Parallel Programming

Architectures — Pi.1

Prof. Paolo Bientinesi

HPAC, RWTH Aachen
pauldj@aices.rwth-aachen.de

WS16/17

RWNTHAACHEN
HPAC UNIVERSITY

Outline

@ Uniprocessor Architecture Review

Prof. Paolo Bientinesi | Parallel Programming

Quick architecture review

Prof. Paolo Bientinesi

Fram Campuber Desbiop Enspciopedia
Aepreduced wEh pamission.
B 2001 resl Ceorperaion

LTI

PREFETEH UMIT |
=

Prefeich Cueus -
3

SEQMENT
DRIT

EXECUTION
NI
r

3/17

Clock, cycle, frequency

» Clock determines when events take place in the hardware

» Frequency (or clock rate): # of cycles per second.
For instance: 2GHz — 2 x 10° cycles per second

Prof. Paolo Bientinesi | Parallel Programming 4/17

Basic processor architecture

Data

Register #
Address Instruction Registers Address
Instructi Register # Data
nstruction) memory
memory Register #
Data

Source: Computer organization and design. Patterson, Hennessy.

° (IF): read instruction from cache
° (ID): read register data
° (EX): execute arithmetic/logic operation

(ST): store the result

Prof. Paolo Bientinesi | Parallel Programming 5/17

The laundry analogy

2 AM

Time 6 PM 7 8 9 10 11 12 1
B B e

Task

order

e
o=

. Woe=l

‘ §0=l

b §o=Ml

Source: Computer organization and design. Patterson, Hennessy.

» Latency: 1 load takes 2 hours
« Throughput: 4 loads take 8 hours, % load per hour

« How can we improve the throughput? Pipelining

Prof. Paolo Bientinesi | Parallel Programming 6/17

Pipelining

) 6 PM 7 8 9 10 11 12 1 2 AM
Time
m | \ | | \
Task
order

» B0=M

o 0=l
c LEEl
: #5=l

Source: Computer organization and design. Patterson, Hennessy.
o Latency: still 2 hours
e Throughput: (m) loads per hour (si 1.14 loads/hour)
o limp_, Throughput = 2 (vs original })

Prof. Paolo Bientinesi | Parallel Programming 7/17

Pipelined processors

I

Instr 1

Instr2 |

Instr 3

IF

ID

ST

IF

ID

ST

IF

ID

ST

Prof. Paolo Bientinesi

Parallel Programming

« Each step is known as stage
» 4-stage pipeline

8/17

Throughput

» Program P: ninstructions
» s-stage pipeline
« latency(stage) = k secs

Single resource Multiple resources

= serial execution = pipelined execution

Latency(P) = nsk secs Latency(P) = sk + (n— 1)k secs
Throughput: Throughput:

- = I instr/sec iMn-s00 sm=mr = % iNstr/sec

Morale: The throughput for the pipelined execution is s time as large as the
one for the serial execution. Also, the more stages (the larger s), the smaller
k, and the higher the throughput.

Prof. Paolo Bientinesi | Parallel Programming 9/17

Multiple-issue processors

» Replicate internal components to launch multiple instructions per cycle
o Allows instruction execution rate > clock rate

o That is, allows to complete the execution of more than one IPC

Prof. Paolo Bientinesi | Parallel Programming

Towards the multi-core era

Limitations in ILP

Trends in multiple-issue processors.

\ 486 Pentium Pentium |l Pentium4 ltanium Itanium2 Core2
Year 1989 1993 1998 2001 2002 2004 2006
Width 1 2 3 3 3 6 4

« High-performance processors:

o Issue width has stabilized at 4-6

» Alpha 21464 (8-way) was canceled (2001).

« Need hardware/compiler scheduling to exploit the width
« Embedded/Low-power processors:

« Typical width of 2
« Simpler architectures, no advanced scheduling

Prof. Paolo Bientinesi | Parallel Programming 11/17

Towards the multi-core era

Limitations in ILP

Microarchitecture Pipeline stages
i486 3
P5 (Pentium) 5
P6 (Pentium Pro/ll) 14
P6 (Pentium 3) 8
P6 (Pentium M) 10
NetBurst (Northwood) 20
NetBurst (Prescott) 31
Core 12
Nehalem 20
Sandy Bridge 14
Haswell 14

Table: Evolution of the pipeline depth for a sample of Intel microarchitectures.
Source: wikipedia.org

Prof. Paolo Bientinesi | Parallel Programming 12/17

Outline

@ Data Dependencies

Prof. Paolo Bientinesi | Parallel Programming 13/17

On dependencies and parallel execution

« In parallel execution there is no time ordering:
If two instructions are executed in parallel, one cannot expect that
one finishes before the other

» Two independent instructions can be executed in parallel (by
different resources)

« If there are dependencies, then an ordering is necessary to
preserve the semantics of the program

« Pipelining is still possible, even with dependencies

« Some dependencies can be removed by duplicating data

Prof. Paolo Bientinesi | Parallel Programming 14 /17

True / Flow dependency

{x

1, y=2, a=3}

< .
o
s .

I

axx+y | 3 xy
w:i=3xy | y:i=a*xx+y
{y = 5, w = 15} {y = 5, w =6}

« Calculation of value w depends on the updated value of y

» Executing the two statements in different order changes the
semantics of the program

Prof. Paolo Bientinesi | Parallel Programming 15/17

Anti dependency

{x=1,y=2, a=3%}
Wwi=3x*xy | yi=a*xx+y
yi=ax*xx+y | W= 3 %y
{y =5, w=6} {y = 5, w = 15}

« Calculation of value w needs the initial value of y

» Executing the two statements in different order changes the
semantics of the program

Prof. Paolo Bientinesi | Parallel Programming 16/17

Output dependency

w:i=3xy | Woi= a *x X
W= X | wi=3x%xy
{w = 3} {w = 62}

» Final value of w depends on the order in which the
statements are executed

« Executing the two statements in different order changes the
semantics of the program

Prof. Paolo Bientinesi | Parallel Programming 17/17

	Uniprocessor Architecture Review
	Data Dependencies

