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Automatic Mixing

Introduction

Problem

Given a collection of songs and an input song, find

the most fitting follow-up song

the most fitting transitioning

Main issues:

Subjective measure: What is the most fitting transition?

Humans require skill and experience to mix

Machine interpretation of a song

Different tempi
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Automatic Mixing

Related Work

Related Work

Automatic mixing (2003) [2]:
Supervised learning
Learn the preference of song transitions of a human

Music mashups (2008) [8]:
Create a song by fusing multiple songs

Fully automatic mixing (2009) [5]:
Transition between any two songs
Use tempo adjustment techniques

Vocal timbre analysis (2014) [6]:
Identify a singer based on patterns in audio signal
Representation of a song using words

Topic-based mixing (2015) [3]:
Transition to the most similar songs in a dataset
Attempts to find a meaning in a song
Focus of this talk

Miguel Graça (RWTH Aachen) Topics in CM June 17, 2016 4 / 20



Automatic Mixing

Related Work

Related Work

Automatic mixing (2003) [2]:
Supervised learning
Learn the preference of song transitions of a human

Music mashups (2008) [8]:
Create a song by fusing multiple songs

Fully automatic mixing (2009) [5]:
Transition between any two songs
Use tempo adjustment techniques

Vocal timbre analysis (2014) [6]:
Identify a singer based on patterns in audio signal
Representation of a song using words

Topic-based mixing (2015) [3]:
Transition to the most similar songs in a dataset
Attempts to find a meaning in a song
Focus of this talk

Miguel Graça (RWTH Aachen) Topics in CM June 17, 2016 4 / 20



Automatic Mixing

Related Work

Related Work

Automatic mixing (2003) [2]:
Supervised learning
Learn the preference of song transitions of a human

Music mashups (2008) [8]:
Create a song by fusing multiple songs

Fully automatic mixing (2009) [5]:
Transition between any two songs
Use tempo adjustment techniques

Vocal timbre analysis (2014) [6]:
Identify a singer based on patterns in audio signal
Representation of a song using words

Topic-based mixing (2015) [3]:
Transition to the most similar songs in a dataset
Attempts to find a meaning in a song
Focus of this talk

Miguel Graça (RWTH Aachen) Topics in CM June 17, 2016 4 / 20



Automatic Mixing

Related Work

Related Work

Automatic mixing (2003) [2]:
Supervised learning
Learn the preference of song transitions of a human

Music mashups (2008) [8]:
Create a song by fusing multiple songs

Fully automatic mixing (2009) [5]:
Transition between any two songs
Use tempo adjustment techniques

Vocal timbre analysis (2014) [6]:
Identify a singer based on patterns in audio signal
Representation of a song using words

Topic-based mixing (2015) [3]:
Transition to the most similar songs in a dataset
Attempts to find a meaning in a song
Focus of this talk

Miguel Graça (RWTH Aachen) Topics in CM June 17, 2016 4 / 20



Automatic Mixing

Related Work

Related Work

Automatic mixing (2003) [2]:
Supervised learning
Learn the preference of song transitions of a human

Music mashups (2008) [8]:
Create a song by fusing multiple songs

Fully automatic mixing (2009) [5]:
Transition between any two songs
Use tempo adjustment techniques

Vocal timbre analysis (2014) [6]:
Identify a singer based on patterns in audio signal
Representation of a song using words

Topic-based mixing (2015) [3]:
Transition to the most similar songs in a dataset
Attempts to find a meaning in a song
Focus of this talk

Miguel Graça (RWTH Aachen) Topics in CM June 17, 2016 4 / 20



Automatic Mixing

Technical Approach

Technical Approach

Idea

Consider similar segments of songs instead of songs for transitions

Determine similarity of segments:

Beat similarity: How similar are the beats?

Topic similarity: Difference between the notes captured
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Automatic Mixing

Beat Similarity

Beat Similarity

Motivation

Beat is given by percussion instruments

Tempo is linked to beat

Assumption: Similar songs have similar beats

Idea

Consider two segments i and j :

Extract the low-frequency signal using a low-pass filter

Calculate the distance between each peak

Compare the distances of the peaks of each segment
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Automatic Mixing

Beat Similarity

Figure: Audio signal after a low-pass filter of 500Hz.
Source: ”Asche zu Asche - Rammstein”

Amplitude peak distances Dpeak ∈ RN−1 are determined by:

Highest amplitude within a time-frame
N peaks are captured

Similarity measure Sbeat of fragments i and j :

Sbeat(i , j) =
1∑N−1

k=1 |D i
peak,k − D j

peak,k |+ 1
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Automatic Mixing

Topic Similarity

Topic Similarity

Motivation

Both music segments should have similar

(i) musical messages

(ii) notes played

Idea

Interpret songs as word-documents:

Words describe the topics of a song

Determine similarity based on a topic distribution

Possible to apply methods from natural language processing

Problem: How does one represent a song as a document?
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Automatic Mixing

Topic Similarity

Feature Extraction

Pre-processing of the audio signal:

Capture note information within a time-frame

Extract 12-element vectors (ChromaVector)

Each entry is the intensity of a pitch in {C ,C#, . . . ,B}

ChromaWord [4] extraction:

Ignore notes which are not part of 70% total power → noise

The 4 strongest pitches represent a word

Words can have only 1, 2, 3 pitches
0 words corresponds to silence
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Automatic Mixing

Topic Similarity

Feature Extraction

Figure: ChromaVector decomposition. Source [4]
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Automatic Mixing

Topic Similarity

Latent Dirichlet Allocation

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [1]:

Latent: Assumption of hidden states (topics)

Dirichlet: Usage of the Dirichlet distribution

Allocation: Assignment of hidden states to observable events

Probabilistic modelling of topics:

Each segment is assigned a probability to be of a certain topic

Multiple topics are possible

Similarity measure → compare topic distributions
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Automatic Mixing

Topic Similarity

Latent Dirichlet Allocation

Similarity measure Stopic(i , j) for segments i , j :

Stopic(i , j) =
1∑K

k=1 |fi ,k − fj ,k |+ 1

fi ,k probability of k-th topic for segment i

Figure: Fictional 3-topic distribution for three segments

First segment is more similar to the second than the third
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Automatic Mixing

Topic Similarity

Latent Dirichlet Allocation

Similarity Measure

Overall similarity S of segments i and j given by:

S(i , j) =
Stopic(i , j) + Sbeat(i , j)

2

Perform transitions using:

The most similar song segment

Volume cross-fading
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Automatic Mixing

Evaluation

Experimental Setup

Compare with state-of-the-art features that are applied with LDA:

Mel Frequency Cepstral Coefficient (MFCC)

ChromaVector

ChromaWord

First two methods use k-means cluster means as words [6]

Main question: Which representation better captures similarity?

Setup:

50 rock, pop and dance songs as a dataset

2192 5s fragments in total

100 latent topics were assumed

No beat similarity is taken into account
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Automatic Mixing

Evaluation

Results

Evaluation

Pair-wise comparison of fragment similarity

Three segment pairs were chosen per feature comparison

Evaluation performed with 8 human subjects

MFCC ChromaVector ChromaWord

MFCC - Worse Worse
ChromaVector Better - Worse
ChromaWord Better Better -

Table: Empirical results for feature performance.
Row-wise comparison with each column.
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Automatic Mixing

Evaluation

Audio Examples

Carnival of Hono & Mori - Sekai No Owari
↓

Get Lucky - Daft Punk

Robot Rock - Daft Punk
↓

Y.M.C.A. - The Village People

Clips are credited to Tatsunori Hirai of Waseda University, Tokyo
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Automatic Mixing

Conclusion

Conclusion

A work was presented that

automates song transitioning within a collection of songs

applies beat similarity to ensure smooth transitions

estimates similarity of song segments based on latent topics

introduces a novel feature that represents topics effectively

Points of improvement:

Non-trained songs cannot be evaluated with LDA

ChromaWord information is limited to 12 pitches

Take lyrics into consideration

Tempo adjustment during transitions (see technique in [5])
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Automatic Mixing

Appendix

Feature Extraction

ChromaVector extraction:

Audio signal → 12-element vector

Each entry is a musical note, i.e {C ,C#, . . . ,B}
200ms window moving each 10ms

ChromaWord extraction:

The 4 strongest pitches represent a word

Words can have only 1, 2, 3 pitches
0 words corresponds to silence

Ignore notes which are not part of 70% total power → noise

10ms window → 20 words per ChromaVector
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Automatic Mixing

Appendix

Notation

sM1 : song segments with M ∈ N
wm,N
m,1 : words with N ∈ N of segment sm

tK1 : topics with K ∈ N
θK1 ∼ Dirichlet(αK

1 ) with αk ∈ R>0

Dirichlet distribution parameters

βK1 with βk ∈ [0, 1]|V |: Probabilities of each word being
assigned the topic tk

αK
1 βK1

θ

M

N
t w

Figure: Variable hierarchy in
latent dirichlet allocation.
Source: [1]
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Appendix

Model

Joint model for segment sm conditioned on parameters αK
1 , β

K
1 :

p(θm, z
K
1 ,w

m,N
m,1 |α

K
1 , β

K
1 ) =pDir(θm|αK

1 )

·
N∏

n=1

pMultinomial(zn|θm, 1) · p(wm,n|zn, βK1 )

(1)

Note that the multinomial distribution uses 1 trial

Training:

αK
1 and βK1 are the free parameters

Variational expectation maximization [1]

The probability of a topic tk of a song segment sm is given by θm,k
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Appendix

Generative process

Word generation is performed for each segment sm as in Eq. 1:

(i) Choose topic weights θm ∼ Dirichlet(α)

(ii) For each word wm,n:

(i) Assign a topic tm,n,k ∼ Multinomial(θm, 1)
(ii) Choose word wm,n ∼ Multinomial(βk , 1)

Generative process:

Samples can be generated by random processes

Hidden variables are deduced by the following:

p(θm, z
K
1 |w

m,N
m,1 , α

K
1 , β

K
1 ) =

p(θm, z
K
1 ,w

m,N
m,1 |αK

1 , β
K
1 )

p(wm,N
m,1 |αK

1 , β
K
1 )

(2)
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Appendix

Mel Frequency Cepstral Coefficients (MFCCs)

Motivation

Similar sounds should have similar
features

Noise suppression

Emphasis of low-frequency differences

Feature vector x ∈ RN :

N ∈ [16, 50]

Used in:

Automatic speech recognition

Music information retrieval
Figure: MFCC extraction
process. Source: [7]
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Appendix

Approach of Nakano et al. [6]

Word representation

Consider features in RN

Perform K -means clustering and assign each feature to a
cluster

Words wK
1 are represented by one-hot encoded vectors

A feature x ∈ RN is assigned a word by xk ∈ {0, 1}K with:

xk,i =

{
1 i = k

0 otherwise,

with k being the index of the nearest cluster mean

Assign words to features in a continuous space
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