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Languages for Scientific Computing

What is a programming language?

A set of instructions and constructs for
communicating with a computing device.

Instructions and constructs are combined and
organized into programs.

Examples: Basic, Pascal, Cobol, Fortran, C, C++, Lisp,
Prolog, SQL, Java, Perl, Python, Ruby, . . .

“Computing device”?

sequential processors, embedded processors, . . . ,
parallel computers, supercomputers.
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Processor’s Components

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Registers, . . .

Languages let the users specify
how to use these components.

Only Assembly operates on
components: Low-level language.

High-level languages only specify
the computations to be performed.

A compiler and/or an interpreter
translates high-level programs into
a sequence of component actions.

3 / 1



Processor’s Components

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Registers, . . .

Languages let the users specify
how to use these components.

Only Assembly operates on
components: Low-level language.

High-level languages only specify
the computations to be performed.

A compiler and/or an interpreter
translates high-level programs into
a sequence of component actions.

3 / 1



Processor’s Components

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Registers, . . .

Languages let the users specify
how to use these components.

Only Assembly operates on
components: Low-level language.

High-level languages only specify
the computations to be performed.

A compiler and/or an interpreter
translates high-level programs into
a sequence of component actions.

3 / 1



Processor’s Components

Arithmetic Logic Unit (ALU) (control
signals, inputs, outputs), Floating
Point Unit (FPU), Prefetching Unit,
Registers, . . .

Languages let the users specify
how to use these components.

Only Assembly operates on
components: Low-level language.

High-level languages only specify
the computations to be performed.

A compiler and/or an interpreter
translates high-level programs into
a sequence of component actions.

3 / 1



Assembly
Low-level language

Very fast!

Not the lowest level. Not directly executable.

Assembler translates assembly into machine code. Executable.

Assembly consists of mnemonic codes.
Machine code: only numbers.

Translation Assembly↔ machine code is almost 1-1.
This is not true for high-level languages.

Assembler is hardware-specific. Control over chips’ components.
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Assembly
Example

.text

.globl poly
poly:

li.s $f0, 0.0 # y = 0, running & return result
mtc1 $6 $f12 # x, move to float register

Loop:
mul.s $f14, $f12, $f0 # compute (x * y)
mul $2, $5, 4 # $5 = i, compute address of a[i]
addu $3, $2, $4 # a + (i*4)
l.s $f16, 0($3) # a[i], load coefficient
add.s $f0, $f16, $f14 # y = a[i] + (x*y)
addi $5, $5, -1 # decrease i

slt $2, $5, $0 # $2 = 1 if i < 0
beq $2, $0, Loop # goto Loop if i >= 0

Exit:
j $31

# Evaluate the value of a polynomial using Horner’s algorithm.
# f = a[0] + a[1] * x + a[2] * x^2 + ... + a[n] * x^n
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History

What is the oldest programming language still in use?

FORTRAN 1957, 1977, 1995, . . .

late ’50s Fortran(’57)..., Algol(’58), Lisp(’59)

’60s Cobol(’61), Basic(’64)

’70s Pascal(’70), C(’72), Prolog(’72), SQL(’78), Matlab(’78)

’80s C++(’83), Perl(’87), Mathematica(’87)

’90s Python(’91), Ruby(’93), Java(’95)

Oldest programming language?

Plankalkül (1940s). For the Z1 computer, by Konrad Zuse.
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History of Programming Languages
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For more than half of the fifty years computer programmers have been
writing code, O’Reilly has provided developers with comprehensive,
in-depth technical information. We’ve kept pace with rapidly changing
technologies as new languages have emerged, developed, and
matured. Whether you want to learn something new or need
answers to tough technical questions, you’ll find what you need 
in O’Reilly books and on the O’Reilly Network. 

This timeline includes fifty of the more than 2500 documented 
programming languages. It is based on an original diagram created
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Compiled vs. Interpreted Languages

Compiled Languages

The program is first compiled, i.e., reduced to architecture-dependent
instructions and stored in an executable file.
The program can then be executed separately, at a later time.
The executable is portable only to compatible platforms. The program?
Speed!
Examples: C, Fortran.

Interpreted Languages
The instructions are parsed and executed in real time by an interpreter.
No generated code. The interpreter is always needed.
Ease!
Examples: Matlab, Mathematica, Python.
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Computer Programs

Program:
sequence of instructions expressing the operations to be performed on
a target computing platform.

Each program P has a meaning. It implements a function.
{Initial State} P {Final State}.

[[P]] is the semantics of the program P.
[[ ]] = Semantics operator. Operational, Denotational, Axiomatic.
Out of the scope of this class.

Generally, we want P to compute f(i), with i ∈ I.
f is a mathematical function, a procedure, a simulation, . . .

The question is: “does P implement the function that we have in mind?”

A program P is correct if ∀i ∈ I,P(i) ≡ f(i).

Surprisingly... when working with floating point numbers,
correctness is not enough!
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Subroutines

subroutine = function = procedure =
subprogram (= module = method)

Portions of the code that perform one specific task and
that are reusable.

They are very much like mathematical functions:

result := routine_name( arguments )

BUT! One difference: side-effects.
Many languages allow subroutines to have side-effects.
The routine alters the state of the system even after its
completion.
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Side Effects

{ (res = . . .)∧ State }

res := routine_name( args );

{ (res = . . .)∧ State′ }

If ( State = State′ )→ no side-effects.

Most languages allow constructs with side-effects.

Print statements; iterative constructs; . . .
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More on Subroutines

Subroutines are good!

Improve readability: code is shorter.

Enable modularity: programs are built as a composition
of functionalities. Avoid reinventing the wheel.

Optimization: They solve a smaller and well-defined
task. Better suited to be optimized.

Structure:

routine_name( args )
//
body
//

return( value )

args, body and value are optional, depending on the
language.
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Questions about Subroutines

routine_name_1(args_1) routine_name_2(args_2)
// //
body_1 body_2
// //

return( value2 ) return( value_2 )

Can body_1 include a call to routine_name_1?

Yes! → Recursion. Recursion Limit? Termination?
No → Iteration. Fortran ’77.

What if body_1 includes a call to routine_name_2 and
body_2 includes a call to routine_name_1?

Mutual recursion. Fortran ’77: No.

Are recursive languages more expressive than iterative
ones? Can they compute more or fewer functions?

Recursion ≡ iteration!
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From Subroutines to Libraries

A subroutine solves a specific problem / it computes a specific operation.

It is reusable, i.e., it provides a certain functionality.

A collection of germane subroutines yields a library.

A library is not a program per se.
It provides building blocks to be used when writing a program.

BLAS LAPACK
LINPACK
EISPACK

PETSc MPI Pthreads . . .

Libraries can be written in one or more languages.
Can they be accessed from a program written in a different language?
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Imperative vs. Functional Languages

Imperative Languages
Concept of Variables and State.
Program is an ordered sequence of commands and assignments.
Commands modify state. Side-effects.
C, C++, Fortran, Java, Python, Matlab, . . .

Functional Languages
No variables or assignments.
Program consists of Functions and Recursion.
No side-effects!
Subset of Declarative Languages.
Lisp, APL, ADA, Haskell, Mathematica, Clojure, F# . . .
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Scope

Program A;
Var I:Integer;

K:Char;
R:Real;

Procedure B;
Var K:Real;

L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;

Begin
// Body #2
End;

Begin
// Body #3
End;

Which variables (of which
type) are defined in Body #1?

I:Integer, R:Real, K:Real, L:Integer,

M:Real

Where is K used as Real?

Body #1 and Body #2

Can L be referenced in Body
#2? Body #3?

Body #2: yes; Body #3: no

16 / 1



Scope

Program A;
Var I:Integer;

K:Char;
R:Real;

Procedure B;
Var K:Real;

L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;

Begin
// Body #2
End;

Begin
// Body #3
End;

Which variables (of which
type) are defined in Body #1?

I:Integer, R:Real, K:Real, L:Integer,

M:Real

Where is K used as Real?

Body #1 and Body #2

Can L be referenced in Body
#2? Body #3?

Body #2: yes; Body #3: no

16 / 1



Scope

Program A;
Var I:Integer;

K:Char;
R:Real;

Procedure B;
Var K:Real;

L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;

Begin
// Body #2
End;

Begin
// Body #3
End;

Which variables (of which
type) are defined in Body #1?

I:Integer, R:Real, K:Real, L:Integer,

M:Real

Where is K used as Real?

Body #1 and Body #2

Can L be referenced in Body
#2? Body #3?

Body #2: yes; Body #3: no

16 / 1



Scope

Program A;
Var I:Integer;

K:Char;
R:Real;

Procedure B;
Var K:Real;

L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;

Begin
// Body #2
End;

Begin
// Body #3
End;

Which variables (of which
type) are defined in Body #1?

I:Integer, R:Real, K:Real, L:Integer,

M:Real

Where is K used as Real?

Body #1 and Body #2

Can L be referenced in Body
#2? Body #3?

Body #2: yes; Body #3: no

16 / 1



Scope

Program A;
Var I:Integer;

K:Char;
R:Real;

Procedure B;
Var K:Real;

L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;

Begin
// Body #2
End;

Begin
// Body #3
End;

Which variables (of which
type) are defined in Body #1?

I:Integer, R:Real, K:Real, L:Integer,

M:Real

Where is K used as Real?

Body #1 and Body #2

Can L be referenced in Body
#2? Body #3?

Body #2: yes; Body #3: no

16 / 1



Scope

Program A;
Var I:Integer;

K:Char;
R:Real;

Procedure B;
Var K:Real;

L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;

Begin
// Body #2
End;

Begin
// Body #3
End;

Which variables (of which
type) are defined in Body #1?

I:Integer, R:Real, K:Real, L:Integer,

M:Real

Where is K used as Real?

Body #1 and Body #2

Can L be referenced in Body
#2? Body #3?

Body #2: yes; Body #3: no

16 / 1



Scope

Program A;
Var I:Integer;

K:Char;
R:Real;

Procedure B;
Var K:Real;

L:Integer;

Procedure C;
Var M:Real;
Begin
// Body #1
End;

Begin
// Body #2
End;

Begin
// Body #3
End;

Which variables (of which
type) are defined in Body #1?

I:Integer, R:Real, K:Real, L:Integer,

M:Real

Where is K used as Real?

Body #1 and Body #2

Can L be referenced in Body
#2? Body #3?

Body #2: yes; Body #3: no

16 / 1



Scope (2)
program main
var y: Real;

procedure compute()
var x : Integer;

procedure initialize()
var y: Integer;
var z: Real;
begin {initialize}
// Body #1
end {initialize}

procedure transform()
var x: Real;
begin {transform}
// Body #2
end {transform}

begin {compute}
// Body #3
end {compute}

begin {main}
// Main body
end {main}

What is the scope of the
variable x declared in the
procedure compute?

Body #1 and Body #3

What is the environment for
the procedure transform?

y:Real and x:Real
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