
Parallel Programming
MPI – Part 1

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS17/18

Preliminaries

Distributed-memory architecture

Topologies

Back in the days: Node ≡ CPU ≡ process

Nowadays: NODE→ CPUs→ multi cores→ many processes

Assumption: fully connected topology

Assumption: each process can simultaneously send and receive

Assumption: messages in opposite directions do not cause a conflict

Paolo Bientinesi | MPI 2

Preliminaries

Distributed-memory architecture

Topologies

Back in the days: Node ≡ CPU ≡ process

Nowadays: NODE→ CPUs→ multi cores→ many processes

Assumption: fully connected topology

Assumption: each process can simultaneously send and receive

Assumption: messages in opposite directions do not cause a conflict

Paolo Bientinesi | MPI 2

Preliminaries

Distributed-memory architecture

Topologies

Back in the days: Node ≡ CPU ≡ process

Nowadays: NODE→ CPUs→ multi cores→ many processes

Assumption: fully connected topology

Assumption: each process can simultaneously send and receive

Assumption: messages in opposite directions do not cause a conflict

Paolo Bientinesi | MPI 2

Preliminaries

Distributed-memory architecture

Topologies

Back in the days: Node ≡ CPU ≡ process

Nowadays: NODE→ CPUs→ multi cores→ many processes

Assumption: fully connected topology

Assumption: each process can simultaneously send and receive

Assumption: messages in opposite directions do not cause a conflict

Paolo Bientinesi | MPI 2

Preliminaries

Distributed-memory architecture

Topologies

Back in the days: Node ≡ CPU ≡ process

Nowadays: NODE→ CPUs→ multi cores→ many processes

Assumption: fully connected topology

Assumption: each process can simultaneously send and receive

Assumption: messages in opposite directions do not cause a conflict

Paolo Bientinesi | MPI 2

Preliminaries

Distributed-memory architecture

Topologies

Back in the days: Node ≡ CPU ≡ process

Nowadays: NODE→ CPUs→ multi cores→ many processes

Assumption: fully connected topology

Assumption: each process can simultaneously send and receive

Assumption: messages in opposite directions do not cause a conflict

Paolo Bientinesi | MPI 2

What is “MPI”?

A library, not a language, not a program.

Paolo Bientinesi | MPI 3

"Minimal" MPI
MPI_Init(...) MPI Initialization

MPI_Comm_size(...) How many processes are there?

MPI_Comm_rank(...) What rank am I?

MPI_Send(...) Send data to another process

MPI_Recv(...) Receive data from another process

MPI_Finalize() MPI termination

Paolo Bientinesi | MPI 4

"Minimal" MPI
MPI_Init(...) MPI Initialization

MPI_Comm_size(...) How many processes are there?

MPI_Comm_rank(...) What rank am I?

MPI_Send(...) Send data to another process

MPI_Recv(...) Receive data from another process

MPI_Finalize() MPI termination

Paolo Bientinesi | MPI 4

"Minimal" MPI
MPI_Init(...) MPI Initialization

MPI_Comm_size(...) How many processes are there?

MPI_Comm_rank(...) What rank am I?

MPI_Send(...) Send data to another process

MPI_Recv(...) Receive data from another process

MPI_Finalize() MPI termination

Paolo Bientinesi | MPI 4

"Minimal" MPI
MPI_Init(...) MPI Initialization

MPI_Comm_size(...) How many processes are there?

MPI_Comm_rank(...) What rank am I?

MPI_Send(...) Send data to another process

MPI_Recv(...) Receive data from another process

MPI_Finalize() MPI termination

Paolo Bientinesi | MPI 4

"Minimal" MPI
MPI_Init(...) MPI Initialization

MPI_Comm_size(...) How many processes are there?

MPI_Comm_rank(...) What rank am I?

MPI_Send(...) Send data to another process

MPI_Recv(...) Receive data from another process

MPI_Finalize() MPI termination

Paolo Bientinesi | MPI 4

"Minimal" MPI
MPI_Init(...) MPI Initialization

MPI_Comm_size(...) How many processes are there?

MPI_Comm_rank(...) What rank am I?

MPI_Send(...) Send data to another process

MPI_Recv(...) Receive data from another process

MPI_Finalize() MPI termination

Paolo Bientinesi | MPI 4

What is “MPI”?

A library, not a language, not a program.

In fact, it’s the specification of a library, not the actual implementation.

MPI defines the interface, the functionality and the semantics of functions
that deliver a message passing mechanism.

Idea: clear separation between data communication and application.

Both open-source and proprietary implementations.

De-facto standard for distributed-memory parallelism.

www.mpi-forum.org

Paolo Bientinesi | MPI 5

www.mpi-forum.org

What is “MPI”?

A library, not a language, not a program.

In fact, it’s the specification of a library, not the actual implementation.

MPI defines the interface, the functionality and the semantics of functions
that deliver a message passing mechanism.

Idea: clear separation between data communication and application.

Both open-source and proprietary implementations.

De-facto standard for distributed-memory parallelism.

www.mpi-forum.org

Paolo Bientinesi | MPI 5

www.mpi-forum.org

What is “MPI”?

A library, not a language, not a program.

In fact, it’s the specification of a library, not the actual implementation.

MPI defines the interface, the functionality and the semantics of functions
that deliver a message passing mechanism.

Idea: clear separation between data communication and application.

Both open-source and proprietary implementations.

De-facto standard for distributed-memory parallelism.

www.mpi-forum.org

Paolo Bientinesi | MPI 5

www.mpi-forum.org

What is “MPI”?

A library, not a language, not a program.

In fact, it’s the specification of a library, not the actual implementation.

MPI defines the interface, the functionality and the semantics of functions
that deliver a message passing mechanism.

Idea: clear separation between data communication and application.

Both open-source and proprietary implementations.

De-facto standard for distributed-memory parallelism.

www.mpi-forum.org

Paolo Bientinesi | MPI 5

www.mpi-forum.org

int MPI_Init(...)

MPI_Init(&argc, &argv);

First MPI function

Args not specified; an implementation might use them

Query: MPI_Initialized

int MPI_Finalize()

Last MPI function

No arguments

Query: MPI_Finalized

Paolo Bientinesi | MPI 6

int MPI_Init(...)

MPI_Init(&argc, &argv);

First MPI function

Args not specified; an implementation might use them

Query: MPI_Initialized

int MPI_Finalize()

Last MPI function

No arguments

Query: MPI_Finalized

Paolo Bientinesi | MPI 6

int MPI_Comm_size(MPI_Comm comm, int *size)

Returns the number of processes in the communicator comm

Communicator: for now MPI_COMM_WORLD ≡ “everybody”

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Returns the rank of the calling process within the communicator

The rank is THE unique process identifier!

NOTE: each process (rank) can be multi-threaded

Paolo Bientinesi | MPI 7

int MPI_Comm_size(MPI_Comm comm, int *size)

Returns the number of processes in the communicator comm

Communicator: for now MPI_COMM_WORLD ≡ “everybody”

int MPI_Comm_rank(MPI_Comm comm, int *rank)

Returns the rank of the calling process within the communicator

The rank is THE unique process identifier!

NOTE: each process (rank) can be multi-threaded

Paolo Bientinesi | MPI 7

Send↔ Recv

Objective: data movement
MPI_Send and MPI_Recv must be matched
Blocking communication

Necessary information:

Send Recv

dest source

*buffer *target

size size

datatype datatype

tag tag

comm comm

Paolo Bientinesi | MPI 8

Send↔ Recv

Objective: data movement
MPI_Send and MPI_Recv must be matched
Blocking communication

Necessary information:

Send Recv

dest source

*buffer *target

size size

datatype datatype

tag tag

comm comm

Paolo Bientinesi | MPI 8

int MPI_Send(*buffer, count, datatype, dest, tag, comm)

*buffer is an address!

count is indispensible; so is datatype

dest is a rank (in comm)

tag is an integer

int MPI_Recv(*target, count, datatype, source, tag, comm, *status)

*target, datatype as for the Send

count is the size of target. Actual size: MPI_Get_count

source is either a rank (in comm) or MPI_ANY_SOURCE

tag is either an integer or MPI_ANY_TAG

*status on exit, contains info about the message

Paolo Bientinesi | MPI 9

int MPI_Send(*buffer, count, datatype, dest, tag, comm)

*buffer is an address!

count is indispensible; so is datatype

dest is a rank (in comm)

tag is an integer

int MPI_Recv(*target, count, datatype, source, tag, comm, *status)

*target, datatype as for the Send

count is the size of target. Actual size: MPI_Get_count

source is either a rank (in comm) or MPI_ANY_SOURCE

tag is either an integer or MPI_ANY_TAG

*status on exit, contains info about the message

Paolo Bientinesi | MPI 9

History

Before 1994

Before MPI, no standards

Different computers, different needs
⇒ many message passing environments

N-cube, P4, PICL, PVM, ISIS, Express, Zipcode;
Intel NX, IBM EUI, IBM CCL, . . .

A lot of duplication!

No portability whatsoever

Paolo Bientinesi | MPI 10

History

[1992] First “MPI Forum” meeting (Supercomputing ’92)

[1993–94] Seven “MPI Forum” meetings. Working on the MPI standard

[1994] Release of the first MPI standard: MPI-1

[1995] First implementations of MPI: MPICH, LAM MPI, . . .

[1998] Release of the second MPI standard: MPI-2
More than 100 new functions!

[2002] Complete implementations of MPI-2
Dynamic process management, 1-sided communication, MPI-I/O

[2012] Release of MPI-3
Non-blocking collectives, sparse collectives, . . .

Thanks to Jesper Larsson Träff (TU Wien).

Paolo Bientinesi | MPI 11

History

[1992] First “MPI Forum” meeting (Supercomputing ’92)

[1993–94] Seven “MPI Forum” meetings. Working on the MPI standard

[1994] Release of the first MPI standard: MPI-1

[1995] First implementations of MPI: MPICH, LAM MPI, . . .

[1998] Release of the second MPI standard: MPI-2
More than 100 new functions!

[2002] Complete implementations of MPI-2
Dynamic process management, 1-sided communication, MPI-I/O

[2012] Release of MPI-3
Non-blocking collectives, sparse collectives, . . .

Thanks to Jesper Larsson Träff (TU Wien).

Paolo Bientinesi | MPI 11

History

[1992] First “MPI Forum” meeting (Supercomputing ’92)

[1993–94] Seven “MPI Forum” meetings. Working on the MPI standard

[1994] Release of the first MPI standard: MPI-1

[1995] First implementations of MPI: MPICH, LAM MPI, . . .

[1998] Release of the second MPI standard: MPI-2
More than 100 new functions!

[2002] Complete implementations of MPI-2
Dynamic process management, 1-sided communication, MPI-I/O

[2012] Release of MPI-3
Non-blocking collectives, sparse collectives, . . .

Thanks to Jesper Larsson Träff (TU Wien).

Paolo Bientinesi | MPI 11

History

[1992] First “MPI Forum” meeting (Supercomputing ’92)

[1993–94] Seven “MPI Forum” meetings. Working on the MPI standard

[1994] Release of the first MPI standard: MPI-1

[1995] First implementations of MPI: MPICH, LAM MPI, . . .

[1998] Release of the second MPI standard: MPI-2
More than 100 new functions!

[2002] Complete implementations of MPI-2
Dynamic process management, 1-sided communication, MPI-I/O

[2012] Release of MPI-3
Non-blocking collectives, sparse collectives, . . .

Thanks to Jesper Larsson Träff (TU Wien).

Paolo Bientinesi | MPI 11

