
A Short Introduction to Audio Fingerprinting with a Focus on

Shazam

MUS-17

Simon Froitzheim

July 5, 2017

Introduction

Audio fingerprinting is the process of encoding a
(potentially) unlabeled piece of audio in any for-
mat (called the input file) into a so-called audio
fingerprint. It is usually required for this pro-
cess to work in a compact, discriminative, robust
and efficient way, such that the resulting finger-
print can be easily stored, indexed and compared
with other fingerprints. The most important ap-
plications for audio fingerprinting are content-
based audio identification (CBID), content-based
integrity verification (CBV) and watermarking
support [1]:

On the one hand, content-based audio identifi-
cation, which also forms the focus of this re-
port, describes the action of identifying audio
tracks with missing metadata, solely based on
the content of the files themselves: This is usu-
ally achieved by computing a fingerprint for ev-
ery known audio piece beforehand, resulting in a
fingerprint database with the related metadata;
then, when confronted with an unlabeled input
file, the corresponding fingerprint is computed
and subsequently matched against the finger-
print database, linking it to the formerly missing
metadata in case of a match with the database.

Content-based integrity verification on the other
hand aims for an evaluation of the integrity of an
audio piece, i.e. CBV could check among other
integrity abnormalities for potential storage er-
rors, transmission errors and quality fluctuations
(possibly due to noise) of the given audio file with

respect to a known template file that is consid-
ered to be an optimum quality version of the
audio file that is to analyze.

Digital watermarking uses watermarking signals
to identify ownership of copyright. This is real-
ized by embedding additional data that is diffi-
cult to remove into the input file. Audio finger-
printing can then be used to find a fitting water-
marking signal and embedding position [2].

The aim of this paper is to give an orientation
about the challenges of audio fingerprinting and
state-of-the-art techniques and to additionally
briefly present a famous fingerprinting algorithm
that is used by the popular app Shazam1.

It is structured as follows: I will first go in detail
about the common requirements and challenges
for audio fingerprinting, continuing with a short
overview over popular techniques. I will then
proceed with details about Shazam, before con-
cluding the report.

Requirements and Challenges

There are several (application-dependent) re-
quirements for audio fingerprinting procedures
with focus on CBID [1]:

• Most importantly, the fingerprints should
be discriminative in order to avoid false

1https://www.shazam.com (Lastly called up by the
3rd July, 2017)

1



matches.

• Almost as important is the robustness to
both cropping and distortions: Cropping re-
sults in an audio piece that is much shorter
than the complete track, possibly only sec-
onds long; this means that an audio finger-
printing algorithm should get exact results
from very short excerpts. Audio distortions
are versatile and range from e.g. compres-
sion and background noise to pitching and
speed changes; even in the presence of such
distortions, the track has to be correctly
identified.

• The resulting fingerprints need to be as com-
pactly stored as possible; there are great
numbers of fingerprints to manage.

• When computing a fingerprint, efficiency is
also of high relevance: The best fingerprint
has not much use when computation time
exceeds certain limits.

As common with computer science tasks like
CBID, there is a trade-off between reliability and
efficiency present when trying to meet the pre-
sented requirements.

State-of-the-Art

The first audio fingerprinting approaches that
remain of relevance to this day emerged in the
early two thousands and almost all of them use
the same general framework [1]. Audio finger-
printing was and still is to this day of high com-
mercial interest for music companies in particu-
lar and there are many commercial applications
and services (mainly mobile) that use such tech-
niques, including, among others, Gracenote2 and
Shazam. The provided services usually enable
users to identify unknown music tracks that they
hear in their everyday life and thus potentially
increase the number of music purchases.

2http://www.gracenote.com/ (Lastly called up by the
3rd July, 2017)

The most relevant approaches that are still used
for commercial applications up to this date are
the Philips Technique [3], the Shazam algo-
rithm [4] and Google Waveprint [5]. There have
also appeared more modern approaches in re-
cent years, most notably MASK [6, 7] which
promise a substantial performance improvement,
but aren’t as field-tested as the previously men-
tioned state-of-the-art procedures.

Shazam

While the Shazam algorithm is much older than
some of the aforementioned procedures, it has
lead Shazam to great commercial success and
represents a suitable entry point to the field of
audio fingerprinting, as it has many similarities
to most of the other algorithms and thus serves
as an excellent choice for an exemplary finger-
printing algorithm.

Application Details

Shazam is a free mobile app that recognizes mu-
sic, TV program and other media based on short
audio snippets recorded with the user’s phone.
It also features special camera interaction for in-
teractive experiences and additional content and
can be connected to most popular internet ser-
vices like Google, Facebook, Spotify, and others.
The heart of the application constitutes of the
Shazam algorithm presented in a publication by
Wang [4] on which this section is also based on.

The Shazam Algorithm - Overview

Assuming that a database of fingerprints was al-
ready established beforehand, the Shazam algo-
rithm for new individual pieces of unlabeled au-
dio can be divided into five main phases:

1. Spectogram computation of the input file

2. Construction of a constellation map based
on the spectogram

2



3. Combinatorial hashing on determined an-
chor points and target zones

4. Searching of the database

5. Scoring of possible matches

It is to be noted that the database fingerprints
are created in the same way without the above
steps four and five. I will go into more detail
about the single phases in the following sections.
All featured figures are taken from [4].

Spectogram Computation

Figure 1: An exemplary spectogram

Spectograms visually represent the signal
strength (energy) of a signal over time at vari-
ous frequencies; darker areas in the spectogram
represent a higher signal strength than brighter
regions. Spectograms can also be used to depict
sound waves and Shazam is exactly doing that
in the first phase of the algorithm: The first
action taken by the procedure is to compute
the spectogram of the input file via Fourier
transform. Figure 1 shows one such spectogram.

Constellation Map Construction

In the next step, the procedure chooses high en-
ergy candidate peaks of the spectogram with re-
spect to amplitude and density, i.e. uniform cov-
erage of the peaks across the whole audio file is
maintained. The reason why Shazam searches

Figure 2: A constellation map, resulting from
processing the spectogram shown in Figure 1.

for energy peaks is the fact that the higher signal
strengths are much more robust to noise than the
lower ones. Additionally, the amplitude compo-
nent of the spectogram is eliminated in the pro-
cess, simplifying the representation. The result
of this process is called the constellation map (cf.
Figure 2).

Combinatorial Hashing

With the resulting constellation maps from the
previous phase, it is already possible to start
matching audio files by sliding the newly com-
puted constellation map across constellation
maps from database files. However, the general
constellation map is very sparse which would re-
sult in very slow matching times. Because of this,
Shazam applies combinatorial hashing to achieve
a matching speed-up: Each constellation point is
taken as an anchor point and for each such an-
chor point a target zone together with a limited
amount of target points from that zone are com-
puted (cf. Figure 3). Each anchor point is then
sequentially paired with each of its target points,
every pairing forming exactly one hash, consist-
ing of the two frequency components of anchor
and target point and the time difference between
them. Each hash is then represented by a 32-bit
unsigned integer, plus an additional time offset
from the beginning of the input file to the anchor
point. It is to be noted that the number of target

3



points in each target zone is limited to avoid an
extreme number of produced hashes which would
strongly hinder efficiency.

Database hashes actually contain more informa-
tion than the hashes that are produced for un-
labeled input audio: The database hashes that
are later on used for matching are actually 64-
bit structs, as they are additionally containing a
track ID. By using hash structs like these as fin-
gerprints, Shazam achieves the aforementioned
matching speed-up: Each hash is a much more
specific piece of information than just a single
constellation point and although there are much
more possible hashes than constellation points,
the matching process described in the next sub-
section experiences a tremendous speed-up. The
trade-off that the procedure brings with it is an
increase in necessary storage space for the great
number of hashes in contrast to the number of
constellation points.

Figure 3: Paradigmatic anchor point and the
corresponding computed target zone with tar-
get points, extracted from the constellation map
seen in Figure 2.

Database Searching

For searching purposes, the hashes generated
from the input file are matched against the
database hashes; every matching hash results
in a time pair consisting of both offset times.
This is necessary, because the time offsets of the
hashes from the input file most likely differ from

Figure 4: An exemplary scatterplot of matching
hash locations in case of a successful match.

the time offsets of the database hashes, as the
former are based on a short audio snippet, while
the latter ones are computed from the complete
tracks. These time pairs are then distributed
into bins according to the track ID. Right now,
the algorithm has only a number of time pairs
according to matching hashes, but these match-
ing hashes don’t guarantee that the whole audio
files match. Thus, the matching hashes need to
be scored.

Scoring of Possible Matches

Figure 5: An exemplary histogram of matching
hash locations in case of a successful match. The
histogram corresponds to the scatterplot seen in
4 and the y-axis shows the input sound file time.

Finally, the resulting bins from the previous
phase are scanned for matches on audio file level:
Within each bin, the set of time pairs can be rep-
resented by a scatterplot of association between
the input file and the database sound files. In
case that the files match as a whole, the match-
ing hashes should occur at similar relative offsets
with respect to the beginning of the file. That
means that a sequence of hashes in the input
file should also occur somewhere in the match-
ing database file. The detection thus boils down
to detecting diagonal lines in these scatterplots;
a detected diagonal line represents a successful
match (cf. Figure 4). In practice, Shazam is

4



not constructing the described scatterplots for
computation, in fact, the procedure computes an
histogram of differences of time offsets for every
bin and searches for peaks (see Figure 5). This
is done for reasons of efficiency.

Conclusion

I have presented a short introduction into the
topic of audio fingerprinting, including the ex-
planation of main applications, the mention-
ing of state-of-the-art algorithms and audio fin-
gerprinting challenges and a closer look at one
paradigmatic popular procedure, the Shazam al-
gorithm.

References

[1] E. Batlle, P. Cano, J. Haitsma and T.
Kalker (2002). A Review of Algorithms for
Audio Fingerprinting. IEEE Workshop on
Multimedia Signal Processing.

[2] S. Zmudzinski, M. Steinebach and M. Butt
(2012). Watermark Embedding Using Au-
dio Fingerprinting. Transactions on Data
Hiding and Multimedia Security VIII, pp.
63–79.

[3] J. Haitsma and T. Kalker (2002). A Highly
Robust Audio Fingerprinting System. Jour-
nal of New Music Research 32 (2), pp. 211
– 221.

[4] A. Wang (2003). An Industrial-Strength
Audio Search Algorithm. Proceedings of the
4th International Conference on Music In-
formation Retrieval.

[5] S.Baluja and M. Covell (2007). Audio Fin-
gerprinting: Combining Computer Vision &
Data Stream Processing. Acoustics, Speech
and Signal Processing.

[6] X. Anguera, A. Garzon and T. Adamek
(2012). MASK: Robust Local Features for
Audio Fingerprinting. IEEE International
Conference on Multimedia and Expo.

[7] A. Garzon (2011). Audio Fingerprinting
(Master’s thesis). Retrieved from http://

mtg.upf.edu/node/2326 (Lastly called up
by the 3rd July, 2017).

5


