Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 17/18

Collective Communication: Lower Bounds

Cost of communication:	$\alpha + n\beta$
Cost of computation:	$\gamma \ \# \mathrm{ops}$
lpha = "latency", "startup" n = size of the message	eta= 1/"bandwidth" $\gamma=$ cost of 1 flop
p = # of processes	

Primitive	Latency	Bandwidth	Computation
Broadcast	$\lceil \log_2(p) \rceil \alpha$	neta	-
Reduce	$\lceil \log_2(p) \rceil \alpha$	neta	$\frac{p-1}{p}n\gamma$
Scatter	$\lceil \log_2(p) \rceil \alpha$	$\frac{p-1}{p}n\beta$	-
Gather	$\lceil \log_2(p) \rceil \alpha$	$\frac{p-1}{p}n\beta$	-
Allgather	$\lceil \log_2(p) \rceil \alpha$	$\frac{p-1}{p}n\beta$	-
Reduce-Scatter	$\lceil \log_2(p) \rceil \alpha$	$\frac{p-1}{p}n\beta$	$\frac{p-1}{p}n\gamma$

- Broadcast: The full array (size *n*) needs to leave the root.
- Reduce: The arrays have to be combined. Total number of ops = n * (p - 1). If perfectly parallel: n * (p - 1)/p.
- Scatter: p-1 chunks —each of size n/p— have to leave the root.
- Gather: p-1 chunks —each of size n/p— have to reach the root.
- Allgather: Since every process ends up in the same condition as that of a Gather, the cost is at least that of a Gather.
- Reduce-scatter: Every process has to send at least p-1 chunks —each of size n/p— (there are the chunks whose reduction will end up in a different process), and has to receive at least one chunk —of size n/p— (to reduce the local chunk). Since data can be sent and received at the same time, the lower bound is $\frac{(p-1)n}{p} \times \beta$.

Implementation of Bcast and Reduce

- IDEA: recursive doubling / "Minimum Spanning Tree" (MST) At each step, double the number of active processes.
- How to map the idea to the specific topology?
 - ring: linear doubling
 - (2d) mesh: 1 dimension first, then another, then another ...
 - hypercube: obvious, same as mesh
- Cost?
 - **# steps**: $\log_2 p$
 - cost(step): $\alpha + n\beta$
 - total time: $\log_2(p)\alpha + \log_2(p)n\beta$

lower bound: $\log_2(p)\alpha + n\beta$

- note: $cost(p^2) = 2 cost(p)$
- Reduce Bcast in reverse; cost(computation) ?

Implementation of Scatter (and Gather)

- IDEA: MST again At step *i*, only ¹/_{2ⁱ}-th of the message is sent
- # steps: $\log_2 p$
- cost(step_i): $\alpha + \frac{n}{2^i}\beta$

• total time:
$$\sum_{i=1}^{\log_2(p)} \alpha + \frac{n}{2^i}\beta = \log_2(p)\alpha + \frac{p-1}{p}n\beta$$

• lower bound: $\log_2(p)\alpha + \frac{p-1}{p}n\beta$ optimal!

A different implementation of Bcast

- IDEA: Scatter + cyclic algorithm (e.g., pass to the right)
- Cost?

Implementation of Allgather (and Reduce-scatter)

 IDEA: "Recursive-doubling" (bidirectional exchange) Recursive allgather of half data + exchange data between disjoint nodes.

	$Node_0$	Node ₁	$Node_2$	Node ₃
	v[0]	v[1]	v[2]	v[3]
		1	ŀ	
	$Node_0$	$Node_1$	$Node_2$	Node ₃
	v[0] v[1]	v[0] v[1]		
			v[2] v[3]	v[2] v[3]
↓				
	$Node_0$	$Node_1$	$Node_2$	Node ₃
	v[0]	v[0]	v[0]	v[0]
	v[1]	v[1]	v[1]	v[1]
	v[2]	v[2]	v[2]	v[2]
	v[3]	v[3]	v[3]	v[3]
Paolo Bientinesi MPI				

- # steps: $\log_2 p$
- cost(step_{-i}): $\alpha + \frac{n}{2^i}\beta$
- total time:

$$\sum_{i=1}^{\log_2(p)} \alpha + \frac{n}{2^i}\beta = \log_2(p)\alpha + \frac{p-1}{p}n\beta$$

• lower bound: $\log_2(p)\alpha + \frac{p-1}{p}n\beta$

Another implementation of Allgather

IDEA: Cyclic algorithm

$Node_0$	$Node_1$	$Node_2$	Node ₃	
v[0]	v[1]	v[2]	v[3]	
Node ₀	Node1	Node ₂	Node ₃	
v[0] v[3]	v[0] v[1]	v[1] v[2]	v[2] v[3]	
\downarrow				
$Node_0$	Node1	$Node_2$	Node ₃	
v[0]	v[0] v[1]	v[0] v[1]	v[1]	
v[2] v[3]	v[3]	v[2]	v[2] v[3]	

• # steps: p-1

• cost(step_i): $\alpha + \frac{n}{p}\beta$

$$\sum_{i=1}^{p-1} \alpha + \frac{n}{p}\beta = (p-1)\alpha + \frac{p-1}{p}n\beta$$

• lower bound: $\log_2(p)\alpha + \frac{p-1}{p}n\beta$