OpenMP

Diego Fabregat-Traver and Prof. Paolo Bientinesi

HPAC, RWTH Aachen
fabregat@aices.rwth-aachen.de

WS15/16

RWNTHAACHEN
HPAC UNIVERSITY

OpenMP

« API for shared-memory parallelism
» Steered by the OpenMP ARB (industry, research)
» Supported by compilers on most platforms

» Not a programming language. Mainly annotations to the
(sequential) code.
« OpenMP API consists of:

« Compiler directives
 Library routines
« Environment variables

« Simple to use, high-level, incremental parallelism
» Performance oriented
« Data (and task) parallelism

Diego Fabregat | OpenMP 2/12

(Very brief) History of OpenMP

« SC97: Group HPC experts (industry, research) presented
OpenMP, to propose a unified model to program
shared-memory systems.

o A company was set up to own and maintain the new
standard: The openmp architecture review board
(openmparb)

« People efforts on: extending the standard, developing
implementations, teaching and spreading the word,
cOMPunity for the interaction between vendors, researchers
and users.

» Originally primarily designed to exploit concurrency in
structured loop nests.

Diego Fabregat | OpenMP 3/12

Main ideas

» User gives a high-level specification of the portions of code
to be executed in parallel

int main(...)
{
#pragma omp parallel
{
<region executed by multiple threads>
b

pragma (pragmatic): tell the compiler to use some compiler-dependent fea-
ture/extension.

Diego Fabregat | OpenMP 4/12

Main ideas (Il)

User may provide additional information on how to

parallelize
e #pragma omp parallel num_threads(4)
o omp_set_schedule(static | dynamic | ...);

o omp_set_lock(lock_var);

OpenMP takes care of the low level details of creating
threads, execution, assigning work, ...

Provides relatively easy variable scoping, synchronization
and primitives to avoid data races.

Usage:
e #include "omp.h"
e [gcclicc]l -fopenmp <source.c> -o <executable.x>

Diego Fabregat | OpenMP 5/12

Hello world!

o Write an OpenMP multi-threaded program where each thread prints
"Hello world!".

Hint:
#include <stdio.h> #pragma omp parallel
#include <stdlib.h>

int main(void)

{
printf ("Hello world!\n");

return O;

Diego Fabregat | OpenMP 6/12

Main ideas (ll)

Fork-join paradigm

Master thread

Initial thread

N

‘Workers

Diego Fabregat

OpenMP

Parallel Regions

Team of threads

—a

VS \
\ / \
\ 7 \
\ v N
\ 7,7 NN
-
7 NN 7
.
’ AN _ i
’ \ /
/ \ /
N 7/

Sequential Regions

7/12

Incremental parallelism

« A common approach to writing OpenMP programs:

« ldentify paralellism in your sequential code

« Incremental parallelism: introduce directives in one portion of
the code, leave the rest untoched

» When tested, move on to next region to be parallelized until

target speedup is achieved

« Let me insist: writing correct, fast, parallel code is hard
« Data race conditions, deadlocks, false sharing, overhead, ...

« We will discuss some potential issues and bottlenecks

Diego Fabregat | OpenMP 8/12

First steps

» Directives:

o Syntax: #pragma omp <construct> [<clause> [<clause>]]
« Most constructs apply to structured blocks
» One entry point, one exit point

» Routines (some examples):
e omp_set_num_threads(int nthreads);
e int id = omp_get_num_threads();
e int id = omp_get_thread_num();

« Environment variables (an example):
o export OMP_NUM_THREADS=4; ./program.x

Diego Fabregat | OpenMP 9/12

Hello world! I'm thread X!

o Extend exercise 1 (below) so that 4 threads execute the parallel region
and each of them prints also its thread id.

#include <stdio.h>)

#include <stdlib.h> Hints:

#include "omp.h"

e #pragma omp parallel

int main(void) num_threads(...)

{ e omp_get_num_threads ()
#pragma omp parallel

; e omp_set_num_threads(...)
printf ("Hello world!\n");

e omp_get_thread_num(...)

return O;

Diego Fabregat | OpenMP 10/12

Variable Scope

| Code | | Shared data |

Thread 0 Thread 1

| Private data | | Private data |

Process
or
Program

Diego Fabregat | OpenMP 11/12

Exercise 2 (axpy.c)

o Use the #pragma omp parallel construct to parallelize the code below
so that 4 threads collaborate in the computation of z. Pay attention to
shared vs private variables!

#include <stdio.h>
#include <stdlib.h>

Hints:
int main(int argc, char *argv[]) o #pragma omp parallel
{
int i, N = 10; num_threads(...)
double x[N], y[N], z[N], alpha = 5.0; e omp_set_num_threads(...)
for(i = 0; i < N; i++) {
li] = i: e omp_get_num_threads(...)
X ylil = 2.0%i; e omp_get_thread_num(...)
forC o . , e Challenge: split iterations of the
or(i = 0; i < N; i++
2[1] = alpha * x[i] + y[il; loop among threads
// Print results. Should output [0, 7, 14, 21, ...]
return O;
}

Diego Fabregat | OpenMP 12/12

	OpenMP
	Main ideas behind OpenMP
	First steps

