
Autovectorization in LLVM

Christopher Czyba, Hermann Walth

July 21, 2014

1 / 15



Overview

1 Motivation

2 Overview of LLVM

3 Loop-vectorization in LLVM

Basic Flow of Loop Vectorization

Loop Legalizer - Requirements and Examples

2 / 15



Motivation - SSE and AVX - A short history overview

SIMD Streaming Extension and Advanced Vector eXtension are
SIMD extensions for the x86/x86 64 architecture.

Overview over the history

MMX - 64 bit MM-registers, for 64,32,16 and 8 bit integers

SSE - Adds 128 bit XMM-registers for floats

SSE2 - XMM registers may be used for integers and doubles

SSE3/4 - More operations like max/min, mostly for graphics

AVX - Adds 256 bit YMM-registers, only for floats and doubles

Analogous instructions exist for ARM, PPC and other
architectures. GPUs are based on the SIMD Model.

3 / 15



LLVM Compilation Flow

Source Code

Intermediate Language(.bc/.ll)

Optimized Intermediate Language(.bc/.ll)

Binary

Frontend (e.g. Clang)

opt → llvm-link → opt

llc → llvm-mc → linker

Figure: Basic LLVM Compilation Flow

4 / 15



LLVM Compilation Flow

Source Code

Intermediate Language(.bc/.ll)

Optimized Intermediate Language(.bc/.ll)

Binary

Frontend (e.g. Clang)

opt → llvm-link → opt

llc → llvm-mc → linker

In more detail

Figure: Basic LLVM Compilation Flow

4 / 15



Overview of opt

opt = collection of analyses and transformations, e.g.

Dead Store/Global/Argument/Code Elimination

Constant Calculation and Replacement

Loop Vectorization

-Ox option selects a (more or less) sane order of those

Often reruns analyses and transformations multiple times

Can be printed with -debug-pass=Arguments

Many have (implicit) prerequisites (i.e. loop vectorizer)

5 / 15



Overview of opt

opt = collection of analyses and transformations, e.g.

Dead Store/Global/Argument/Code Elimination

Constant Calculation and Replacement

Loop Vectorization

-Ox option selects a (more or less) sane order of those

Often reruns analyses and transformations multiple times

Can be printed with -debug-pass=Arguments

Many have (implicit) prerequisites (i.e. loop vectorizer)

5 / 15



Overview of opt

opt = collection of analyses and transformations, e.g.

Dead Store/Global/Argument/Code Elimination

Constant Calculation and Replacement

Loop Vectorization

-Ox option selects a (more or less) sane order of those

Often reruns analyses and transformations multiple times

Can be printed with -debug-pass=Arguments

Many have (implicit) prerequisites (i.e. loop vectorizer)

5 / 15



LLVM Intermediate Language (IL)

Primitive Types float i1 i32 i8*

Vector Types <N x T>

for vector length N, primitive type T

Instructions that work on primitive types

%x = add i32 %a, %b

also work on vectors

%y = add <4 x i32> %v1, %v2

Vector values are mapped to SIMD registers on target machine

6 / 15



Goals Loop Vectorization

Goals:

Unroll loops for less overhead

Use SIMD instructions to process multiple data at once

a1 := b1 � c1
...

an := bn � cn

SISD

⇒

a1
...
an

 :=

b1
...
bn

�
c1

...
cn


SIMD

Sometimes usage of multiple processors

Linearizing Control Flow (Also called flattening)

7 / 15



Basic flow of Loop Vectorization in LLVM

Loop Legalizer

Loop

Loop Cost Model

Inner Loop Vectorizer

Optimized LoopOriginal Loop

vectorizable

efficient

not vectorizable

inefficient

Figure: Basic Loop Vectorization Flow

8 / 15



Structural Vectorization of Loops

Loop
Header

Scalar Loop
Body

Exit Block

Figure: Original Loop

Vector
Bypass

Vector
Header

Vector
Loop
Body

Middle
Block

New Scalar
Header

Scalar Loop
Body

Exit Block

Figure: Vectorized Loop

9 / 15



Structural Vectorization of Loops

Loop
Header

Scalar Loop
Body

Exit Block

Figure: Original Loop

Vector
Bypass

Vector
Header

Vector
Loop
Body

Middle
Block

New Scalar
Header

Scalar Loop
Body

Exit Block

Figure: Vectorized Loop

9 / 15



Jobs of the Legalizer

Obvious:

Checks whether it is legal to vectorize the loop or not

Non-obvious:

Chooses vectorization factor (depends on SIMD instructions)

Identifies

Reduction Variables

Induction Variables

In short: Determines how to vectorize the loop

10 / 15



Jobs of the Legalizer

Obvious:

Checks whether it is legal to vectorize the loop or not

Non-obvious:

Chooses vectorization factor (depends on SIMD instructions)

Identifies

Reduction Variables

Induction Variables

In short: Determines how to vectorize the loop

10 / 15



Jobs of the Legalizer

Obvious:

Checks whether it is legal to vectorize the loop or not

Non-obvious:

Chooses vectorization factor (depends on SIMD instructions)

Identifies

Reduction Variables

Induction Variables

In short: Determines how to vectorize the loop

10 / 15



Requirements for applying loop-vectorization

Only vectorizes innermost loop (innermost-loop.c)

Strides of exactly 1 (non-one-strides.c)

IL needs to be optimized beforehand (needs-preoptimization.c)

Division within the loop (may trap, division-in-loop.c)

C++-class induction/reduction fails (IntegerWrapper.cpp)

11 / 15



Requirement - Single Backwards edge

i++
A[i ] = 1

x += B[i ]
i < n

Exit

false

false

true

true

Figure: Two Backward Edges, Loop of multiple-backward-edges.c

12 / 15



Requirement - Single Unique Exit

i++
A[i ] = 1

x += B[i ]
i < n

ExitExit2

false

false

true

true

Figure: Two distinct exit nodes, Loop of different-exit-blocks.c

13 / 15



Conclusion

Despite all this, LLVM is still a good choice for Loop Vectorization:

Figure: Comparison of vectorization performance for GCC, Clang and
Intel C Compiler

14 / 15



Sources

LLVM Source: LoopVectorize.cpp - See http:

//llvm.org/doxygen/LoopVectorize_8cpp_source.html

http://llvm.org/docs/Vectorizers.html

Code examples from https://gcc.gnu.org/projects/

tree-ssa/vectorization.html

15 / 15

http://llvm.org/doxygen/LoopVectorize_8cpp_source.html
http://llvm.org/doxygen/LoopVectorize_8cpp_source.html
http://llvm.org/docs/Vectorizers.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html

	Motivation
	Overview of LLVM
	Loop-vectorization in LLVM
	Basic Flow of Loop Vectorization
	Loop Legalizer - Requirements and Examples


