
Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 17/18

Scenario
Process Pi owns matrix Ai, with i = 0, . . . , p− 1.

Objective{
Even(i) : compute Ti := Ai +A(i+1) mod p

Odd(i) : compute Ti := Ai −A(i−1+p) mod p

Scenario
1D domain, logically split among p processes.

Objective
Run a finite difference scheme, e.g.,

u(xi) :=
u(xi−1)− 2u(xi) + u(xi+1)

h2

⇒ point-to-point communication

Paolo Bientinesi | MPI 2

Anatomy of MPI_Send and MPI_Recv

int MPI_Send(
*buffer, count, datatype, ← “data”
destination, tag, communicator ← “envelope”

);

int MPI_Recv(
*buffer, count, datatype, ← “data”
source, tag, commmunicator, ← “envelope”
*status

);

message = data + envelope (+ info)
matching envelopes⇒ data transfer

Note: Meanining of count in send 6= in recv

count in send = size of data; count in receive = size of buffer.

Paolo Bientinesi | MPI 3

Point-to-point communication

Send

MPI_Ssend

MPI_Send

MPI_Isend
...
MPI_Bsend

Receive

MPI_Recv

MPI_Irecv

Send+Receive

MPI_Sendrecv

MPI_Sendrecv_replace

Paolo Bientinesi | MPI 4

Send Modes

The stress is on the buffer being sent: “When I can I safely overwrite it?”

MPI_Ssend: The program execution is blocked until a matching receive is
posted. The buffer is usable as soon as the call completes.

MPI_Send: MPI attempts to copy the outgoing message onto a local
(hidden) buffer. If possible, the execution continues and the send buffer is
immediately usable, otherwise same as Ssend.

MPI_Isend: The execution continues Immediately. The send buffer
should not be accessed until the MPI_request allows it. To be used in
conjunction with MPI_Wait or MPI_Test∗.

∗: See also MPI_Waitany, MPI_Waitall, MPI_Waitsome, MPI_Testany, MPI_Testall, MPI_Testsome.

Note: Careful with multithreading!! Thread-safety guaranteed?

Paolo Bientinesi | MPI 5

Recv Modes

The stress is on the incoming buffer: “When I can I safely access it?”

MPI_Recv: The program execution is blocked until a matching send is
posted. The incoming buffer is usable as soon as the call completes.

MPI_Irecv: The execution continues Immediately. The incoming buffer
should not be modified until the MPI_request allows it. To be used in
conjunction with MPI_Wait or MPI_Test∗.

∗: See also MPI_Waitany, MPI_Waitall, MPI_Waitsome, MPI_Testany, MPI_Testall, MPI_Testsome.

Paolo Bientinesi | MPI 6

Request, Status

MPI_Status status;
MPI_Request requestS, requestR;

MPI_Isend(send, size, type, dest, tag, COMM, &requestS);
...
MPI_Recv (recv, size, type, root, tag, COMM, &status);
MPI_Irecv(recv, size, type, root, tag, COMM, &requestR);

int MPI_Wait(
MPI_Request *request,
MPI_Status *status

)

int MPI_Test(
MPI_Request *request,
int *flag,
MPI_Status *status

)

MPI_Waitany, MPI_Waitall, MPI_Waitsome, MPI_Testany, MPI_Testall, MPI_Testsome
In all cases, every receive has a corresponding status.

MPI_Status
status.MPI_SOURCE MPI_GET_COUNT(
status.MPI_TAG status, datatype, count
status.MPI_ERROR)

Paolo Bientinesi | MPI 7

MPI_Sendrecv

int MPI_Sendrecv(
*sendbuf, sendcount, sendtype,
dest, sendtag,

*recvbuf, recvcount, recvtype,
source, recvtag,
communicator, status

);

MPI_Sendrecv: Executes a blocking send and receive operation. Both send and
receive use the same communicator, but possibly different tags. The send buffer
and receive buffers must be disjoint, and may have different lengths and
datatypes.

MPI_Sendrecv_replace: Execute a blocking send and receive. The same buffer is
used both for the send and for the receive, so that the message sent is replaced
by the message received.

Paolo Bientinesi | MPI 8

Send Modes (2)

MPI_Bsend: “Buffered” send. The user must provide a buffer to copy the
outgoing message (MPI_Buffer_attach).

MPI_Ibsend: Non-blocking version of Bsend.
The sender should not modify the send buffer.

MPI_Rsend: “Ready” send. The corresponding receive must have been
already posted. Otherwise, error.

MPI_Irsend: Non-blocking version of Rsend.
The sender should not modify the send buffer.

MPI_Issend: Non-blocking synchronous send.
The sender should not modify the send buffer.

Paolo Bientinesi | MPI 9

Persistent communication
Optimization

while(1){
...
x = ...;
MPI_Send(&x, n, type, dest, tag, comm);
...

}

MPI_Send_init(..., request), MPI_Recv_init(..., request)

bind all the arguments of a send (receive), for later reuse

MPI_Start(request)

initiates the send (receive)

Paolo Bientinesi | MPI 10

