Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 17/18

RWTHAACHEN
UNIVERSITY

Collective Communication: Lower Bounds

Cost of communication: «+ nf

Cost of computation: ~ #ops
o = “latency”, “startup” B8 = 1/“bandwidth”
n = size of the message ~ = cost of 1 flop

p = # of processes

Primitive Latency Bandwidth Computation
Broadcast [logy(p) e np =
Reduce [logs(p)] np ijlnv
Scatter [logs(p)] p;—lnﬁ =
Gather [logs(p)] I%nﬁ =
Allgather [logs(p)]a p%lnﬂ =
Reduce-Scatter [log,y(p)]a %nﬁ pTTln’y

Paolo Bientinesi | MPI

e Broadcast: The full array (size n) needs to leave the root.

e Reduce: The arrays have to be combined.
Total number of ops = n x (p — 1). If perfectly parallel: n x (p — 1) /p.

e Scatter: p — 1 chunks —each of size n/p— have to leave the root.
e Gather: p — 1 chunks —each of size n/p— have to reach the root.

e Allgather: Since every process ends up in the same condition as that of
a Gather, the cost is at least that of a Gather.

e Reduce-scatter: Every process has to send at least p — 1 chunks —each
of size n/p— (there are the chunks whose reduction will end up in a
different process), and has to receive at least one chunk —of size n/p— (to
reduce the local chunk). Since data can be sent and received at the same
time, the lower bound is (p Un o 5.

Paolo Bientinesi | MPI 3

Implementation of Bcast and Reduce

e IDEA: recursive doubling / “Minimum Spanning Tree” (MST)
At each step, double the number of active processes.

e How to map the idea to the specific topology?

e ring: linear doubling
e (2d) mesh: 1 dimension first, then another, then another ...
e hypercube: obvious, same as mesh

e Cost?
o # steps: log, p

e cost(step): a+np

e total time: logy(p)a + log,(p)nf lower bound: log, (p)a + nfS
* note: cost(p?) = 2 cost(p)
e Reduce

Bcast in reverse; cost(computation) ?

Paolo Bientinesi | MPI

Implementation of Scatter (and Gather)

e IDEA: MST again
At step ¢, only %-th of the message is sent

e # steps:

e cost(step;):

e total time:

log, p
a+ 573
log, (p)

n
Z a+ 55 = log,(p)or +

i=1

p—1

np

e lower bound: log,(p)a + %nﬂ optimal!

Paolo Bientinesi

MPI

A different implementation of Bcast

e IDEA: Scatter + cyclic algorithm (e.g., pass to the right)

e Cost?

Paolo Bientinesi | MPI

Implementation of Allgather (and Reduce-scatter)

¢ IDEA: “Recursive-doubling” (bidirectional exchange)
Recursive allgather of half data + exchange data between disjoint nodes.

Nodeo | Node; | Node, | Nodes
v[0]
v[1]
v[2]
v[3]
il e # steps: log, p
Node, | Node; | Node, | Nodes e cost(step—i): a+ 38
v[0] v[0] e total time:
V[1] V[1] [] [] logs (p) n » 1
v[2 v[2 2 3=1 r--
val | i3] 2 ot gl =l T
Y * lower bound: log,(p)a + Z-1nf
Nodeo | Node; | Nodes | Nodes
v[0] v[0] v[0] v[0]
v[1] v[1] v[1] v[1]
v[2] v[2] v[2] v[2]
v[3] v[3] v[3] v[3]

Paolo Bientinesi

MPI

Another implementation of Allgather

e IDEA: Cyclic algorithm

Nodeo | Node; | Nodes | Nodes
v[0]
v[1]
v[2]
v[3]
4
Nodeo | Node; | Nodes | Nodes
v[0] v[0]
v[1] v[1]
v[2] v[2]
v[3] v[3]
4
Nodeo | Node; | Nodes | Nodes
v[0] v[0] v[0]
v[1] v[1] v[1]
v[2] v[2] v[2]
v[3] v[3] v[3]

Paolo Bientinesi

| MPI

e # steps: p—1
e cost(step;): a+ 3P
® total time:

= n -1
S+ 8= (p-1a+—ns
=1 p p

* lower bound: log,(p)a + 25tnf

