
Parallel Programming
Architectures – Pt.1

Prof. Paolo Bientinesi

HPAC, RWTH Aachen
pauldj@aices.rwth-aachen.de

WS16/17

Outline

1 Uniprocessor Architecture Review

2 Data Dependencies

Prof. Paolo Bientinesi | Parallel Programming 2 / 17

Quick architecture review

Prof. Paolo Bientinesi | Parallel Programming 3 / 17

Clock, cycle, frequency

Clock determines when events take place in the hardware

Frequency (or clock rate): # of cycles per second.
For instance: 2GHz→ 2× 109 cycles per second

Prof. Paolo Bientinesi | Parallel Programming 4 / 17

Basic processor architecture

Source: Computer organization and design. Patterson, Hennessy.

Instruction Fetch (IF): read instruction from cache
Instruction Decode (ID): read register data
Execute (EX): execute arithmetic/logic operation
Store (ST): store the result

Prof. Paolo Bientinesi | Parallel Programming 5 / 17

The laundry analogy

Source: Computer organization and design. Patterson, Hennessy.

Latency: 1 load takes 2 hours

Throughput: 4 loads take 8 hours, 1
2 load per hour

How can we improve the throughput? Pipelining

Prof. Paolo Bientinesi | Parallel Programming 6 / 17

Pipelining

Source: Computer organization and design. Patterson, Hennessy.

Latency: still 2 hours

Throughput: (n
2+(n−1)∗0.5) loads per hour (4

3.5 ≈ 1.14 loads/hour)

limn→∞ Throughput = 2 (vs original 1
2)

Prof. Paolo Bientinesi | Parallel Programming 7 / 17

Pipelined processors

Instr 1 Instr 2 Instr 3

IF ID EX ST IF ID EX ST IF ID EX ST

IF ID EX ST

IF ID EX ST

IF ID EX ST

Each step is known as stage
4-stage pipeline

Prof. Paolo Bientinesi | Parallel Programming 8 / 17

Throughput

Program P: n instructions
s-stage pipeline
latency(stage) = k secs

Single resource
⇒ serial execution

Latency(P) = nsk secs

Throughput:
n

nsk = 1
sk instr/sec

Multiple resources
⇒ pipelined execution

Latency(P) = sk + (n − 1)k secs

Throughput:
limn→∞

n
sk+(n−1)k = 1

k instr/sec

Morale: The throughput for the pipelined execution is s time as large as the
one for the serial execution. Also, the more stages (the larger s), the smaller
k , and the higher the throughput.

Prof. Paolo Bientinesi | Parallel Programming 9 / 17

Multiple-issue processors

Replicate internal components to launch multiple instructions per cycle

Allows instruction execution rate > clock rate

That is, allows to complete the execution of more than one IPC

IF ID EX ST

IF ID EX ST

IF ID EX ST

IF ID EX ST

IF ID EX ST

IF ID EX ST

Prof. Paolo Bientinesi | Parallel Programming 10 / 17

Towards the multi-core era
Limitations in ILP

Trends in multiple-issue processors.

486 Pentium Pentium II Pentium 4 Itanium Itanium 2 Core2

Year 1989 1993 1998 2001 2002 2004 2006
Width 1 2 3 3 3 6 4

High-performance processors:
Issue width has stabilized at 4-6
Alpha 21464 (8-way) was canceled (2001).
Need hardware/compiler scheduling to exploit the width

Embedded/Low-power processors:
Typical width of 2
Simpler architectures, no advanced scheduling

Prof. Paolo Bientinesi | Parallel Programming 11 / 17

Towards the multi-core era
Limitations in ILP

Microarchitecture Pipeline stages

i486 3
P5 (Pentium) 5
P6 (Pentium Pro/II) 14
P6 (Pentium 3) 8
P6 (Pentium M) 10
NetBurst (Northwood) 20
NetBurst (Prescott) 31
Core 12
Nehalem 20
Sandy Bridge 14
Haswell 14

Table: Evolution of the pipeline depth for a sample of Intel microarchitectures.
Source: wikipedia.org

Prof. Paolo Bientinesi | Parallel Programming 12 / 17

Outline

1 Uniprocessor Architecture Review

2 Data Dependencies

Prof. Paolo Bientinesi | Parallel Programming 13 / 17

On dependencies and parallel execution

In parallel execution there is no time ordering:
If two instructions are executed in parallel, one cannot expect that
one finishes before the other

Two independent instructions can be executed in parallel (by
different resources)

If there are dependencies, then an ordering is necessary to
preserve the semantics of the program

Pipelining is still possible, even with dependencies

Some dependencies can be removed by duplicating data

Prof. Paolo Bientinesi | Parallel Programming 14 / 17

True / Flow dependency

{x = 1, y = 2, a = 3}

... ...
y := a * x + y | w := 3 * y
w := 3 * y | y := a * x + y
... ...

{y = 5, w = 15} {y = 5, w = 6}

Calculation of value w depends on the updated value of y

Executing the two statements in different order changes the
semantics of the program

Prof. Paolo Bientinesi | Parallel Programming 15 / 17

Anti dependency

{x = 1, y = 2, a = 3}

... ...
w := 3 * y | y := a * x + y
y := a * x + y | w := 3 * y
... ...

{y = 5, w = 6} {y = 5, w = 15}

Calculation of value w needs the initial value of y

Executing the two statements in different order changes the
semantics of the program

Prof. Paolo Bientinesi | Parallel Programming 16 / 17

Output dependency

{x = 1, y = 2, a = 3}

... ...
w := 3 * y | w := a * x
w := a * x | w := 3 * y
... ...

{w = 3} {w = 6}

Final value of w depends on the order in which the
statements are executed
Executing the two statements in different order changes the
semantics of the program

Prof. Paolo Bientinesi | Parallel Programming 17 / 17

	Uniprocessor Architecture Review
	Data Dependencies

