Introduction to Scientific Computing Languages Practice questions – Mathematica

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

Exercises (1/3)

1) Write a function that takes 5 reals $\{a, b, c\}$, $\{x_0, y_0\}$, computes the first 10.000 elements of the sequence

$$\begin{cases} x_{n+1} \leftarrow y_n - sign(x_n)\sqrt{|bx_n - c|} \\ y_{n+1} \leftarrow a - x_n \end{cases},$$

and plots them in the plane. Test the function with $\{\{.4,1.,1.\},\{0.0,0.0\}\},$ $\{\{.4,1.,1.\},\{.2,.4\}\},$ and $\{\{1.4,1.1,2.2\},\{.2,.99\}\}.$

2) Write a one liner that returns a 10-row \times 3-column table that shows the frequency of digit i in the first 10^j digits of π , with $i=0,\ldots,9$, and $j=1,\ldots,5$.

Exercises (2/3)

3a) Let 1 be a list of pairs.

Write a function noDup[1_], that returns 1 without any duplicates.

- {x, y} and {x, y} are duplicates.
- {x, y} and {y, x} are also duplicates.
- Do not alter the order of the entries.
- For duplicates, only the leftmost instance is kept.
- 3b) Write a function noDupS[1_], which removes duplicates, and returns a sorted list of sorted pairs.

Exercises (3/3)

4) "Cycles"

Input: A permutation p of size n (a list containing the first n integers)

Output: The list of cycles in p

Goal: Write the function cycles that takes p and returns its cycles.

Example #1

Input =
$$\{2, 8, 4, 3, 5, 7, 6, 1\}$$
; Output = $\{\{1, 2, 8\}, \{3, 4\}, \{5\}, \{6, 7\}\}$

Explanation:

Start with the number 1; look at the entry in position 1, it is a 2; look at the entry in position 2, it is a 8; look at the entry in position 8, it is a 1; you returned to 1, the cycle {1,2,8} is closed. The next number that is not in a cycle is 3; look at the entry in position 3, it is a 4; look at the entry in position 4, it is a 3; the cycle {3,4} is closed. . . .

Example #2

Input =
$$\{4, 5, 2, 3, 1\}$$
; Output = $\{\{1, 4, 3, 2, 5\}\}$

Sequence

Definition

Let S_n be an integer, and $\#_k^{(n)}$ $(0 \le k \le 9)$ the number of occurrences of the digit k in S_n . The sequence S is defined by the rule

$$\mathcal{S}_{n+1}:= \lll \#_0^{(n)}, 0, \#_1^{(n)}, 1, \dots, \#_9^{(n)}, 9 \ggg, \text{ for all the } \#_k^{(n)}>0.$$

 $<\!\!<\!\!<...>\!\!>\!\!>$ indicates the concatenation of the digits.

Examples

If $\mathcal{S}_n=42$, then $\mathcal{S}_{n+1}=1214$, and $\mathcal{S}_{n+2}=211214$. If $\mathcal{S}_n=4200000000000$, then $\mathcal{S}_{n+1}=1001214$, $\mathcal{S}_{n+2}=20311214$.

Computation

S might converge to a single number or to a loop (this is not important). To study its evolution, use the following piece of code, in which the function iterRule[S_] is user-defined:

```
FromDigits /@
   FixedPointList[iterRule, IntegerDigits@Sn, 50]
```

Goal

Define the function iterRule[S_].

Plotting polynomials

Write the function polyPlot[p_]

Input

A polynomial p of unknown degree n > 2

Output

A 2d plot of p in the region of interest, suitably annotated

Goals

- Identify & highlight interesting features of p;
 these features determine the region of interest
- Add suitable annotations/labels
- Use Manipulate to slide an object along the polynomial

Possible features of interest:

zeros (p(x)=0), maxes & mins (p'(x)=0), saddles (p''(x)=0), intersections with y=x (p(x)=x), $p'(x)=\pm 1, \ldots$

Plotting polynomials: example (annotations missing)

```
polynomial:
```

```
p[x_{-}] := x^{-}7 - 2 x^{-}4 + x + .5
```

invocation:

polyPlot[p]

or equivalently:

 $polyPlot[#^7 - 2 #^4 + # + .5%]$

