 20 J = 1, N, NB
*

JB = MIN(NB, N-J+1)
CALL DSYRK(’Lower’, ’No transpose’, JB, J-1, -ONE,

$ A(J, 1), LDA, ONE, A(J, J), LDA)
CALL DPOTF2(’Lower’, JB, A(J, J), LDA, INFO)
IF(INFO.NE.0)

$ GO TO 30
IF(J+JB.LE.N-1) THEN

*
CALL DGEMM(’No transpose’, ’Transpose’, N-J-JB+1, JB,

$ J-1, -ONE, A(J+JB, 1), LDA, A(J, 1),
$ LDA, ONE, A(J+JB, J), LDA)

CALL DTRSM(’Right’, ’Lower’, ’Transpose’, ’Non-unit’,
$ N-J-JB+1, JB, ONE, A(J, J), LDA,
$ A(J+JB, J), LDA)

END IF
20 CONTINUE

Paolo Bientinesi | HPMC 10

FLAME notation & code

Partition

A→
(

ATL ?

ABL ABR

)
where ATL is 0× 0

While m(ATL) < m(A) do
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?
A20 A21 A22


where A11 is b× b

A11 := Γ(A11)

A21 := A21 TRIL(A11)−T

A22 := A22 − TRIL(A21A
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?
A10 A11 ?

A20 A21 A22


endwhile

function [A_out] = Chol_blk(A, nb_alg)

[ATL, ATR, ...
ABL, ABR] = FLA_Part_2x2(A, ...

0, 0, ’FLA_TL’);

while (size(ATL, 1) < size(A, 1))
b = min(size(ABR, 1), nb_alg);

[A00, A01, A02, ...
A10, A11, A12, ...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR, ...

ABL, ABR, ...
b, b, ’FLA_BR’);

% ---%
A11 = Chol_unb(A11);
A21 = A21 / tril(A11)’;
A22 = A22 - tril(A21 * A21’);

%--%

[ATL, ATR, ...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...

A10, A11, A12, ...
A20, A21, A22, ...
’FLA_TL’);end

A_out = [ATL, ATR
ABL, ABR];

return

Paolo Bientinesi | HPMC 11

FLAME notation & code

Partition

A→
(

ATL ?

ABL ABR

)
where ATL is 0× 0

While m(ATL) < m(A) do
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?
A20 A21 A22


where A11 is b× b

A11 := Γ(A11)

A21 := A21 TRIL(A11)−T

A22 := A22 − TRIL(A21A
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?
A10 A11 ?

A20 A21 A22


endwhile

function [A_out] = Chol_blk(A, nb_alg)

[ATL, ATR, ...
ABL, ABR] = FLA_Part_2x2(A, ...

0, 0, ’FLA_TL’);

while (size(ATL, 1) < size(A, 1))
b = min(size(ABR, 1), nb_alg);

[A00, A01, A02, ...
A10, A11, A12, ...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR, ...

ABL, ABR, ...
b, b, ’FLA_BR’);

% ---%
A11 = Chol_unb(A11);
A21 = A21 / tril(A11)’;
A22 = A22 - tril(A21 * A21’);

%--%

[ATL, ATR, ...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...

A10, A11, A12, ...
A20, A21, A22, ...
’FLA_TL’);end

A_out = [ATL, ATR
ABL, ABR];

return

Paolo Bientinesi | HPMC 11

FLAME notation & code

Partition

A→
(

ATL ?

ABL ABR

)
where ATL is 0× 0

While m(ATL) < m(A) do
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?
A20 A21 A22


where A11 is b× b

A11 := Γ(A11)

A21 := A21 TRIL(A11)−T

A22 := A22 − TRIL(A21A
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?
A10 A11 ?

A20 A21 A22


endwhile

function [A_out] = Chol_blk(A, nb_alg)

[ATL, ATR, ...
ABL, ABR] = FLA_Part_2x2(A, ...

0, 0, ’FLA_TL’);

while (size(ATL, 1) < size(A, 1))
b = min(size(ABR, 1), nb_alg);

[A00, A01, A02, ...
A10, A11, A12, ...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR, ...

ABL, ABR, ...
b, b, ’FLA_BR’);

% ---%
A11 = Chol_unb(A11);
A21 = A21 / tril(A11)’;
A22 = A22 - tril(A21 * A21’);

%--%

[ATL, ATR, ...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...

A10, A11, A12, ...
A20, A21, A22, ...
’FLA_TL’);end

A_out = [ATL, ATR
ABL, ABR];

return

Paolo Bientinesi | HPMC 11

FLAME notation & code

Partition

A→
(

ATL ?

ABL ABR

)
where ATL is 0× 0

While m(ATL) < m(A) do
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?
A20 A21 A22


where A11 is b× b

A11 := Γ(A11)

A21 := A21 TRIL(A11)−T

A22 := A22 − TRIL(A21A
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?
A10 A11 ?

A20 A21 A22


endwhile

function [A_out] = Chol_blk(A, nb_alg)

[ATL, ATR, ...
ABL, ABR] = FLA_Part_2x2(A, ...

0, 0, ’FLA_TL’);

while (size(ATL, 1) < size(A, 1))
b = min(size(ABR, 1), nb_alg);

[A00, A01, A02, ...
A10, A11, A12, ...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR, ...

ABL, ABR, ...
b, b, ’FLA_BR’);

% ---%
A11 = Chol_unb(A11);
A21 = A21 / tril(A11)’;
A22 = A22 - tril(A21 * A21’);

%--%

[ATL, ATR, ...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...

A10, A11, A12, ...
A20, A21, A22, ...
’FLA_TL’);end

A_out = [ATL, ATR
ABL, ABR];

return

Paolo Bientinesi | HPMC 11

FLAME notation & code

Partition

A→
(

ATL ?

ABL ABR

)
where ATL is 0× 0

While m(ATL) < m(A) do
Repartition(

ATL ?

ABL ABR

)
→

A00 ? ?

A10 A11 ?
A20 A21 A22


where A11 is b× b

A11 := Γ(A11)

A21 := A21 TRIL(A11)−T

A22 := A22 − TRIL(A21A
T
21)

Continue with(
ATL ?

ABL ABR

)
←

A00 ? ?
A10 A11 ?

A20 A21 A22


endwhile

function [A_out] = Chol_blk(A, nb_alg)

[ATL, ATR, ...
ABL, ABR] = FLA_Part_2x2(A, ...

0, 0, ’FLA_TL’);

while (size(ATL, 1) < size(A, 1))
b = min(size(ABR, 1), nb_alg);

[A00, A01, A02, ...
A10, A11, A12, ...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR, ...

ABL, ABR, ...
b, b, ’FLA_BR’);

% ---%
A11 = Chol_unb(A11);
A21 = A21 / tril(A11)’;
A22 = A22 - tril(A21 * A21’);

%--%

[ATL, ATR, ...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...

A10, A11, A12, ...
A20, A21, A22, ...
’FLA_TL’);end

A_out = [ATL, ATR
ABL, ABR];

return

Paolo Bientinesi | HPMC 11

