
Parallel Programming

pauldj@aices.rwth-aachen.de

1 / 5



Anatomy of MPI_Send and MPI_Recv

int MPI_Send(

*buffer, count, datatype, ← “data”
destination, tag, communicator ← “envelope”

);

int MPI_Recv(

*buffer, count, datatype, ← “data”
source, tag, commmunicator, ← “envelope”
*status

);

message = data + envelope (+ info)

matching envelopes→ data transfer

Note: Meanining of count: send 6= recv

count in send = size of message vs. count in receive = size of buffer.
2 / 5



Point-to-point communication

Send
MPI_Ssend

MPI_Send

MPI_Isend
...
MPI_Bsend

Receive
MPI_Recv

MPI_Irecv

Send+Receive
MPI_Sendrecv

MPI_Sendrecv_replace

3 / 5



Send/Recv Modes
[Send] The stress is on the buffer sent: “When I can I safely overwrite it?”

MPI_Ssend: The program execution is blocked until a matching receive is
posted. The buffer is usable as soon as the call completes.

MPI_Send: MPI attempts to copy the outgoing message onto a local
(hidden) buffer. If possible, the execution continues and the send buffer is
immediately usable, otherwise same as Ssend.

MPI_Isend: The execution continues Immediately. The send buffer
should not be accessed until the MPI_request allows it. To be used in
conjunction with MPI_Wait or MPI_Test∗.

[Recv] The stress is on the incoming buffer: “When I can I safely access it?”
MPI_Recv: The program execution is blocked until a matching send is
posted. The incoming buffer is usable as soon as the call completes.

MPI_Irecv: The execution continues Immediately. The incoming buffer
should not be accessed until the MPI_request allows it. To be used in
conjunction with MPI_Wait or MPI_Test∗.

∗: See also MPI_Waitany, MPI_Waitall, MPI_Waitsome, MPI_Testany, MPI_Testall, MPI_Testsome.
4 / 5



Recap: deadlock

2+ processes want to exchange data

All processes start with a blocking send or a blocking receive
Ssend, Send (in the worst case), Recv
⇒ BUG: deadlock

Solution: BREAK SYMMETRY!
At the same time, careful not to serialize the code!

Approach: code, test and debug with Ssend; then replace with Send

Other solutions?
Non-blocking send (Isend)
Non-blocking receive (Irecv)
Simultaneous send-receive (Sendrecv)

5 / 5


