

Musical Composer Identification

Niko Abeler

June 22, 2015

The Problem History Identifiers Deep Neural Network Accuracy Conclusion References

The Problem

???

(ロ)、(型)、(E)、(E)、 E) のQの

・ロト ・団ト ・ヨト ・ヨー うへぐ

(ロ)、(型)、(E)、(E)、 E) のQの

The Problem	History	Identifiers	Deep Neural Network	Accuracy	Conclusion	References

History

- First system "as good as experts"
- 2001, Pollastri and Simoncelli⁵
- Hidden Markov Models for every composer
- Short sequences of relative pitch changes
- 42% Success Rate (Experts: 48%)

- Using features extracted from music sheets²
- Assumption: Every composer has a unique note distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Classical Machine Learning techniques:
 - Support Vector Machine
 - Naive Bayes
- $\sim 50\%$ Accuracy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- More sophisticated features
- Mostly extracted from music sheets
- Training of models:
 - Neural Networks¹³
 - Markov Chains⁴
 - n-grams
- \sim 60-80% Accuracy

The Problem History Identifiers Deep Neural Network Accuracy Conclusion References

Identifiers

Summation over notes

$$CP(n \mod (12) + 1) = \sum_{n \mod (12) \in M}^{1} 1$$

• Normalization as pieces have different lengths

$$N(i) = rac{CP(i)}{\max_{1 \le j \le 12} CP(j)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Ignores the key of the musical pieces
- Ignores tempo / note length
- Different use cases:
 - single global descriptor
 - fixed-length time windows
 - sliding windows
- several variations

The Problem	History	Identifiers	Deep Neural Network	Accuracy	Conclusion	References

・ロト・雪・・雪・・雪・・ 白・ ろくの

Mel Frequency Cepstral Coefficients (MFCC)

- Commonly used in speech recognition
- Robust against noise
- Takes human perception into account

- Compute the Fourier Transform of the audio signal
- Map the powers of Fourier Transform onto the Mel Scale and take the log

$$m = log(2595 \log_{10}(1 + \frac{f}{700}))$$

- Compute Discrete Cosine Transform (DCT) of the mel log powers
- The MFCCs are the amplitudes of the DCT
- Variant Mel-Phon Coefficient (MPC) does not apply DCT

The Problem History Identifiers **Deep Neural Network** Accuracy Conclusion References

Deep Neural Network

 The Problem
 History
 Identifiers
 Deep Neural Network
 Accuracy
 Conclusion
 References

 Audio Classical Composer Identification by Deep Neural Network
 Conclusion
 Network

• by Zhen Hu, Kun Fu and Changshui Zhang $(2013)^1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Construction of a 5-layer Deep Neural Network
- Works with audio clips
 - no prior cleaning/preparation process
- High success rates

The Problem	History	Identifiers	Deep Neural Network	Accuracy	Conclusion	References
Input						

- Recordings of different performances
- no prior denoising or selection
- separated into 30 second clips
- Per clip:
 - separation into 3 second fragments with 50% overlap

- Mel-Phon Coefficient (MPC) for every fragment
- 592 MPC as input for the Deep Neural Network

• Encoder maps input $x \in [0,1]^n$ onto representation $y \in [0,1]^m$

$$y = sigm(W \cdot x)$$

• Decoder maps y back onto $z \in [0,1]^n$

$$z = sigm(W^T \cdot y)$$

• The DA is trained to minimize the error

$$\min_{W} || sigm(W^T \cdot sigm(W \cdot x')) - x ||_2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- x' is a corrupted version of x
- The DA learns something underneath the original data

- Multiple Denoising Autoencoders (here 2)
- Trained in two steps:
- Train every layer separately
 - Input: output of previous layer
 - Target: clean data
- Fine-Tuning of the whole stack

 The Problem
 History
 Identifiers
 Deep Neural Network
 Accuracy
 Conclusion
 References

 Restricted Boltzmann Machine (RBM)

energy-based model

$$P(v,h) = \frac{1}{Z} \exp(h^T W v + b^T v + c^T h)$$

• (W: weights ; b,c: offsets ; h: hidden nodes ; v: visible nodes)

• maximize probability of training input V

$$\max_{W,b,c} \log P(V) = \max_{W,b,c} \sum_{v \in V} \log P(v)$$

- iterative learning algorithm
 - Gibbs sampling
 - Contrastive Divergence
 - Back Propagation

$$P(Y) = \frac{1}{1 + \exp(-(\beta_0 + x_i^T \beta))}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Scalar β and offset β_0
- Assigns a confidence value to every composer
- Composer with highest confidence is chosen

<ロト <回ト < 注ト < 注ト

æ

(日)、

æ

<ロト <回ト < 注ト < 注ト

æ

・ロト ・ 日 ・ ・ ヨ ・

∃ →

<ロト <回ト < 注ト < 注ト

æ

The Problem	History	Identifiers	Deep Neural Network	Accuracy	Conclusion	References

Accuracy

- 11 composers of classical music
- 360 clips à 30 seconds
 - 250 Training
 - 50 Validation
 - 60 Testing
- Clip of musical piece in training set ⇔ no clip of musical piece in test set

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Total accuracy: 76.26%¹

Composer	Accuracy	Composer	Accuracy	
Bach 93.10%		Haydn	40.00%	
Beethoven	63.33%	Mendelssohn	100.00%	
Brahms	75.51%	Mozart	74.58%	
Chopin	98.11%	Schubert	20.59%	
Dvorak	97.01%	Vivaldi	87.04%	
Handel	100.00%			

The Problem History Identifiers Deep Neural Network Accuracy **Conclusion** References

Conclusion

- Musical Composer Identification is solvable
- Error Rates still high
- Final evaluation of an expert still needed
- Some Pairings still hard to distinguish
- Only few methods working with audio files instead of music sheets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Problem	History	Identifiers	Deep Neural Network	Accuracy	Conclusion	References
Reference	ces I					

- Hu, Z., Fu, K., and Zhang, C. (2013). Audio artist identification by deep neural network. *CoRR*, abs/1301.3195.
- [2] Justin Lebar, Gary Chang, D. Y. (2008). Classifying musical scores by composer: A machine learning approach.
- [3] Kaliakatsos-papakostas, M. A., Epitropakis, M. G., and Vrahatis, M. N. (2010). Musical composer identification through probabilistic and feedforward neural networks.
- [4] Kaliakatsos-Papakostas, M. A., Epitropakis, M. G., and Vrahatis, M. N. (2011). Weighted markov chain model for musical composer identification. In *Applications of Evolutionary Computation*, pages 334–343. Springer.
- [5] Pollastri, E. and Simoncelli, G. (2001). Classification of melodies by composer with hidden markov models. In Web Delivering of Music, 2001. Proceedings. First International Conference on, pages 88–95. IEEE.