Tools for Feature Extraction: Exploring essentia

MUS-15

Andrea Hanke

July 5, 2017

Introduction

In the research on Music Information Retrieval,
it is attempted to automatically classify a piece
of music based on the raw audio-file, without the
manual work of a human listener. To achieve
this, computational feature extraction is needed.
For this essentia is an ideal tool.

Essentia is a C++4 library with Python bindings
for audio analysis. The software is fairly young
(first version released in 2008, newest version 2.1
beta3 released on September 2016) and allows to
add new algorithms easily. For this reason, and
because essentia is open-source, continuing ad-
ditions are made, making it an extensive library
with many up-to-date and experimental algo-
rithms. Essentia is mainly supported by the Mu-
sic Technology Group of the Universitat Pompeu
Fabra.

This report tries to demonstrate the usage of es-
sentia with both Python and C++.

General Structure of essentia

Essentia provides two operating modes: The
standard mode and the streaming mode. While
the standard mode provides maximum control in
C++, it is also recommended for research with
Python, due to its interactive environment. The
streaming mode allows to easily port your code
from Python to C++ and provides easy-to-write
extractors in C++ and Python.

The essentia-library covers a wide range of algo-
rithms: From spectral, tonal and pitch analysis
over loudness, dynamics and rythm analyisis to
filters, extraction and segmentation of an audio

file, just to name a few.

These functionalities are provided as individ-
ual processing blocks, which are called Algo-
rithms, or essentia-algorithms in this report. An
essentia-algorithm has three different types of at-
tributes: Parameters, Inputs and Outputs. Ev-
ery Algorithm can have any number of those at-
tributes, including none at all. The Parameters
can have default values, and are set when an Al-
gorithm is instantiated. An instantiated Algo-
rithm receives the Input-variables as paramters
and returns the Output-variables after finishing
its calculation.

Using essentia with Python

After importing the essentia-library:

import essentia

import essentia
import essentia.standard
import essentia.streaming

its Algorithms can be accessed. To use an
essentia-algorithm from the library one first al-
ways needs to create an instance of it. Some Al-
gorithms require Parameter-values, whilst other
Algorithms have default values for their Parame-
ters, which can be configured when creating the
Algorithm. For example the Algorithm Fasy-
Loader, which loads a music file, requires the
Parameter filename to be instantiated with the
path to the music file. Optionally, startTime and
endTime can be set to choose the time frame of
the extracted audio.



instantiate EasyLoader

loader =
essentia.standard.EasyLoader (
filename = ” ../ music/audio.mp3”
startTime = musicStart ,
endTime = musicEnd)

The result of this instantiation is a Python func-
tion, which can be used like any other function
in Python. Depending on the algorithm, multi-
ple Input parameters need to be passed to the
function for the calculation. In the case of Easy-
Loader we have no Input and one Output:

use EasyLoader

audio = loader ()

On the essentia website all Algorithms are doc-
umented with a detailed description of their Pa-
rameters, Inputs and Outputs as well as the cal-
culation they are performing.

Adding a new Algorithm to the
library

In the following, I will describe how to add a new
essentia-algorithm to the library with the exam-
ple of DanceabilityDetailed. 1 added this Algo-
rithm because the original Algorithm Danceabil-
ity was not returning the full information that
could be retrieved from the calculation.

To add a new Algorithm, first the two aptly
named files

e danceabilityDetailed.h and

e danceabilityDetailed.cpp

need to be created.

The new Algorithm is a subclass of essen-
tia::Algorithms, inheriting functions to handle
the Input, Output and Parameter attributes. In
danceabilityDetailed.h first all protected Input
and Output variables are declared. In the con-
structor declaration those variables are set as In-
puts and Outputs with declarelnput(...) and
declareOutput(...). With declareParameters()

the Parameters are declared. The two func-
tions compute() and configure() and the vari-
ables name, category and description are inher-
ited from essentia::Algorithms. Finally, func-
tions and variables specific for the Algorithm are
declared.

danceabilityDetailed.h

#ifndef ESSENTIA_DANCEABILITYDETAILED_H
#define ESSENTIA_DANCEABILITYDETAILED_H
#include ”algorithm .h”

#include ”essentiamath.h”

namespace essentia {
namespace standard {

class DanceabilityDetailed
public Algorithm{

protected:
Input<std :: vector<Real> > _signal;
Output<Real> _danceability;
Output<std :: vector<Real> >

_dfaExponents;
Output<std :: vector<Real> > _dfaTaus;
int _preferredSize, _actualSize;
public:

DanceabilityDetailed () {
//as seen in the paper
_preferredSize = 36;
_actualSize = _preferredSize;
declarelnput (

_signal ,

”signal”, ”#d”);
declareOutput (

_dfaTaus ,

"dfaTaus” , "#d”);

}

void declareParameters() {
declareParameter (
"minTau” , "#d” ,
7(0,inf)”, 310.);
declareParameter (
7 maXTau77 , 77#d77 ,
" (0,inf)”, 8800.);



void compute ();
void configure ();

static const charx name;
static const charx category;
static const charx description;

protected:
std :: vector<int> _tau;
Real stddev(const std::vector
<Real>& array, int start
int end) const;

i

} // mamespace standard
} // namespace essentia

Note, that most of the above code needs to be
repeated in a similar fashion for the stream-
ing mode of essentia. In the danceabilityDe-
tailed.cpp-file the inherited variables and all
functions are filled with meaning. Note that con-
figure is called when the Algorithm is created.
Here the Parameters are used to set correspond-
ing internal variables. compute() is called when
the created Algorithm is executed, here the ac-
tual calculation is defined.

danceabilityDetailed.cpp
#include ”danceabilityDetailed .h”

using namespace std;
namespace essentia {
namespace standard {

const charx DanceabilityDetailed
::name= " DanceabilityDetailed” ;
const charx DanceabilityDetailed
::category = ”"Rhythm” ;
const charx DanceabilityDetailed
::description
= DOC(”Long\n\nDescription”);

void DanceabilityDetailed
:configure () {
Real minTau =

parameter ("minTau” ). toReal ();
Real maxTau =
parameter ("maxTau” ). toReal ();
Real taulncrement =
parameter (
"tauMultiplier”
).toReal ();

if (minTau > maxTau) {
throw EssentiaException (
"Danceability : .minTau.cannot .\
uuuuu be.larger _than _maximumTaulnMs”

E
}

// tau is the number of blocks of 10ms

// we calculate each time
_tau.clear ();
for (Real tau = minTau;

tau <= maxTau;

tau = taulncrement) {

_tau.push_back (int (tau / 10.0));

}
}

void DanceabilityDetailed :: compute () {

//using _tau

}

Y // namespace standard
} // namespace essentia

Again, most of the above code needs to be re-
peated similarly for the streaming mode of es-
sentia.

For more information on the danceability-
Algorithm, please refer to Akshay Paranjape’s
report.

Outlook: One possible applica-
tion of essentia

Considering the wide range of Algorithms essen-
tia provides to analyse music, a possible appli-
cation could be a DJ-program: With essentia



certain features of the songs can be extracted,
such as beats per minute, meter, and dance-
ability. These features can be used to classify
the songs, possibly with machine learning. The
DJ-program can use these classifications to de-
termine which song to play next or to create
playlists with certain themes. While songs are al-
ready classified by e.g. genre or composer, with
essentia it is possible to automatically classify
pieces of music by their raw audio-input and its
features.

To gain first-hand experience in the use of essen-
tia, I wrote a Python-code (see Appendix) with
this application in mind, demonstrating the use
of a few Algorithms that should be useful for
such feature extractions. The Python code ex-
tracts beat positions, beats per minute, meter
(currently just experimental), rubato, and nov-
elty.

Conclusion

Essentia offers a huge variety of Algorithms for
feature extraction and a great documentation on
its website http://essentia.upf.edu with de-
tailed descriptions of each algorithm, the use of
essentia in both Python and C++, and how to
create Algorithms.

The analysis of a song is quite fast: Executed on
a laptop, my Python code takes only a few sec-
onds per song, naturally depending on the song’s
length.

Overall, using the essentia-library was a worth-
while experience, as it is both easy to use and
easy to extend. It has many potential applica-
tions in Music Information Retrieval.

References

[1] Full essentia homepage, root-site: http://
essentia.upf.edu. Last visited: July 3rd,
2017.

[2] S. Streich, and P. Herrera. Detrended Fluc-
tuation Analysis of Music Signals: Dance-

ability Estimation and further Semantic
Characterization. Proceedings of the AES
118th Convention, Barcelona, Spain, 2005.



Appendix 1

Python code for feature extraction
# —x— coding: utf—8 —*—

200

Created on Mon May 1 20:19:04 2017

@author: andrea
»

# import the essentia module. It is aptly named ’essentia’
import numpy as np

import math

import essentia

import essentia.standard

import essentia.streaming

import matplotlib.pyplot as plt

import time

from essentia.standard importx

playMusic = ’'yes’ # yes or no

musicIndex= —6

myMusicFiles = [ ’HouseLoop2016.wav’,’SherlockWhoYouReallyAre.wav’,
"PeriodicTableSong .wav’, ’LastSled.wav’, ’'ItsGonnaBeOKAY .wav’,
"SingleLadies.wav’, "Thriller.wav’,
"TchaikovskyFlowersWaltz.wav’, ’'TchaikovskyFlowersWaltz.wav’,

"SherlockWhoYouReallyAre.wav’, ’'SherlockWhoYouReallyAre.wav’,
"ChaChaMusic.mp3’, ’'rumba.mp3’, ’Tango.mp3’ |
myMusicStarts = [0,0, 8, 9, 0, 85, 14, 67, 334, 0, 64, 30, 0, 0]
myMusicEnds = [180,200, 164, 344, 222, 190, 344, 206, 377, 64,
88, 90, 60, 60]

musicfile = ’../audio/’ + myMusicFiles [ musicIndex|
musicStart = myMusicStarts [ musicIndex |
musicEnd = myMusicEnds [ musicIndex |

samplingrate = 44100

# let’s define a small utility function
def play(audiofile):
import os, sys

# NB: this only works with linuz!! mplayer rocks!



if sys.platform = ’linux2’:
if playMusic = ’yes’:
cmd = ’mplayer.’ + audiofile + ~_—ss.’
+ str(myMusicStarts [musicIndex]) + ’_.—endpos.’
+ str (myMusicEnds [ musicIndex]—myMusicStarts [ musicIndex )
os.system (cmd)
else:

9

print ’'Not.playing.audio_because._you._asked _me_not._to_do.so’
else:
print ’Not.playing._audio...

)

9y

print ’analyzing.the_audio.’ + musicfile

#play (musicfile)

loader = essentia.standard.EasyLoader (
filename = musicfile , startTime = musicStart ,
endTime = musicEnd)

# and then we actually perform the loading:
audio = loader ()
audioSize = audio.size

analysisStart = Oxsamplingrate

analysisEnd = audioSize

analysisDelta = 1024#2205

numFreqlter = int (math. floor ((analysisEnd—analysisStart)/analysisDelta))

#instantiate all algorithms that don’t need yet unknown parameters:
getWindow = Windowing(type = ’hann’)

# FFT() would give the complex FFT,

# here we just want the magnitude spectrum
getSpectrum = Spectrum ()

getFrequencyBands = FrequencyBands ()
getNoveltyCurve = NoveltyCurve ()
getBpmHistogram = BpmHistogram ()
getBeatTrackerDegara = BeatTrackerDegara ()
getBeatogram = Beatogram ()
getRythmExtractor = RhythmExtractor2013 ()
getMeter = Meter ()

getBpmRubato = BpmRubato ()

## get rythm, bpm: #HH




bpm (real) — the tempo estimation [bpm]

ticks (vector_real) — the estimated tick locations [s]
confidence (real) — confidence with which the ticks are
detected (ignore this value if using ’'degara’ method)
estimates (vector_real) — the list of bpm estimates
characterizing the bpm distribution for the signal [bpm]
bpmIntervals (vector_real) — list of beats interval [s]
(bpm, ticks, confidence, estimates, bpmlIntervals) = getRythmExtractor (audio)
print ’'Beats_.per_Minute:’
print bpm

## get meter !l Meter is only experimental ##

ticksDegara = getBeatTrackerDegara(audio)
getBeatsLoudness = BeatsLoudness(beats=ticksDegara)

(loudness , loudnessBandRatio) = getBeatsLoudness(audio)
beatogram = getBeatogram (loudness, loudnessBandRatio)
meter = getMeter (beatogram)

print ’'meter:.’
print meter

# get rubato for bpm: A

D
7777777777777 777777777777 777777777777 7777777777 7

20

rubatoStart (vector_real) — list of timestamps where

the start of a rubato region was detected [s]
rubatoStop (vector_real) — list of timestamps where

the end of a rubato region was detected [s]
rubatoNumber (integer) — number of detected rubato regions
(rubatoStart , rubatoStop, rubatoNumber) = getBpmRubato(ticksDegara)
print ’rubato:.’
print rubatoStart

# get movelty #HH#
i=0
frame = audio[analysisStart + ixanalysisDelta : analysisStart

+ (i41)xanalysisDelta]



spectrum = getSpectrum (getWindow ( frame ))
allFrequencyBands = getFrequencyBands (spectrum)

for i in range(l,numFreqlter —1):
frame = audio|analysisStart + ixanalysisDelta : analysisStart
+ (i41)xanalysisDelta]
spectrum = getSpectrum (getWindow (frame ) )
allFrequencyBands = np.append (allFrequencyBands ,
getFrequencyBands (spectrum))

allFrequencyBands = allFrequencyBands.reshape (numFreqlter—1, —1)
novelty = getNoveltyCurve (allFrequencyBands)

## Do something usefull with the data ##

from matplotlib.pyplot import plot, draw, show
#ion () # enables interactive mode

yl = [0, novelty.size]
x1 = [0, O]

fig plt.figure(figsize=(15,5))

ax = fig.add_subplot(111)

ax.set_xlim (0, novelty.size+1)

ax.set_ylim (audio.min()*novelty .max()/audio.max(), novelty .max())
plt .show(block=False)

#plt . show()

ax.plot (np.arange (0,audio.size)xnovelty.size/audio.size ,
audioxnovelty .max()/audio.max(), label=myMusicFiles [ musicIndex],
color="dodgerblue )

for i in range(0,rubatoNumber ):

xc = (rubatoStart[i]*novelty.size)/(musicEnd—musicStart)
ax.axvline (x=xc, color="green”)
xc = (rubatoStop[i]*novelty.size)/(musicEnd—musicStart)

ax.axvline (x=xc, color="green”)
ax.plot (novelty , label="Novelty”, color="red”, linewidth=2.)

ax.set_ylim (audio.min()*novelty .max()/audio.max(), novelty .max())

show ()



# get the canvas object

canvas = ax.figure.canvas

background = canvas.copy_-from_bbox (ax.bbox)
plt.subplots_adjust (left =0.1, right=0.9, top=0.75, bottom=0.1)
leg = ax.legend(bbox_to_anchor=(0, 1.3), loc=2, borderaxespad=0.)

# add the progress line.
line = ax.axvline(x=0, color="r’, animated=True)

starttime=time . time ()
mytimer=0
mytimer_ref=0

def update(canvas, line, ax):
# revert the canvas to the state before any progress line was drawn

ax.lines = ax.lines[:24+2%rubatoNumber |
t = time.time() — starttime # (musicEnd — musicStart)
mytimer = ((t + mytimer_ref)s*novelty.size)/(musicEnd—musicStart)

# update the progress line with its new position
ax.axvline (x=mytimer, color="r")
canvas. blit (ax.bbox)

def startGraph ():
global starttime
starttime=time . time ()
global mytimer_ref
mytimer_ref=0#event.zxdata
print 7starttime” ,starttime, mytimer_ref
timer.start ()

def onclick (event):
play (musicfile)
startGraph ()

timer=fig . canvas.new_timer (interval=5)

args=[canvas , line ,ax]

timer.add_callback (update ,x args) # every 100ms it calls update function

# when I click the mouse over a point, line goes to that point and start moving
cidl=line . figure.canvas.mpl_connect(’button_press_event ’,onclick)

#fig.savefig(” analysis.png”)
plt .show ()
print ’plot._finished’



