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OpenMP

API for shared-memory parallelism
Steered by the OpenMP ARB (industry, research)
Supported by compilers on most platforms
Not a programming language. Mainly annotations to the
(sequential) code.
OpenMP API consists of:

Compiler directives
Library routines
Environment variables

Simple to use, high-level, incremental parallelism
Performance oriented
Data (and task) parallelism
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(Very brief) History of OpenMP

SC97: Group HPC experts (industry, research) presented
OpenMP, to propose a unified model to program
shared-memory systems.
A company was set up to own and maintain the new
standard: The openmp architecture review board
(openmparb)
People efforts on: extending the standard, developing
implementations, teaching and spreading the word,
cOMPunity for the interaction between vendors, researchers
and users.
Originally primarily designed to exploit concurrency in
structured loop nests.
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Main ideas

User gives a high-level specification of the portions of code
to be executed in parallel

int main( ... )
{

...
#pragma omp parallel
{

<region executed by multiple threads>
}
...

}

pragma (pragmatic): tell the compiler to use some compiler-dependent fea-
ture/extension.
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Main ideas (II)

User may provide additional information on how to
parallelize

#pragma omp parallel num_threads(4)
omp_set_schedule( static | dynamic | ... );
omp_set_lock( lock_var );

OpenMP takes care of the low level details of creating
threads, execution, assigning work, ...

Provides relatively easy variable scoping, synchronization
and primitives to avoid data races.

Usage:
#include "omp.h"
[gcc|icc] -fopenmp <source.c> -o <executable.x>

Diego Fabregat | OpenMP 5 / 12



Hello world!

Exercise 1: Warming up

Write an OpenMP multi-threaded program where each thread prints
"Hello world!".

#include <stdio.h>
#include <stdlib.h>

int main( void )
{

printf("Hello world!\n");

return 0;
}

Hint:
#pragma omp parallel
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Main ideas (III)
Fork-join paradigm

Initial thread

Master thread

Workers

Parallel Regions

Sequential Regions

Team of threads
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Incremental parallelism

A common approach to writing OpenMP programs:
Identify paralellism in your sequential code
Incremental parallelism: introduce directives in one portion of
the code, leave the rest untoched
When tested, move on to next region to be parallelized until
target speedup is achieved

Let me insist: writing correct, fast, parallel code is hard
Data race conditions, deadlocks, false sharing, overhead, ...

We will discuss some potential issues and bottlenecks
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First steps

Directives:
Syntax: #pragma omp <construct> [<clause> [<clause>]]
Most constructs apply to structured blocks
One entry point, one exit point

Routines (some examples):
omp_set_num_threads( int nthreads );
int id = omp_get_num_threads();
int id = omp_get_thread_num();

Environment variables (an example):
export OMP_NUM_THREADS=4; ./program.x
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Hello world! I’m thread X!
Exercise 1b

Extend exercise 1 (below) so that 4 threads execute the parallel region
and each of them prints also its thread id.

#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

int main( void )
{

#pragma omp parallel
printf("Hello world!\n");

return 0;
}

Hints:

#pragma omp parallel
num_threads(...)

omp_get_num_threads()

omp_set_num_threads(...)

omp_get_thread_num(...)
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Variable Scope

Code Shared data

Thread 0

Private data

Thread 1

Private data

Process
or

Program
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Exercise 2 (axpy.c)
Use the #pragma omp parallel construct to parallelize the code below
so that 4 threads collaborate in the computation of z. Pay attention to
shared vs private variables!

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int i, N = 10;
double x[N], y[N], z[N], alpha = 5.0;

for( i = 0; i < N; i++ ) {
x[i] = i;
y[i] = 2.0*i;

}

for(i = 0; i < N; i++)
z[i] = alpha * x[i] + y[i];

// Print results. Should output [0, 7, 14, 21, ...]
return 0;

}

Hints:

#pragma omp parallel
num_threads(...)

omp_set_num_threads(...)

omp_get_num_threads(...)

omp_get_thread_num(...)

Challenge: split iterations of the
loop among threads
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