
OpenMP I

Diego Fabregat-Traver and Prof. Paolo Bientinesi

HPAC, RWTH Aachen
fabregat@aices.rwth-aachen.de

WS16/17

OpenMP

References

Using OpenMP: Portable Shared Memory Parallel
Programming. The MIT Press, 2007.
B. Chapman, G. Jost , R. van der Pas.
Introduction to OpenMP by Tim Mattson.
http://openmp.org/mp-documents/Intro_To_OpenMP_Mattson.pdf

Diego Fabregat | OpenMP I 2 / 33

OpenMP

API for shared-memory parallelism
Steered by the OpenMP ARB (industry, research)
Supported by compilers on most platforms
Not a programming language. Mainly annotations to the
(sequential) code.
OpenMP API consists of:

Compiler directives
Library routines
Environment variables

Simple to use, high-level, incremental parallelism
Performance oriented
Data (and task) parallelism

Diego Fabregat | OpenMP I 3 / 33

(Very brief) History of OpenMP

SC97: Group HPC experts (industry, research) presented
OpenMP, to propose a unified model to program
shared-memory systems.
A company was set up to own and maintain the new
standard: The openmp architecture review board
(openmparb)
People efforts on: extending the standard, developing
implementations, teaching and spreading the word,
cOMPunity for the interaction between vendors, researchers
and users.
Originally primarily designed to exploit concurrency in
structured loop nests.

Diego Fabregat | OpenMP I 4 / 33

Main ideas

User gives a high-level specification of the portions of code
to be executed in parallel

int main(...)
{

...
#pragma omp parallel
{

<region executed by multiple threads>
}
...

}

pragma (pragmatic): tell the compiler to use some compiler-dependent fea-
ture/extension.

Diego Fabregat | OpenMP I 5 / 33

Main ideas (II)

User may provide additional information on how to
parallelize

#pragma omp parallel num_threads(4)
omp_set_schedule(static | dynamic | ...);

OpenMP takes care of the low level details of creating
threads, execution, assigning work, ...

Provides relatively easy variable scoping, synchronization
and primitives to avoid data races.

Usage:
#include "omp.h"
[gcc|icc] -fopenmp <source.c> -o <executable.x>

Diego Fabregat | OpenMP I 6 / 33

Hello world!

Exercise 1: Warming up

Write an OpenMP multi-threaded program where each thread prints
"Hello world!".

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("Hello world!\n");

return 0;
}

Hint:
#pragma omp parallel

Diego Fabregat | OpenMP I 7 / 33

Main ideas (III)
Fork-join paradigm

Initial thread

Master thread

Workers

Parallel Regions

Sequential Regions

Team of threads

Diego Fabregat | OpenMP I 8 / 33

Incremental parallelism

A common approach to writing OpenMP programs:

Identify paralellism in your sequential code
Incremental parallelism: introduce directives in one portion of
the code, leave the rest untoched
When tested, move on to next region to be parallelized until
target speedup is achieved

Diego Fabregat | OpenMP I 9 / 33

First steps

Directives:
Syntax: #pragma omp <construct> [<clause> [<clause>]]
Most constructs apply to structured blocks
One entry point, one exit point

Routines (some examples):
omp_set_num_threads(int nthreads);
int id = omp_get_num_threads();
int id = omp_get_thread_num();

Environment variables (an example):
export OMP_NUM_THREADS=4; ./program.x

Diego Fabregat | OpenMP I 10 / 33

Hello world! I’m thread X!
Exercise 1b

Extend exercise 1 (below) so that 4 threads execute the parallel region
and each of them prints also its thread id.

#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

int main(void)
{

#pragma omp parallel
printf("Hello world!\n");

return 0;
}

Hints:

#pragma omp parallel
num_threads(...)

omp_get_num_threads()

omp_set_num_threads(...)

omp_get_thread_num(...)

Diego Fabregat | OpenMP I 11 / 33

Exercise 2 (axpy.c)

Use the #pragma omp parallel construct to parallelize the code below
so that 4 threads collaborate in the computation of z.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int i, N = 10;
double x[N], y[N], z[N], alpha = 5.0;

for(i = 0; i < N; i++) {
x[i] = i;
y[i] = 2.0*i;

}

for(i = 0; i < N; i++)
z[i] = alpha * x[i] + y[i];

// Print results. Should output [0, 7, 14, 21, ...]
return 0;

}

Hints:

#pragma omp parallel
num_threads(...)

omp_set_num_threads(...)

omp_get_num_threads(...)

omp_get_thread_num(...)

Challenge: split iterations of the
loop among threads

Diego Fabregat | OpenMP I 12 / 33

The parallel construct and the SPMD approach

The most important construct:
#pragma omp parallel [clause [, clause] ...]

Creates a team of threads to execute the parallel region (fork)

Has an implicit barrier at the end of the region (join)

It does not distribute the work

So far we distributed the work based on thread id and number of
threads (SPMD)

Diego Fabregat | OpenMP I 13 / 33

Exercise 3 (pi.c)

Mathematically, we know that:

π =
∫ 1

0

4
1 + x2 dx

Numerically, we can approximate
the integral as the sum of rectan-
gles:

π ≈
N∑
i=0

4
1 + x2i

∆x

where each rectangle has width ∆x
and height F (xi) at the middle of the
interval i.

Source: Timothy Mattson, Intel.

Diego Fabregat | OpenMP I 14 / 33

Exercise 3 (pi.c)
Use the #pragma omp parallel construct to parallelize the code below
so that 4 threads collaborate in the computation of π. Pay attention to
shared vs private variables!

#include <stdio.h>
#include <stdlib.h>
#define NUM_STEPS 10000

int main(void)
{

int i;
double sum = 0.0, pi, x_i;
double step = 1.0/NUM_STEPS;

for (i = 0; i < NUM_STEPS; i++) {
x_i = (i + 0.5) * step;
sum = sum + 4.0 / (1.0 + x_i * x_i);

}
pi = sum * step;
printf("Pi: %.15e\n", pi);
return 0;

}

Hints:
#pragma omp parallel
num_threads(...)

omp_set_num_threads(...)

omp_get_num_threads(...)

omp_get_thread_num(...)

Challenges:
split iterations of the loop
among threads
create an accumulator for
each thread to hold partial
sums, which can later be
combined to generate the
global sum

Diego Fabregat | OpenMP I 15 / 33

Shared vs private variables

Shared: single instance that every thread can read/write

Private: each thread has its own copy and others cannot
read/write them (unless a pointer to them is given)

So far: shared or private depending on where they were
declared
See, for instance, 02b.axpy-omp.c

Diego Fabregat | OpenMP I 16 / 33

Variable Scope

Code Shared data

Thread 0

Private data

Thread 1

Private data

Process
or

Program

Diego Fabregat | OpenMP I 17 / 33

Parallel construct: Syntax in detail

#pragma omp parallel [clause [, clause] ...]
structured-block

The following clauses apply:
if
num_threads
shared, private, firstprivate, default
reduction

copyin
proc_bind

Diego Fabregat | OpenMP I 18 / 33

Parallel construct
if clause

Conditional parallel execution
Avoid parallelization overhead if little work to be parallelized
Syntax: “if (scalar-logical-expression)”
If the logical expression evaluates to true: execute in parallel
Example:

int main(...)
{

[...]
#pragma omp parallel if (n > 1000)
{

[...]
}
[...]

}

Diego Fabregat | OpenMP I 19 / 33

Parallel construct
num_threads clause

Specifies how many threads should execute the region
The runtime may decide to use less threads than specified
(never more)
Syntax: “num_threads (scalar-logical-expression)”
Example:

int main(...)
{

[...]
#pragma omp parallel num_threads (nths)
{

[...]
}
[...]

}

Diego Fabregat | OpenMP I 20 / 33

Parallel construct
Data-sharing attributes

Shared-memory programming model
Variables are shared by default

Shared:
All variables visible upon entry of the construct
Static variables

Private:
Variables declared within a parallel region
(Stack) variables in functions called from within a parallel
region

Diego Fabregat | OpenMP I 21 / 33

Parallel construct
int N = 10;
int main(void)
{

double array[N];
#pragma omp parallel
{

int i, myid;
double thread_array[N];
[...]
for (i = 0; i < N; i++)

thread_array[i] = myid * array[i];
function(thread_array);

}
}
double function(double arg)
{

static int cnt;
double local_array[N];
[...]

}

Within parallel region:
Shared: array, N,
cnt

Private: i, myid,
thread_array,
local_array

Note:
Lexical extent vs
dynamic/runtime
extent

Diego Fabregat | OpenMP I 22 / 33

Parallel construct
General rules for data-sharing clauses

Clauses default, private, shared, firstprivate allow
changing the default behavior
The clauses consist of the keyword and a comma-separated list of
variables in parenthesis. For instance: private(a,b)

Variables must be visible in the lexical extent of the directive
A variable can only appear in one clause

Exception: a variable can appear in both firstprivate and
lastprivate (coming later)

Diego Fabregat | OpenMP I 23 / 33

Parallel construct
shared clause

Syntax: “shared (item-list)”
Specifies that variables in the comma-separated list are shared
among threads

One single instance, each thread can freely read and modify its
value

When the parallel region finishes, the final values reside in the
shared space where the master thread will be able to access it

CAREFUL: Every thread can access it, race conditions may occur.
Synchronize/order the access when needed (e.g., critical
construct)

Diego Fabregat | OpenMP I 24 / 33

Parallel construct
private clause

Syntax: “private (item-list)”
Specifies data that will be replicated so that each thread has a
local copy

Changes made to this data by one thread are not visible to the
other threads

Values are undefined upon entry to and exit from the construct

The storage lasts until the block in which it is created exists

Diego Fabregat | OpenMP I 25 / 33

Parallel construct
firstprivate clause

Syntax: “firstprivate (item-list)”
Variables in the list are private

Variables are also initialized with the value the corresponding
original variable had when the construct was encountered

Diego Fabregat | OpenMP I 26 / 33

Parallel construct
default clause

Syntax: “default (shared | none)”

default(shared) causes all variables to be shared by default
default(none) requires that each variable must have its
data-sharing attribute explicitly listed in a data-sharing clause
Only one single default clause may be specified
It is considered a good programming practice to always use
default(none) to enforce the explicit listing of data-sharing
attributes

Diego Fabregat | OpenMP I 27 / 33

Exercise on data sharing: Think about it!

Given the following sample code

int A=1, B=1, C=1;
#pragma omp parallel private(B) firstprivate(C)
{

[...]
}

Are A, B, and C shared or private to each thread inside the parallel
region?
What are the initial values inside the region?
What are the values after the parallel region?

Diego Fabregat | OpenMP I 28 / 33

Parallel construct
reduction clause

Specifies a reduction operation
Syntax: “reduction (operator:list)”
Predefined operators: +, *, -, &, |, ,̂ &&, ||, max, min

list is a list of one or more variables

Example: #pragma omp parallel reduction(+:mysum)

Diego Fabregat | OpenMP I 29 / 33

Parallel construct
reduction clause

Each reduction operator has an initializer and a combiner.
For instance:

+. Initializer: 0; combiner: accum += var
*. Initializer: 1; combiner: accum *= var

For each list item, each thread gets a private copy
The private copy is initialized with the initializer value
At the end of the region, the original item is updated with the
values of the private copies using the combiner

Compare 03c.pi-omp-manual-red.c vs 03d.pi-omp-red.c

Diego Fabregat | OpenMP I 30 / 33

Parallel construct
User-defined reductions

We can also define our own reduction operators

The syntax is:
#pragma omp declare reduction (reduction-identifier :
typename : combiner) [initializer-clause]

reduction-identifier is the identifier we want to give to our
reduction. E.g., mymax

typename is the datatype to which the reduction applies. E.g., int

(continues in next slide ...)

Diego Fabregat | OpenMP I 31 / 33

Parallel construct
User-defined reductions

#pragma omp declare reduction (reduction-identifier :
typename : combiner) [initializer-clause]

combiner is an expression or function that specifies how to
combine the partial result of each thread with the global result. It
must be expressed in terms of the variables omp_in and omp_out.
E.g., omp_out = my_max_function(omp_out, omp_in), where

int my_max_function(int omp_out, int omp_in)
{

if (omp_out > omp_in)
return omp_out;

else
return omp_in;

}

is defined somewhere in our code.
Diego Fabregat | OpenMP I 32 / 33

Parallel construct
User-defined reductions

#pragma omp declare reduction (reduction-identifier :
typename : combiner) [initializer-clause]

initializer-clause is an expression or function that specifies how to
initialize the private copies of each thread. It must be expressed in
terms of the variable omp_priv. E.g., omp_priv = INT_MIN

See 05b.reduction-max-userdefined.c

Diego Fabregat | OpenMP I 33 / 33

	OpenMP
	Main ideas behind OpenMP
	First steps

