Introduction to Languages for Scientific Computing

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

High Performance and Automatic Computing

Floating Point Arithmetic

• [Q1] Consider the IEEE settings for single precision arithmetic:

 $\beta = 2, \quad t = 24, \quad e_{\min} = -125, \quad e_{\max} = 128$

- What is the smallest floating point number larger than 2?
- What is the largest floating point number smaller than 8?
- How many floating point numbers are in the interval [1/64, 1/32] ?
- What is the distance between 65536 and the next floating point number?
- What is the first integer that cannot be represented exactly?

• [Q2] Consider the following ternary arithmetic with normalization:

 $\beta = 3$, t = 3, $e_{\min} = -2$, $e_{\max} = 3$

Bow is π represented? What is the representation error?

What is the largest floating point number?

What are the first 5 positive integers that cannot be represented exactly?

[Q3] Consider the following binary arithmetic with normalization:

$$\beta = 2, \quad t = 4, \quad e_{\min} = -2, \quad e_{\max} = 4$$

- If the second end of the seco
- What is the smallest absolute distance between two floating point numbers*?
 - What is the smallest relative distance between two floating point numbers*?

*: the arithmetic is normalized. What if this is not the case?

• [Q4] Counting floating point numbers

Let I_i be the interval $]2^i, 2^{i+1}[$, with $i = 0, \ldots, 15$.

For each
$$i = 0, ..., 15$$
,
let $\overleftarrow{s_i}$ and $\overrightarrow{s_i}$ be two **consecutive** single precision floating point numbers in I_i .

Let d_i be the number of double precision numbers in the interval] $\overleftarrow{s_i}, \overrightarrow{s_i}$ [.

Compute
$$D = \sum_{i=0}^{15} d_i$$
.

- Is D representable exactly in single precision? If not, what are the absolute and relative representation errors?
- Is D representable exactly in double precision? If not, what are the absolute and relative representation errors?

- Individual assignment.
- Submit both the final answers and their derivation.
- Submission by email to pauldj@aices.rwth-aachen.de
- Email's subject: "LSC-15 HW1 <your last name>"
- Accepted formats: plain text or pdf.
- Name your file <your name>.txt or <your name>.pdf.
- Include your name in each attached file.
- Deadline: Wednesday, November 4, 23.59pm.