
Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 16/17

Communicators

MPI_Comm_split(
MPI_Comm comm, <- EVERYBODY involved!
int color, <- where do I belong
int key, <- for the new rank
MPI_Comm* newcomm)

MPI_Comm_dup
MPI_Comm_create
MPI_Comm_create_group
MPI_Group_incl
...
MPI_Group_union, MPI_Group_intersection

Paolo Bientinesi | MPI 2

Communicators

MPI_Comm_split(
MPI_Comm comm, <- EVERYBODY involved!
int color, <- where do I belong
int key, <- for the new rank
MPI_Comm* newcomm)

MPI_Comm_dup
MPI_Comm_create
MPI_Comm_create_group
MPI_Group_incl
...
MPI_Group_union, MPI_Group_intersection

Paolo Bientinesi | MPI 2

Topologies: Who are my neighbors?

Cartesian topology

MPI_Cart_create(
old_communicator,
ndims, <- number of dimensions of the grid
dims[], <- size of each dimension
periods[], <- periodic boundaries?
reorder,
*cart_communicator <- new communicator
)

Who am I?

MPI_Comm_rank(cart_COMM, &rank);
MPI_Cart_coords(cart_COMM, rank, ndims, coords[]);

My neighbors? No neighbor: MPI_PROC_NULL

MPI_Cart_shift(cart_COMM, direction, displacement, *rank_source, *rank_dest)

Other topologies: MPI_Graph_create

Paolo Bientinesi | MPI 3

Topologies: Who are my neighbors?

Cartesian topology

MPI_Cart_create(
old_communicator,
ndims, <- number of dimensions of the grid
dims[], <- size of each dimension
periods[], <- periodic boundaries?
reorder,
*cart_communicator <- new communicator
)

Who am I?

MPI_Comm_rank(cart_COMM, &rank);
MPI_Cart_coords(cart_COMM, rank, ndims, coords[]);

My neighbors? No neighbor: MPI_PROC_NULL

MPI_Cart_shift(cart_COMM, direction, displacement, *rank_source, *rank_dest)

Other topologies: MPI_Graph_create

Paolo Bientinesi | MPI 3

Topologies: Who are my neighbors?

Cartesian topology

MPI_Cart_create(
old_communicator,
ndims, <- number of dimensions of the grid
dims[], <- size of each dimension
periods[], <- periodic boundaries?
reorder,
*cart_communicator <- new communicator
)

Who am I?

MPI_Comm_rank(cart_COMM, &rank);
MPI_Cart_coords(cart_COMM, rank, ndims, coords[]);

My neighbors? No neighbor: MPI_PROC_NULL

MPI_Cart_shift(cart_COMM, direction, displacement, *rank_source, *rank_dest)

Other topologies: MPI_Graph_create

Paolo Bientinesi | MPI 3

Topologies: Who are my neighbors?

Cartesian topology

MPI_Cart_create(
old_communicator,
ndims, <- number of dimensions of the grid
dims[], <- size of each dimension
periods[], <- periodic boundaries?
reorder,
*cart_communicator <- new communicator
)

Who am I?

MPI_Comm_rank(cart_COMM, &rank);
MPI_Cart_coords(cart_COMM, rank, ndims, coords[]);

My neighbors? No neighbor: MPI_PROC_NULL

MPI_Cart_shift(cart_COMM, direction, displacement, *rank_source, *rank_dest)

Other topologies: MPI_Graph_create

Paolo Bientinesi | MPI 3

Patterns for parallel computing
MPI’s perspective

Pipeline
→ Ok, but what if the different stages differ significantly in cost?

Fork-join
→ Not really

Master-slave
→ Yes, absolutely

Paolo Bientinesi | MPI 4

Patterns for parallel computing
MPI’s perspective

Pipeline
→ Ok, but what if the different stages differ significantly in cost?

Fork-join
→ Not really

Master-slave
→ Yes, absolutely

Paolo Bientinesi | MPI 4

Patterns for parallel computing
MPI’s perspective

Pipeline
→ Ok, but what if the different stages differ significantly in cost?

Fork-join
→ Not really

Master-slave
→ Yes, absolutely

Paolo Bientinesi | MPI 4

Strong scalability: timings
n = 20.000

8 16 32 64 128 256
101

102

Number of nodes

Ti
m

e
in

 s
ec

on
ds

EleMRRR
ScaLAPACK’s DC
ScaLAPACK’s MRRR

244s

40s

125s

459s

70s

25s

DC: 98s
MRRR: 86s

Paolo Bientinesi | MPI 5

Strong scalability: efficiency
n = 20.000

8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

1.2

Number of nodes

Pa
ra

lle
l e

ffi
ci

en
cy

EleMRRR
ScaLAPACK’s DC
ScaLAPACK’s MRRR

Paolo Bientinesi | MPI 6

Weak scalability: timings
10.000 particles per rank

 0

 10

 20

 30

 40

 50

 60

 1024 2048 4096 8192 16384 32768 65536 131072 458752

T
im

e
/s

te
p
 [
m

s
]

#cores

DCM
DCM (serial interface)

PPPM (pure MPI)
PPPM (8 threads/rank)

Paolo Bientinesi | MPI 7

Back to Broadcast

Lower bound: log2(p)α+ nβ

MST algorithm: log2(p)α+ log2(p)nβ

Can we do better?

Idea for large n: first Scatter, then Allgather

Cost: log2(p)α+ p−1
p
nβ + log2(p)α+ p−1

p
nβ

≈ 2 log2(p)α+ 2nβ

Weight shifted from β to α; a factor of 2 from optimal

In practice: p = r × c ⇒ 2-stage algorithms

Paolo Bientinesi | MPI 8

Back to Broadcast

Lower bound: log2(p)α+ nβ

MST algorithm: log2(p)α+ log2(p)nβ

Can we do better?

Idea for large n: first Scatter, then Allgather

Cost: log2(p)α+ p−1
p
nβ + log2(p)α+ p−1

p
nβ

≈ 2 log2(p)α+ 2nβ

Weight shifted from β to α; a factor of 2 from optimal

In practice: p = r × c ⇒ 2-stage algorithms

Paolo Bientinesi | MPI 8

Back to Broadcast

Lower bound: log2(p)α+ nβ

MST algorithm: log2(p)α+ log2(p)nβ

Can we do better?

Idea for large n: first Scatter, then Allgather

Cost: log2(p)α+ p−1
p
nβ + log2(p)α+ p−1

p
nβ

≈ 2 log2(p)α+ 2nβ

Weight shifted from β to α; a factor of 2 from optimal

In practice: p = r × c ⇒ 2-stage algorithms

Paolo Bientinesi | MPI 8

Back to Broadcast

Lower bound: log2(p)α+ nβ

MST algorithm: log2(p)α+ log2(p)nβ

Can we do better?

Idea for large n: first Scatter, then Allgather

Cost: log2(p)α+ p−1
p
nβ + log2(p)α+ p−1

p
nβ

≈ 2 log2(p)α+ 2nβ

Weight shifted from β to α; a factor of 2 from optimal

In practice: p = r × c ⇒ 2-stage algorithms

Paolo Bientinesi | MPI 8

Proposed exercise: Allgather

Implement an Allgather as a sequence of broadcasts.

Time and compare your implementation with MPI’s Allgather;
test different message lengths and different numbers of ranks.

Paolo Bientinesi | MPI 9

Proposed exercise: master-slave

Rank root has access to an input device.
root performs an infinite loop, reading from the device, sending tasks to all other ranks, and
collecting (and printing) the results.
root does not execute tasks itself.

Simulate the input device with a text file, containing a long list of integers (one per row); each
integer denotes the “length” (size) of a chunk of input data.
The idea is that root either reads or creates such data, and sends it to one worker, for
processing.

The workers execute an infinite loop, waiting for an incoming chunk data, processing it, and
sending the result to root. (Alternatively, the results are handled by another designated
process dest).

Objective: minimize (eliminate) wait times.

Paolo Bientinesi | MPI 10

