
Parallel Programming
Introduction

Diego Fabregat-Traver and Prof. Paolo Bientinesi

HPAC, RWTH Aachen
fabregat@aices.rwth-aachen.de

WS15/16

Acknowledgements

Prof. Felix Wolf, TU Darmstadt
Prof. Matthias Müller, ITC, RWTH Aachen

References

Computer Organization and Design. David A. Patterson,
John L. Hennessy. Chapters 1, 4.5 and 4.10.
Computer Architecture: A Quantitative Approach. John L.
Hennessy, David A. Patterson. Chapter 1.

Diego Fabregat | Parallel Programming 2 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Who has ever heard of ...

... processors?

... frequency/clock (of a processor)?

... Moore’s law?

... cache lines? cache associativity?

... pipelined and superscalar processors?

... processes and threads?

... shared and distributed memory?

... OpenMP and MPI?

Diego Fabregat | Parallel Programming 3 / 52

Outline

1 Why Parallel Programming?

2 Uniprocessor Architecture Review

3 Towards the Multi-core Era

Diego Fabregat | Parallel Programming 4 / 52

Motivation

Why Parallel Computing?

Problems that cannot be solved fast enough sequentially
Real-time constraints
Large data sets
Accuracy requirements

Main idea:
Decompose large problems into subproblems ...
... that can be solved concurrently.

Diego Fabregat | Parallel Programming 5 / 52

Motivation
Examples

Computational science

Genome analysis
Drug development
Material science
Weather forecast
Climate

Diego Fabregat | Parallel Programming 6 / 52

Motivation
Examples

Engineering

Engine design
Aerodynamics
Fluid dynamics
Crash simulations

Diego Fabregat | Parallel Programming 7 / 52

Motivation
Examples

Finance

Economics
High-Frequency Trading

Diego Fabregat | Parallel Programming 8 / 52

Motivation

Challenges

Real-time constraints: 20ns make a huge difference in HFT

Very large data sets: genome studies routinely process TBs of data

Computer Simulations

3rd pillar of science alongside with theory and experimentation

Experimentation may be cost prohibitive (e.g., flight testing)

Experimentation may be impossible (e.g., interaction between space
station and spaceship when docking)

Diego Fabregat | Parallel Programming 9 / 52

The Top500 List

List of the 500 fastests supercomputers in the world
Twice per year (ISC, June, Germany - SC, November, USA)
Computers ranked based on the LINPACK benchmark

Solution of linear system of equations: Ax = b
Result measured in Flop/s1 (in double precision).

Established in 1993: 60 GFlop/s

Latest, June 2015: 33,862,700 GFlop/s

1Floating Point Operations per Second
Diego Fabregat | Parallel Programming 10 / 52

Examples of supercomputers

Tianhe 2. Source: top500.org

Tianhe 2 (Rank #1)

Site: National SC Center, Guangzhou,
China.
16,000 compute nodes

2 Intel Ivy Bridge 12-core CPUs
3 Intel Xeon Phis

3,120,000 cores
1,024,000 GBs
33.862,7 TFlop/s (54,902.4 TFlop/s)
17,808.00 kW

Diego Fabregat | Parallel Programming 11 / 52

Examples of supercomputers

JuQueen. Source: fz-juelich.de

JuQueen (Rank #9)

Site: Forschungszentrum Jülich
(FZJ), Germany.
28,672 compute nodes

1 IBM PowerPC A2 16-core CPU

458,752 cores
458,752 GBs
5,008.86 TFlop/s (5,872.03 TFlop/s)
2,301.00 kW

Diego Fabregat | Parallel Programming 12 / 52

The Top500 List

Diego Fabregat | Parallel Programming 13 / 52

The Top500 List

Diego Fabregat | Parallel Programming 14 / 52

The Top500 List

Rank System Cores Rmax (TFlop/s) Rpeak (TFlop/s) Power (kW)

1 Tianhe-2 3,120,000 33,862.7 54,902.4 17,808
2 Titan 560,640 17,590.0 27,112.5 8,209
3 Sequoia 1,572,864 17,173.2 20,132.7 7,890
4 K computer 705,024 10,510.0 11,280.4 12,660
5 Mira 786,432 8,586.6 10,066.3 3,945

1,000 KW = 1 MW ≈ 1M $!!!

Exascale challenges: power wall, memory wall, hardware faults, ...

Diego Fabregat | Parallel Programming 15 / 52

So...

are parallel computers restricted to supercomputing?

Not at all!!

Diego Fabregat | Parallel Programming 16 / 52

So...

are parallel computers restricted to supercomputing?

Not at all!!

Diego Fabregat | Parallel Programming 16 / 52

Parallel Computers are everywhere!

Source: hp.com Source: indiatimes.com

Source: bq.com Source: wearabledevices.es

Diego Fabregat | Parallel Programming 17 / 52

Parallel Computers are everywhere!
Play Station 3

Diego Fabregat | Parallel Programming 18 / 52

Parallel Computers are everywhere!
My cell phone

Source: arm.com

Diego Fabregat | Parallel Programming 19 / 52

Summarizing

Parallel programming is critical in science and engineering

Not only supercomputers, but in every workstation/laptop

Let’s face it:

Parallel computers are here to stay
The burden is and will be on the programmer
So, let’s roll up our sleeves and do our best :-)

Diego Fabregat | Parallel Programming 20 / 52

Outline

1 Why Parallel Programming?

2 Uniprocessor Architecture Review

3 Towards the Multi-core Era

Diego Fabregat | Parallel Programming 21 / 52

Quick architecture review

Diego Fabregat | Parallel Programming 22 / 52

Clock, cycle, frequency

Clock determines when events take place in the hardware

Frequency (or clock rate): # of cycles per second.
For instance: 2GHz→ 2× 109 cycles per second

Diego Fabregat | Parallel Programming 23 / 52

Clock, cycle, frequency

Clock determines when events take place in the hardware

Frequency (or clock rate): # of cycles per second.
For instance: 2GHz→ 2× 109 cycles per second

Diego Fabregat | Parallel Programming 23 / 52

Clock, cycle, frequency

Clock determines when events take place in the hardware

Frequency (or clock rate): # of cycles per second.
For instance: 2GHz→ 2× 109 cycles per second

Diego Fabregat | Parallel Programming 23 / 52

Clock, cycle, frequency

Clock determines when events take place in the hardware

Frequency (or clock rate): # of cycles per second.
For instance: 2GHz→ 2× 109 cycles per second

Diego Fabregat | Parallel Programming 23 / 52

Purely sequential processor

Instr 1 Instr 2 Instr 3

Latency: 1 cycle
Throughput: 1 instruction per cycle (IPC)
Average cycles per instruction (CPI) = 1

IPC

Execution time = #instr * CPI / Frequency

Inneficient: long cycles, determined by the slowest instr.

Diego Fabregat | Parallel Programming 24 / 52

The laundry analogy

Source: Computer organization and design. Patterson, Hennessy.

Latency: 1 load takes 2 hours
Throughput: 4 loads take 8 hours, 1

2 load per hour

How can we improve the throughput? Pipelining

Diego Fabregat | Parallel Programming 25 / 52

The laundry analogy

Source: Computer organization and design. Patterson, Hennessy.

Latency: still 2 hours

Throughput: (n
2+(n−1)∗0.5) loads per hour (4

3.5 ≈ 1.14 loads/hour)

limn→∞ Throughput = 2 (vs original 1
2)

Diego Fabregat | Parallel Programming 26 / 52

Basic processor architecture (MIPS)

Source: Computer organization and design. Patterson, Hennessy.

Instruction Fetch (IF): read instruction from cache
Instruction Decode (ID): read register data
Execute (EX): execute arithmetic/logic operation
Memory Access (MEM): load/store data from/to memory
Write Back (WB): write result to register file

Diego Fabregat | Parallel Programming 27 / 52

Basic processor architecture (MIPS)

Source: Computer organization and design. Patterson, Hennessy.

Instruction Fetch (IF): read instruction from cache

Instruction Decode (ID): read register data
Execute (EX): execute arithmetic/logic operation
Memory Access (MEM): load/store data from/to memory
Write Back (WB): write result to register file

Diego Fabregat | Parallel Programming 27 / 52

Basic processor architecture (MIPS)

Source: Computer organization and design. Patterson, Hennessy.

Instruction Fetch (IF): read instruction from cache
Instruction Decode (ID): read register data

Execute (EX): execute arithmetic/logic operation
Memory Access (MEM): load/store data from/to memory
Write Back (WB): write result to register file

Diego Fabregat | Parallel Programming 27 / 52

Basic processor architecture (MIPS)

Source: Computer organization and design. Patterson, Hennessy.

Instruction Fetch (IF): read instruction from cache
Instruction Decode (ID): read register data
Execute (EX): execute arithmetic/logic operation

Memory Access (MEM): load/store data from/to memory
Write Back (WB): write result to register file

Diego Fabregat | Parallel Programming 27 / 52

Basic processor architecture (MIPS)

Source: Computer organization and design. Patterson, Hennessy.

Instruction Fetch (IF): read instruction from cache
Instruction Decode (ID): read register data
Execute (EX): execute arithmetic/logic operation
Memory Access (MEM): load/store data from/to memory

Write Back (WB): write result to register file

Diego Fabregat | Parallel Programming 27 / 52

Basic processor architecture (MIPS)

Source: Computer organization and design. Patterson, Hennessy.

Instruction Fetch (IF): read instruction from cache
Instruction Decode (ID): read register data
Execute (EX): execute arithmetic/logic operation
Memory Access (MEM): load/store data from/to memory
Write Back (WB): write result to register file

Diego Fabregat | Parallel Programming 27 / 52

Pipelined processors

Instr 1 Instr 2 Instr 3

IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Each step is known as stage
5-stage pipeline

Diego Fabregat | Parallel Programming 28 / 52

Pipelined processors

Instr 1 Instr 2 Instr 3

IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Each step is known as stage
5-stage pipeline

Diego Fabregat | Parallel Programming 28 / 52

Pipelined processors

Instr 1 Instr 2 Instr 3

IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Each step is known as stage
5-stage pipeline

Diego Fabregat | Parallel Programming 28 / 52

Multiple-issue processors

Replicate internal components to launch multiple instructions per cycle

Allows instruction execution rate > clock rate

That is, allows to complete the execution of more than one IPC

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Diego Fabregat | Parallel Programming 29 / 52

Multiple-issue processors

Adds pressure to the architecture and compiler engineers to keep the
processor busy

Comes in two basic flavors:

Static issue
Dynamic issue

The major difference is the division of work between compiler and
hardware

Diego Fabregat | Parallel Programming 30 / 52

Multiple-issue processors
Static: Very Large Instruction Word (VLIW)

Rely on the compiler to schedule and package the instructions

Issue packet: set of instructions to be issued in a given clock cycle

Think of an issue packet as a large instruction with multiple operations

Most processors rely on the compiler to take care of data dependencies
and such

Source: puyaa.ir.

Diego Fabregat | Parallel Programming 31 / 52

Multiple-issue processors
Dynamic: Superscalar

Processor decides whether two issue zero, one, or more instructions

Still, compiler helps in scheduling and moving dependencies around

in-order vs out-of-order

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Width 2

2-way superscalar

Diego Fabregat | Parallel Programming 32 / 52

Vector units

Single instruction (single IF, ID)
Operation applied to multiple data elements
So called Single-Instruction Multiple-Data (SIMD)

Source: arm.com

Diego Fabregat | Parallel Programming 33 / 52

Outline

1 Why Parallel Programming?

2 Uniprocessor Architecture Review

3 Towards the Multi-core Era

Diego Fabregat | Parallel Programming 34 / 52

Towards the multi-core era

Moore’s law
“The number of transistors in a cost-effective circuit doubles
every year.” Cramming more components onto integrated
circuits, 1965.

Source: Gordon Moore.

Updated in 1975:
... doubles every two years.

Proved to be quite accurate.

Diego Fabregat | Parallel Programming 35 / 52

Towards the multi-core era
Exponential growth in processor performance

Growth in processor performance since the late 1970s.

Computer architecture. Hennessy, Patterson.

Diego Fabregat | Parallel Programming 36 / 52

Towards the multi-core era

Performance growth: Driving forces

Technology improvements:

More, faster transistors
Higher frequency

Architectural improvements:

Caches
Instruction level parallelism

Pipelining
Multiple instruction issue
Dynamic scheduling

We were doing good.
What went wrong???

Diego Fabregat | Parallel Programming 37 / 52

Towards the multi-core era

Performance growth: Driving forces

Technology improvements:

More, faster transistors
Higher frequency

Architectural improvements:

Caches
Instruction level parallelism

Pipelining
Multiple instruction issue
Dynamic scheduling

We were doing good.
What went wrong???

Diego Fabregat | Parallel Programming 37 / 52

Towards the multi-core era
Limitations in ILP

Trends in multiple-issue processors.

486 Pentium Pentium II Pentium 4 Itanium Itanium 2 Core2

Year 1989 1993 1998 2001 2002 2004 2006
Width 1 2 3 3 3 6 4

High-performance processors:
Issue width has stabilized at 4-6
Alpha 21464 (8-way) was canceled (2001).
Need hardware/compiler scheduling to exploit the width

Embedded/Low-power processors:
Typical width of 2
Simpler architectures, no advanced scheduling

Diego Fabregat | Parallel Programming 38 / 52

Towards the multi-core era
Limitations in ILP

Trends in multiple-issue processors.

486 Pentium Pentium II Pentium 4 Itanium Itanium 2 Core2

Year 1989 1993 1998 2001 2002 2004 2006
Width 1 2 3 3 3 6 4

High-performance processors:
Issue width has stabilized at 4-6
Alpha 21464 (8-way) was canceled (2001).
Need hardware/compiler scheduling to exploit the width

Embedded/Low-power processors:
Typical width of 2
Simpler architectures, no advanced scheduling

Diego Fabregat | Parallel Programming 38 / 52

Towards the multi-core era
Limitations in ILP

Microarchitecture Pipeline stages

i486 3
P5 (Pentium) 5
P6 (Pentium Pro/II) 14
P6 (Pentium 3) 8
P6 (Pentium M) 10
NetBurst (Northwood) 20
NetBurst (Prescott) 31
Core 12
Nehalem 20
Sandy Bridge 14
Haswell 14

Table: Evolution of the pipeline depth for a sample of Intel microarchitectures.
Source: wikipedia.org

Diego Fabregat | Parallel Programming 39 / 52

Towards the multi-core era
Limitations in ILP

Data dependencies create bubbles in the pipeline
Bubbles create delays. Some cycles produce no output.

Data dependencies

load $r0, a
addi $r1, $r0, 1

C1 C2 C3 C4 C5 C6 C7 C8

No op

IF ID EX MEM WB

bubble bubble bubble bubble bubble

bubble bubble bubble bubble bubble

IF ID EX MEM WB

Diego Fabregat | Parallel Programming 40 / 52

Towards the multi-core era
Limitations in ILP

Branches create bubbles in the pipeline
Bubbles create delays. Some cycles produce no output.

Control hazard

bne $r0, $r1, L2
L1: addi $r2, $r2, 1

...
L2: addi $r2, $r2, -1

C1 C2 C3 C4 C5 C6 C7 C8

No op

IF ID EX MEM WB

bubble bubble bubble bubble bubble

bubble bubble bubble bubble bubble

IF ID EX MEM WB

Diego Fabregat | Parallel Programming 41 / 52

Towards the multi-core era
Divergence CPU-Memory performance

Gap in performance between CPU and main memory.

Computer organization and design. Patterson, Hennessy.

Diego Fabregat | Parallel Programming 42 / 52

Towards the multi-core era
Divergence CPU-Memory performance

Performance of both processor and memory grows exponentially
Gap also grows exponentially
Processor: 2x every 18 months
Memory: 2x every 10 years

Diego Fabregat | Parallel Programming 43 / 52

Towards the multi-core era
Frequency stall

Clock rate and Power for eight generations of Intel x86 microprocessors.

Computer organization and design. Patterson, Hennessy.

Diego Fabregat | Parallel Programming 44 / 52

Towards the multi-core era
Frequency stall

Frequency and power consumption are correlated (SC
examples)
Heat is also a problem (P IV Prescott, up to 4GHz,
discontinued)
Trend: simpler pipelines, lower frequency, ..., and multiple
cores

Diego Fabregat | Parallel Programming 45 / 52

Multi-cores

Since 2002/2003 performance of uniprocessors dropped
Power dissipation
No more instruction-level parallelism to exploit.

Industry focuses on placing multiple processors on a single
die (multi-core architecture)

Cores share resources (e.g., caches)
Leverages design investment by replicating it

Diego Fabregat | Parallel Programming 46 / 52

Multi-cores

IBM Proc. year # cores

Power 4 2001 2
Power 5 2004 2
Power 6 2007 2
Power 7 2010 4 to 8
Power 8 2013 12

AMD Proc. year # cores

Athlon 2005 2
Athlon II 2009 2 to 4
Opteron 2003– 2 to 16

Intel Proc. year # cores

Core 2006 2
Core 2 2008 2 to 4
Core i3,i5,i7 2010 2 to 6
Xeon 2006– 2 to 18

Diego Fabregat | Parallel Programming 47 / 52

Multi-cores
Available at the ITC Center of RWTH (a sample)

Diego Fabregat | Parallel Programming 48 / 52

Many-cores

New version of Moore’s law

The number of cores will double every two years
We will see processors with 100s and 1000s of cores

Integration and Hetereogeneity

Cores for specific functions (DSP, Cryptography, ...)
Integrated on die

Diego Fabregat | Parallel Programming 49 / 52

Many-core co-processors
GPGPUs

Source: nvidia.com Computer organization and design.
Patterson, Hennessy.

Tesla K80

2x Kepler GK210

Combined 1.87 TFlop/s peak (double precision)

26 Streaming multiprocessors (“cores”)

4992 CUDA cores (“FPU”)

Diego Fabregat | Parallel Programming 50 / 52

Many-core co-processors
Intel Xeon Phi

Source: intel.com

≈ 1 TFlop/s peak (double precision)
61 cores

Diego Fabregat | Parallel Programming 51 / 52

Summary

Why HPC and PP are important
Solve large problems fast
Simulations in science and engineering enable new research
where experiments are cost prohibitive or not possible

The technology trends
Limit power consumption
Decrease frequency
Increase number of processors/cores

Free lunch is over
No more significant improvements in uni-processor performance
Further performance gains via explicit parallelism
Will require at very least 100-way concurrency
Heterogeneous architectures (Tianhe2)

Diego Fabregat | Parallel Programming 52 / 52

	Why Parallel Programming?
	Uniprocessor Architecture Review
	Towards the Multi-core Era

