
Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 17/18

Collective Communication: Lower Bounds
Cost of communication: α+ nβ

Cost of computation: γ #ops

α = “latency”, “startup” β = 1/“bandwidth”
n = size of the message γ = cost of 1 flop
p = # of processes

Primitive Latency Bandwidth Computation
Broadcast dlog2(p)eα nβ -
Reduce dlog2(p)eα nβ p−1

p nγ

Scatter dlog2(p)eα
p−1
p nβ -

Gather dlog2(p)eα
p−1
p nβ -

Allgather dlog2(p)eα
p−1
p nβ -

Reduce-Scatter dlog2(p)eα
p−1
p nβ p−1

p nγ

Paolo Bientinesi | MPI 2

Broadcast: The full array (size n) needs to leave the root.

Reduce: The arrays have to be combined.
Total number of ops = n ∗ (p− 1). If perfectly parallel: n ∗ (p− 1)/p.

Scatter: p− 1 chunks –each of size n/p– have to leave the root.

Gather: p− 1 chunks –each of size n/p– have to reach the root.

Allgather: Since every process ends up in the same condition as that of
a Gather, the cost is at least that of a Gather.

Reduce-scatter: Every process has to send at least p− 1 chunks –each
of size n/p– (there are the chunks whose reduction will end up in a
different process), and has to receive at least one chunk –of size n/p– (to
reduce the local chunk). Since data can be sent and received at the same
time, the lower bound is (p−1)n

p × β.

Paolo Bientinesi | MPI 3

Implementation of Bcast and Reduce

IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

How to map the idea to the specific topology?
ring: linear doubling
(2d) mesh: 1 dimension first, then another, then another ...
hypercube: obvious, same as mesh

Cost?
steps: log2 p

cost(step): α+ nβ

total time: log2(p)α+ log2(p)nβ lower bound: log2(p)α+ nβ

note: cost(p2) = 2 cost(p)

Reduce
Bcast in reverse; cost(computation) ?

Paolo Bientinesi | MPI 4

Implementation of Scatter (and Gather)

IDEA: MST again
At step i, only 1

2i -th of the message is sent

steps: log2 p

cost(stepi): α+ n
2i β

total time:
log2(p)∑
i=1

α+
n

2i
β = log2(p)α+

p− 1

p
nβ

lower bound: log2(p)α+ p−1
p nβ optimal!

Paolo Bientinesi | MPI 5

A different implementation of Bcast

IDEA: Scatter + cyclic algorithm (e.g., pass to the right)

Cost?

Paolo Bientinesi | MPI 6

Implementation of Allgather (and Reduce-scatter)
IDEA: “Recursive-doubling” (bidirectional exchange)
Recursive allgather of half data + exchange data between disjoint nodes.

Node0 Node1 Node2 Node3

v[0]
v[1]

v[2]
v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0]
v[1] v[1]

v[2] v[2]
v[3] v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0] v[0] v[0]
v[1] v[1] v[1] v[1]
v[2] v[2] v[2] v[2]
v[3] v[3] v[3] v[3]

steps: log2 p

cost(step−i): α+ n
2i
β

total time:
log2(p)∑
i=1

α+
n

2i
β = log2(p)α+

p− 1

p
nβ

lower bound: log2(p)α+ p−1
p
nβ

Paolo Bientinesi | MPI 7

Another implementation of Allgather

IDEA: Cyclic algorithm

Node0 Node1 Node2 Node3

v[0]
v[1]

v[2]
v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0]
v[1] v[1]

v[2] v[2]
v[3] v[3]

⇓
Node0 Node1 Node2 Node3

v[0] v[0] v[0]
v[1] v[1] v[1]

v[2] v[2] v[2]
v[3] v[3] v[3]

steps: p− 1

cost(stepi): α+ n
p
β

total time:
p−1∑
i=1

α+
n

p
β = (p− 1)α+

p− 1

p
nβ

lower bound: log2(p)α+ p−1
p
nβ

Paolo Bientinesi | MPI 8

