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Introduction

Musical Composer Identification is a Music In-
formation Retrieval task. Based on music sheets
or recordings the composer of a musical piece has
to be identified. The musical piece of question
is unknown and the decision has to be based on
previous work of the composer.

Most approaches are constructed for classical
music and the amount of composers considered
differs between 4 and 12. A variations of the
problem is the decision between to composers,
instead of of arbitrary many.

History

The Musical Composer Identification is com-
monly solved with machine learning techniques
operating on features extracted from music
sheets. A variety of techniques and features
have been tested. The most successful ap-
proaches use Markov Models[1] or Neural
Networks [2] and operate on discrete represen-
tations (MIDI or music sheets).

One of the first approaches to solve the
Composer Identification was published by Pol-
lastri and Simoncelli [3] in 2001. The described
technique reached an accuracy of 42% but
only considered 4 composers of classical music.
Experts challenged with the same task reached
an accuracy of 48%. Hidden Markov Models
operating on relative pitch changes were created
and trained for every composer.
Several approaches followed, working with a
similar assumption; the author of a music piece
can be identified by the note distribution. The

presented techniques mainly differ in the choice
of descriptors and machine learning structures
used for evaluation. Common techniques were
Naive Bayes and Support Vector Machines
[4]. The descriptors were extracted from music
sheets or discrete representations (e.g. MIDI,
**kern).
Maximos A. Kaliakatsos-Papakostas et al.
published two prominent approaches in 2010
and 2011. Currently dominant approaches rely
on Hidden Markov Models or Neural Networks
to evaluate the extracted features. The first
approach[2] uses Feedforward Neural Networks
(FNN) operating with Dodecaphonic Trace
Vector measures the pitch distribution. The
second paper[1] uses Weighted Markov Chain
Models to distinguish between two composers.
Both techniques use discrete representations
and mainly focus on the pitch of notes.

Identifiers

The accuracy of an approach to solve the Mu-
sical Composer Identification heavily relies on
the chosen identifier. Most identifiers are derived
from music sheets and measure the note distri-
bution of a song. An example for such identifiers
is the Pitch Class Profile, which focuses on the
pitch of notes while ignoring other properties.
Approaches relying on audio signals generally
use identifiers derived from the frequency spec-
trum of the signal. A common example is Mel
Frequency Cepstral Coefficients (MFCC), which
are used for speech recognition but gets more
popular in Music Information Retrieval.
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Pitch Class Profile

The Pitch Class Profile (PCP) [2] is computed
from music sheets or discrete representations of
music and captures the commonness of notes.
Notes are simplified to their pitch and normal-
ized, meaning the there is no differentiation
between notes in different octaves. PCP is a
normalized version of the Chroma Profile.
The Chroma Profile CP =
(CP (1), CP (2), ..., CP (12)) is 12-dimensional
vector which counts the appearances of notes,
in a musical piece M . CP (n mod (12) + 1)
(1) is the summation of all notes at position n
in the corresponding octave, e.g CP (1) is the
summation of all Cs.

CP (n mod (12) + 1) =
1∑

n mod (12)∈M

1 (1)

As musical pieces have different lengths, a nor-
malization is applied(2), by dividing the CP by
the most common note. The normalization is
applied to receive a comparable representation.

PCP (i) =
CP (i)

max1≤j≤12CP (j)
(2)

The Pitch Class Profile can be used as a global
descriptor or as a local descriptor for a section
of a song. When used as a global descriptor,
the evolution of a musical piece is ignored and
the song is reduced to its sole note distribution.
More details are captured when using a fixed
time windows approach. The musical piece
is separated into windows of equal size and
the PCP is calculated for each window. The
resulting feature vector describes the evolution
of the song. A sliding window approach captures
even more information. A window with fixed
size is slid above the music sheet and the PCP
is calculated at each position.
PCP discards several properties that can be
derived from music sheets. The pitch of the
song is lost, as all notes are normalized to one
octave. As the length of a note does not change
its contribution to the PCP, the tempo and

rhythm are lost. When used in a sliding window
fashion the PCP preserves the melody.

Mel Frequency Cepstral Coefficients

The Mel Frequency Cepstral Coefficients
(MFCC) were developed in 2000[5] and are
commonly used in speech recognition tasks,
but are getting more popular for musical in-
formation retrieval tasks. By integrating the
mel scale, MFCC takes the human perception
into account. MFCC is relatively robust, but
behaves poorly in the presence of additive noise.
MFCCs are commonly computed for short ( 3
seconds ) audio fragments. The Fourier series
of the signal is calculated and mapped to the
log mel scale(3), which describes the human
perception of a tone, based on its frequency.

m = log(2595 log10(1 +
f

700
)) (3)

The MFCCs are obtained by forming the Dis-
crete Cosine Transform of the mel log powers.
A variant of Mel Frequency Cepstral Coefficients
are the Mel Phone Coefficients, where the the
Discrete Cosine Transform is not applied.

. . .

Deep Neural Network

Zhen Hu et al.[6] proposed the usage of a Deep
Neural Network to solve the Musical Composer
Identification. Their approach describes a 5-
layer Deep Neural Network (DNN) operating on
30 second long audio clips. Mel Phon Coeffi-
cients are extracted from the input signal and
processed by Denoising Autoencoders. The re-
fined features are evaluated by two Restricted
Boltzmann Machines and mapped to a composer
by a logistic regression.
Although the approach works with potentially
noisy data, its accuracy is comparable to recent
techniques working on music sheets.
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Input

The Deep Neural Network operates on 30 second
long audio clips. The input clip is separated into
3 seconds fragments with an overlay of 50%. For
every fragment the MPC is computed, resulting
592 coefficients used in the next layer.

Denoising Autoencoder

As the DNN operates with recordings of different
quality and properties, a denoising is necessary
to create a robust algorithm. This is achieved by
two Denoising Autoencoders. Denoising Autoen-
coders (DA) were proposed by Pascal Vincent et
al. [7] in 2008. They inputs to intermediate rep-
resentations for neural networks and are robust
to partial corruption.

A Denoising Autoencoder maps the input x to a
hidden reprenstation y with trained weights W
and offsets b (5). The hidden representation is
mapped to the output z (6). Mapping to hidden
representation and output are done in similiar
fashion. The input is weighted and an offset is
applied and the sigmoid function is applied to
every vector entry (4). The sigmoid function can
be replaced by other non-linear functions.

sgm(x) =
1

1 + e−x

sgm((x0, ..., xn)) = (sgm(x0), ..., sgm(xn)) (4)

y(x) = sgm(Wx + b) (5)

z(y) = sgm(W T y + b′) (6)

The DA is trained to restore corrupted input vec-
tors. For the training a corrupted version of the
training set is created by setting some entries to
zero. Weights and offset are chosen to minimize
the error between the restored and original vec-
tors (7).

v0 v1 v2

h0 h1 h2 h3 h4

Figure 1: Graph describing a RBM with three
visible and 5 hidden nodes

min
W
||sigm(W T · sigm(W · x′))− x||2 (7)

Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBM) are an
energy-based models. A RBM consist of hidden
and visible nodes as depicted in 1. The energy
of a RBM is described by a linear equation (8)
with weights W and offsets b and c. The weights
W are depicted by the edges in 1. Visible nodes
serve as input nodes, while the hidden nodes con-
tain the output.

E(v, h) = −hTWv − bT v − cTh (8)

In the training of a RBM weights and offsets
are chosen to maximize the probability(9) of the
training set V .

P (V ) =
∏
v∈V

p(v) (9)

For given input v0, ..., vn the hidden nodes
h0, ..., hm are chosen to minimize the probability
p(v, h) 10, where Z is a normalizing factor. The
evaluation of the RBM is typically preformed by
Gibbs Sampling[8].

p(v, h) =
e−E(v,h)

Z
(10)

Accuracy

The Deep Neural Network was trained with
250 clips 30 seconds. The clips were randomly
picked from different recordings. 50 clips
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Composer Accuracy Composer Accuracy

Bach 93.10% Haydn 40.00%

Beethoven 63.33% Mendelssohn 100.00%

Brahms 75.51% Mozart 74.58%

Chopin 98.11% Schubert 20.59%

Dvorak 97.01% Vivaldi 87.04%

Handel 100.00%

Table 1: Accuracy for each considered composer

served as a validation set and the test set was
composed of 60 clips. The choice for clips in
the training set was restricted. If a clip of a
musical piece was present in the training set,
no clip of this piece could be present in the
test set. This restriction avoids learning some-
thing about specific musical pieces or recordings.

The approach reaches an overall accuracy
of 76.26%, but differs significant between com-
posers, as shown in table 1. While the overall
accuracy is high the approach particularly
struggles with Haydn and Schubert. The paper
gives no identification for the bad performance.
It might be result of insufficient training data
for the composers or a high similarity between
Schubert, Haydn and other composers.

Other approaches observed similar behavior,
where two composers showed a high similarity.
[2] for example struggles with the differentia-
tion between Haydn and Mozart. This could be
an explanation for the poor performance of the
Deep Neural Network for Haydn, as Mozart also
lays below the average accuracy.

Conclusion

The Musical Composer Identification is still a
hard problem, although the accuracy rises and
an overall improvement and be observed. Recent
approaches reach an accuracy between 60% and
80%, raising the need for further assessment of
results of experts. Most techniques are operating
on music sheets, which lays in the nature of the
problem, as it is mostly about classical music.
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