

Music Mood Classification - an SVM based approach

Sebastian Napiorkowski

Topics on Computer Music (Seminar Report) HPAC - RWTH - SS2015

Contents

- 1. Motivation
- 2. Quantification and Definition of Mood
- 3. How mood classification is done
- 4. Example: Mood and Theme Classification based on an Support Vector Machine approach

Motivation

- Imagine you could search songs based on the mood
- Create Playlists that follow a mood
- Create Playlists that follow a theme (e.g. party time)
- Users are already trying [1]:

Google-Suche

Auf gut Glück!

Contents

1. Motivation

2. Quantification and Definition of Mood

- 1. Perception and Definition
- 2. MIREX mood clusters
- 3. Russell/Thayer's Valence-Arousal model
- 3. How mood classification is done
- 4. Example: Mood and Theme Classification based on an Support Vector Machine approach

Perception and Definition

- Emotions can be [2]
 - **expressed** by music feelings that are "intrinsic" to a given track
 - induced by music feelings that the listener associates with a given track
- Music can have a [4]
 - Mood the state and/or quality of a particular feeling associated to the track (e.g. happy, sad, aggressive)
 - **Theme** refers to context or situations which fit best when listening to the track (e.g. party time, christmas, at the beach)

Perception and Definition

• Emotions can be [2]

we focus on this

expressed by music – feelings that are "intrinsic" to a given track

- induced by music feelings that the listener associates with a given track
- Music can have a [4]
 - Mood the state and/or quality of a particular feeling associated to the track (e.g. happy, sad, aggressive)
 - **Theme** refers to context or situations which fit best when listening to the track (e.g. party time, christmas, at the beach)

MIREX mood clusters

- MIREX (Music Information Retrieval Evaluation eXchange) (first mood task 2007)
- mutual exclusive clusters
- derived by performing clustering on a co-occurrence matrix of mood labels for popular music from "<u>AllMusic.com</u> Guide" [5]

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
passionate, rousing, confident, boisterous, rowdy	rollicking, cheerful, fun, sweet, amiable/ good natured	literate, poignant, wistful, bittersweet, autumnal, brooding	humorous, silly, campy, quirky, whimsical, witty, wry	aggressive, fiery, tense/ anxious, intense, volatile, visceral

Russell/Thayer's Valence-Arousal model

Contents

- 1. Motivation
- 2. Quantification and Definition of Mood

3. How mood classification is done

- 1. Content-based Audio Analysis
- 4. Example: Mood and Theme Classification based on an Support Vector Machine approach

How mood classification is done (or tried at least) [3]

- Contextual Text Information
 - mining web documents
 - social tags
 - Emotion recognition from lyrics
- Content-based Audio Analysis
- Hybrid Approaches

How mood classification is done (or tried at least) [3]

- Contextual Text Information
 - mining web documents
 - social tags
 - Emotion recognition from lyrics we focus on this

Content-based Audio Analysis

Hybrid Approaches

Content-based Audio Analysis

- much prior work in Music-IR: audio features
- overview of most common used acoustic features used for mood recognition:
- "blackbox toolset for audio classification"

Туре	Features		
Dynamics	RMS energy		
Timbre (tone color)	Mel-frequency cepstral coefficients (MFCCs), spectral shape, spectral contract		
Harmony	Roughness, harmonic changes, key clarity, maharanis		
Register	Chromagram, chroma centroid and deviation		
Rhythm	rhythm strength, regularity, tempo, beat histograms		
Articulation	Event density, attack slope, attack time		

Content-based Audio			
Analysis	Туре	Features	
"more or less AC power"	Dynamics	RMS energy	
"tune combination pleasent	Timbre (tone color)	Mel-frequency cepstral coefficients (MFCCs), spectral shape, spectral contract	
for the ear"	Harmony	Roughness, harmonic changes, key clarity, maharanis	
projected onto 12 bins	Register	Chromagram, chroma	
forming one octave	Rhythm	rhythm strength, regularity, tempo, beat histograms	
"time a tune gets to it's loudest part"	Articulation	Event density, attack slope, attack time	

Content-based Audio Analysis

figure taken from http://www.pampalk.at/ma/documentation.html

Contents

- 1. Motivation
- 2. Quantification and Definition of Mood
- 3. How mood classification is done
- 4. Example: Mood and Theme Classification based on an Support Vector Machine approach
 - 1. Datasets
 - 2. Audio Feature SV-Machine learning
 - 3. Social Tags Naive Bayes classifier

4. Example: Mood and Theme Classification based on an Support Vector Machine approach

based on:

"Music Mood and Theme Classification - a hybrid approach"

Kerstin Bischoff, Claudiu S. Firan, Raluca Paiu, Wolfgang Nejdl

L3S Research Center Appelstr. 4, Hannover, Germany Cyril Laurier, Mohamed Sordo

Music Technology Group Universitat Pompeu Fabra 4. Example: Mood and Theme Classification based on an Support Vector Machine approach

based on:

"Music Mood and Theme Classification - a hybrid approach"

worked on MIREX mood clusters [5] Kerstin Bischoff, Claudiu S. Firan, Raluca Paiu, Wolfgang Nejdl

L3S Research Center Appelstr. 4, Hannover, Germany Music Technology Group Universitat Pompeu Fabra

Datasets: The truth, the whole truth, and nothing but the truth

- Find a ground truth dataset for training
- "ground truth" refers to the accuracy of the training set
- <u>AllMusic.com</u> (1995), Data gets created by music experts therefore good ground truth corpus:
 - Found 178 different moods and 73 Themes
 - 5,770 Tracks with moods assigned

- 8,158 track-mood assignments (avg. 1.73 moods, max. 12)
- 1,218 track-theme assignments (avg. 1.21 themes, max. 6)

Dataset: Social Tags

- <u>Last.fm</u> (2002) popular UK-based Internet radio and music community website
- Obtain tags for tracks from <u>AllMusic.com</u>
- Not all 5,770 Tracks have user tags
- Dataset is reduced to 4,737 Tracks

Dataset: Social Tags

- <u>Last.fm</u> (2002) popular UK-based Internet radio and music community website
- Obtain tags for tracks from <u>AllMusic.com</u>
- Not all 5,770 Tracks have user tags
- Dataset is reduced to 4,737 Tracks

- We use the MIREX mood clusters
- five to seven <u>AllMusic.com</u> mood labels define together a MIREX mood cluster
- as mood clusters are mutual exclusive we restrict our dataset to tracks with 1-to-1 mood-track relations

therefore dataset is reduced to 1192 distinct tracks

- We use the MIREX mood clusters
- five to seven <u>AllMusic.com</u> mood labels define together a MIREX mood cluster
- as mood clusters are mutual exclusive we restrict our dataset to tracks with 1-to-1 mood-track relations

therefore dataset is reduced to 1192 distinct tracks

- To get an equal training set for the classifier, the cluster size is reduced to 200 per cluster
- 5 Clusters means
- 1000 tracks for machine learning

- To get an equal training set for the classifier, the cluster size is reduced to 200 per cluster
- 5 Clusters means
- 1000 tracks for machine learning

- To get an equal training set for the classifier, the cluster size is reduced to 200 per cluster
- 5 Clusters means
- 1000 tracks for machine learning

Support Vector Machine Learning Dataset 1000 Tracks classifiy 200ms frame-based extracted features

- timbral
- tonal

. . .

- rhythmic including MFCCs, BPM
- chroma features
- spectral centroid

23

Results and Evaluation

- audio features were classified by a SVM
- also social tags were used to classify a track
 - with a Naive Bayes classifier (calculating Likelihoods)
- Algorithm is the same as in an other paper submitted to MIREX, but the results differ as they obtained 60.5 % accuracy and here we obtained only...

Mood MIREX

Mood THAYER

Themes clustered

Classifier	Accuracy
SVM (audio)	0.450
NB (tags)	0.565
Combined	0.575

Classifier	Accuracy
SVM (audio)	0.517
NB (tags)	0.539
Combined	0.596

Classifier	Accuracy
SVM (audio)	0.527
NB (tags)	0.595
Combined	0.625

Evaluation

Mood MIREX		Mood Th	Mood THAYER		Themes clustered	
Classifier	Accuracy	Classifier	Accuracy		Classifier	Accuracy
SVM (audio)	0.450	SVM (audio)	0.517		SVM (audio)	0.527
NB (tags)	0.565	NB (tags)	0.539		NB (tags)	0.595
Combined	0.575	Combined	0.596		Combined	0.625

- · classifier relying only on audio features perform worse than pure tag based
- but combined: improve overall results
- · The used ground-truth set was not that good as expected
- possible improvements:
 - filter training and test instances using listeners (that focus on audio only)

Conclusion

- Emotions are fuzzy and it's not trivial to define them
- Machine learning highly depends on quality of training data
- It is hard to find a high quality ground truth dataset that is large enough
- since 2007 the results seem disillusioning: mood classification is "hard to do"
- 0.875 0.75 0.625 🔘 0.52007 2009 2011 2013 Best Mood **MIREX** year Classification Accuracy [6] 2014 0.6633 2013 0.6833 2012 0.6783 2011 0.6950 2010 0.6417 2009 0.6567 0.6367 2008 2007 0.6150

References

- 1. K. Bischoff, C. S. Firan, W. Nejdl, and R. Paiu: "Can all tags be used for search?," CIKM, pp. 193–202, 2008.
- 2. P. Juslin and P. Luakka, "Expression, perception, and induction of musical emotions: A review and questionnaire study of everyday listening," *Journal of New Music Research*, vol. 33, no. 3, p. 217, 2004.
- Kim, Youngmoo E., et al. "Music emotion recognition: A state of the art review." Proc. ISMIR. 2010.
- 4. Bischoff, Kerstin, et al. "Music Mood and Theme Classification-a Hybrid Approach." ISMIR. 2009.
- Downie, X. H. J. S., Cyril Laurier, and M. B. A. F. Ehmann. "The 2007 MIREX audio mood classification task: Lessons learned." ISMIR 2008: Proceedings of the 9th International Conference of Music Information Retrieval. Lulu. com, 2008.
- 6. <u>http://www.music-ir.org/mirex/wiki/MIREX_HOME</u>