
OpenMP

Diego Fabregat-Traver and Prof. Paolo Bientinesi

HPAC, RWTH Aachen
fabregat@aices.rwth-aachen.de

WS15/16

OpenMP

API for shared-memory parallelism
Steered by the OpenMP ARB (industry, research)
Supported by compilers on most platforms
Not a programming language. Mainly annotations to the
(sequential) code.
OpenMP API consists of:

Compiler directives
Library routines
Environment variables

Simple to use, high-level, incremental parallelism
Performance oriented
Data (and task) parallelism

Diego Fabregat | OpenMP 2 / 12

(Very brief) History of OpenMP

SC97: Group HPC experts (industry, research) presented
OpenMP, to propose a unified model to program
shared-memory systems.
A company was set up to own and maintain the new
standard: The openmp architecture review board
(openmparb)
People efforts on: extending the standard, developing
implementations, teaching and spreading the word,
cOMPunity for the interaction between vendors, researchers
and users.
Originally primarily designed to exploit concurrency in
structured loop nests.

Diego Fabregat | OpenMP 3 / 12

Main ideas

User gives a high-level specification of the portions of code
to be executed in parallel

int main(...)
{

...
#pragma omp parallel
{

<region executed by multiple threads>
}
...

}

pragma (pragmatic): tell the compiler to use some compiler-dependent fea-
ture/extension.

Diego Fabregat | OpenMP 4 / 12

Main ideas (II)

User may provide additional information on how to
parallelize

#pragma omp parallel num_threads(4)
omp_set_schedule(static | dynamic | ...);
omp_set_lock(lock_var);

OpenMP takes care of the low level details of creating
threads, execution, assigning work, ...

Provides relatively easy variable scoping, synchronization
and primitives to avoid data races.

Usage:
#include "omp.h"
[gcc|icc] -fopenmp <source.c> -o <executable.x>

Diego Fabregat | OpenMP 5 / 12

Hello world!

Exercise 1: Warming up

Write an OpenMP multi-threaded program where each thread prints
"Hello world!".

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("Hello world!\n");

return 0;
}

Hint:
#pragma omp parallel

Diego Fabregat | OpenMP 6 / 12

Main ideas (III)
Fork-join paradigm

Initial thread

Master thread

Workers

Parallel Regions

Sequential Regions

Team of threads

Diego Fabregat | OpenMP 7 / 12

Incremental parallelism

A common approach to writing OpenMP programs:
Identify paralellism in your sequential code
Incremental parallelism: introduce directives in one portion of
the code, leave the rest untoched
When tested, move on to next region to be parallelized until
target speedup is achieved

Let me insist: writing correct, fast, parallel code is hard
Data race conditions, deadlocks, false sharing, overhead, ...

We will discuss some potential issues and bottlenecks

Diego Fabregat | OpenMP 8 / 12

First steps

Directives:
Syntax: #pragma omp <construct> [<clause> [<clause>]]
Most constructs apply to structured blocks
One entry point, one exit point

Routines (some examples):
omp_set_num_threads(int nthreads);
int id = omp_get_num_threads();
int id = omp_get_thread_num();

Environment variables (an example):
export OMP_NUM_THREADS=4; ./program.x

Diego Fabregat | OpenMP 9 / 12

Hello world! I’m thread X!
Exercise 1b

Extend exercise 1 (below) so that 4 threads execute the parallel region
and each of them prints also its thread id.

#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

int main(void)
{

#pragma omp parallel
printf("Hello world!\n");

return 0;
}

Hints:

#pragma omp parallel
num_threads(...)

omp_get_num_threads()

omp_set_num_threads(...)

omp_get_thread_num(...)

Diego Fabregat | OpenMP 10 / 12

Variable Scope

Code Shared data

Thread 0

Private data

Thread 1

Private data

Process
or

Program

Diego Fabregat | OpenMP 11 / 12

Exercise 2 (axpy.c)
Use the #pragma omp parallel construct to parallelize the code below
so that 4 threads collaborate in the computation of z. Pay attention to
shared vs private variables!

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int i, N = 10;
double x[N], y[N], z[N], alpha = 5.0;

for(i = 0; i < N; i++) {
x[i] = i;
y[i] = 2.0*i;

}

for(i = 0; i < N; i++)
z[i] = alpha * x[i] + y[i];

// Print results. Should output [0, 7, 14, 21, ...]
return 0;

}

Hints:

#pragma omp parallel
num_threads(...)

omp_set_num_threads(...)

omp_get_num_threads(...)

omp_get_thread_num(...)

Challenge: split iterations of the
loop among threads

Diego Fabregat | OpenMP 12 / 12

	OpenMP
	Main ideas behind OpenMP
	First steps

