
Parallel Programming

Prof. Paolo Bientinesi

pauldj@aices.rwth-aachen.de

WS 17/18

Exercise

MPI_Irecv
MPI_Wait

== ??

MPI_Recv

== ??

MPI_Irecv
while(flag==0) MPI_Test

Paolo Bientinesi | MPI 2

Exercise

MPI_Irecv
MPI_Wait

== ??

MPI_Recv

== ??

MPI_Irecv
while(flag==0) MPI_Test

Paolo Bientinesi | MPI 2

Wildcards

Process i Process j

send(&a, ..., j, ...); recv(&b, ..., i, ...);

What are we doing?

b(j) := a(i) (PGAS: Partitioned Global Address Space Languages)

Hint: Mentally, associate a time diagram to the operation

Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

. . . but then, “from whom did I receive?”,
and most importantly, “what is the size of the message?”

MPI_Status (or MPI_STATUS_IGNORE)

Paolo Bientinesi | MPI 3

Wildcards

Process i Process j

send(&a, ..., j, ...); recv(&b, ..., i, ...);

What are we doing? b(j) := a(i) (PGAS: Partitioned Global Address Space Languages)

Hint: Mentally, associate a time diagram to the operation

Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

. . . but then, “from whom did I receive?”,
and most importantly, “what is the size of the message?”

MPI_Status (or MPI_STATUS_IGNORE)

Paolo Bientinesi | MPI 3

Wildcards

Process i Process j

send(&a, ..., j, ...); recv(&b, ..., i, ...);

What are we doing? b(j) := a(i) (PGAS: Partitioned Global Address Space Languages)

Hint: Mentally, associate a time diagram to the operation

Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

. . . but then, “from whom did I receive?”,
and most importantly, “what is the size of the message?”

MPI_Status (or MPI_STATUS_IGNORE)

Paolo Bientinesi | MPI 3

Wildcards

Process i Process j

send(&a, ..., j, ...); recv(&b, ..., i, ...);

What are we doing? b(j) := a(i) (PGAS: Partitioned Global Address Space Languages)

Hint: Mentally, associate a time diagram to the operation

Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

. . . but then, “from whom did I receive?”,
and most importantly, “what is the size of the message?”

MPI_Status (or MPI_STATUS_IGNORE)

Paolo Bientinesi | MPI 3

Wildcards

Process i Process j

send(&a, ..., j, ...); recv(&b, ..., i, ...);

What are we doing? b(j) := a(i) (PGAS: Partitioned Global Address Space Languages)

Hint: Mentally, associate a time diagram to the operation

Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

. . . but then, “from whom did I receive?”,
and most importantly, “what is the size of the message?”

MPI_Status (or MPI_STATUS_IGNORE)

Paolo Bientinesi | MPI 3

Wildcards

Process i Process j

send(&a, ..., j, ...); recv(&b, ..., i, ...);

What are we doing? b(j) := a(i) (PGAS: Partitioned Global Address Space Languages)

Hint: Mentally, associate a time diagram to the operation

Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

. . . but then, “from whom did I receive?”,
and most importantly, “what is the size of the message?”

MPI_Status (or MPI_STATUS_IGNORE)

Paolo Bientinesi | MPI 3

Matching datatypes?

Not really

But then . . .
Proc i: MPI_Send(&n, 1, MPI_INT, z, 111, comm);
Proc j: MPI_Send(&x, 1, MPI_DOUBLE, z, 111, comm);
Proc z: MPI_Recv(..., MPI_ANY_SOURCE, 111, comm, &status);

What does Proc z receive?

Solution: MPI_Probe, MPI_Iprobe

MPI_Probe(MPI_ANY_SOURCE, 111, comm, &status);

if(status.MPI_SOURCE == i)
MPI_Recv(..., MPI_INT, i, 111, comm, &status);

if(status.MPI_SOURCE == j)
MPI_Recv(..., MPI_DOUBLE, j, 111, comm, &status);

Paolo Bientinesi | MPI 4

Matching datatypes? Not really

But then . . .
Proc i: MPI_Send(&n, 1, MPI_INT, z, 111, comm);
Proc j: MPI_Send(&x, 1, MPI_DOUBLE, z, 111, comm);
Proc z: MPI_Recv(..., MPI_ANY_SOURCE, 111, comm, &status);

What does Proc z receive?

Solution: MPI_Probe, MPI_Iprobe

MPI_Probe(MPI_ANY_SOURCE, 111, comm, &status);

if(status.MPI_SOURCE == i)
MPI_Recv(..., MPI_INT, i, 111, comm, &status);

if(status.MPI_SOURCE == j)
MPI_Recv(..., MPI_DOUBLE, j, 111, comm, &status);

Paolo Bientinesi | MPI 4

Matching datatypes? Not really

But then . . .
Proc i: MPI_Send(&n, 1, MPI_INT, z, 111, comm);
Proc j: MPI_Send(&x, 1, MPI_DOUBLE, z, 111, comm);
Proc z: MPI_Recv(..., MPI_ANY_SOURCE, 111, comm, &status);

What does Proc z receive?

Solution: MPI_Probe, MPI_Iprobe

MPI_Probe(MPI_ANY_SOURCE, 111, comm, &status);

if(status.MPI_SOURCE == i)
MPI_Recv(..., MPI_INT, i, 111, comm, &status);

if(status.MPI_SOURCE == j)
MPI_Recv(..., MPI_DOUBLE, j, 111, comm, &status);

Paolo Bientinesi | MPI 4

Matching number of sends and receives?

Process i Process j

send(...,1, ..., j, ...);
send(...,1, ..., j, ...);

recv(..., 2, ..., i, ...);

Paolo Bientinesi | MPI 5

Matching number of sends and receives? yes

Process i Process j

send(...,1, ..., j, ...);
send(...,1, ..., j, ...);

recv(..., 2, ..., i, ...);

NOT valid!

Paolo Bientinesi | MPI 5

Recap: Deadlock

2+ processes want to exchange data

A closed chain of processes (cycle), each one waiting for another, is
formed.
⇒ BUG: deadlock

Example: All processes start with a blocking send or a blocking receive
Ssend, Send (in the worst case), Recv

Solution: BREAK SYMMETRY!
At the same time, careful not to serialize the code!

Approach: code, test and debug with Ssend; then replace with Send

Other solutions?
Non-blocking send (Isend)
Non-blocking receive (Irecv)
Simultaneous send-receive (Sendrecv)

Paolo Bientinesi | MPI 6

Recap: Deadlock
2+ processes want to exchange data

A closed chain of processes (cycle), each one waiting for another, is
formed.
⇒ BUG: deadlock

Example: All processes start with a blocking send or a blocking receive
Ssend, Send (in the worst case), Recv

Solution: BREAK SYMMETRY!
At the same time, careful not to serialize the code!

Approach: code, test and debug with Ssend; then replace with Send

Other solutions?
Non-blocking send (Isend)
Non-blocking receive (Irecv)
Simultaneous send-receive (Sendrecv)

Paolo Bientinesi | MPI 6

Recap: Deadlock
2+ processes want to exchange data

A closed chain of processes (cycle), each one waiting for another, is
formed.
⇒ BUG: deadlock

Example: All processes start with a blocking send or a blocking receive
Ssend, Send (in the worst case), Recv

Solution: BREAK SYMMETRY!
At the same time, careful not to serialize the code!

Approach: code, test and debug with Ssend; then replace with Send

Other solutions?
Non-blocking send (Isend)
Non-blocking receive (Irecv)
Simultaneous send-receive (Sendrecv)

Paolo Bientinesi | MPI 6

Recap: Deadlock
2+ processes want to exchange data

A closed chain of processes (cycle), each one waiting for another, is
formed.
⇒ BUG: deadlock

Example: All processes start with a blocking send or a blocking receive
Ssend, Send (in the worst case), Recv

Solution: BREAK SYMMETRY!
At the same time, careful not to serialize the code!

Approach: code, test and debug with Ssend; then replace with Send

Other solutions?

Non-blocking send (Isend)
Non-blocking receive (Irecv)
Simultaneous send-receive (Sendrecv)

Paolo Bientinesi | MPI 6

Recap: Deadlock
2+ processes want to exchange data

A closed chain of processes (cycle), each one waiting for another, is
formed.
⇒ BUG: deadlock

Example: All processes start with a blocking send or a blocking receive
Ssend, Send (in the worst case), Recv

Solution: BREAK SYMMETRY!
At the same time, careful not to serialize the code!

Approach: code, test and debug with Ssend; then replace with Send

Other solutions?
Non-blocking send (Isend)
Non-blocking receive (Irecv)
Simultaneous send-receive (Sendrecv)

Paolo Bientinesi | MPI 6

