
Henrik Barthels
Aachen Institute for Advanced Study in Computational Engineering Science (AICES)
RWTH Aachen, Germany
http://hpac.rwth-aachen.de
barthels@aices.rwth-aachen.de

A Compiler for Linear Algebra Operations
Henrik Barthels

A Compiler for Linear Algebra Operations
Henrik Barthels

Introduction
• Translating the mathematical description of a linear algebra problem to efficient
code is a difficult task. Examples of such problems are:

b := (XTX)−1XTy xij := AiBcj

x :=
(
A−TBTBA−1 + RT [Λ(Rz)]R

)−1
A−TBTBA−1y

• Languages such as Matlab and Julia are easy to use, but performance is usually
suboptimal.
•We are developing a compiler that offers the ease-of-use, and thus, productivity
of Matlab paired with performance that comes close to what a human expert
achieves.

b := (XTX)−1XTy

b := ((QR)TQR)−1(QR)Ty

b := R−1QTy

b := T−1
1 XTy

(Q,R) := qr(X)

symbolic simplifications

T1 := XTX

R−1(QTy) (R−1QT)y

Compute XTX directly
or apply factorization
to account for inverse.

Can be simplified by distributing the
transposition and using orthogonality of Q.

Different parenthesizations yield algorithms
with O(n3) and O(n2) FLOPS.

How to solve T−1
1 XT

depends on the
properties of T1.

Input Grammar
Unlike Matlab, the input language allows to annotate operands with properties.

definitions→ definition+

definition→ type name size ⟨property∗⟩
type→ Matrix | Vector | Scalar
size→ (rows, columns)

property→ LowerTriangular |
Orthogonal | . . .

assignments→ assignment+

assignment→ operand := expr
expr→ operand | expr+ expr | expr · expr |

expr−1 | exprT | expr−T

operand→ symbol | symbolindices
indices→ index+

Instruction Set
As the instruction set, we use optimized kernels as offered by linear algebra li-
braries.
BLAS [3]
•y← αAx+ βy

•C← αAB+ βC

•B← αA−1B

• . . .

LAPACK [1]
•Matrix factorizations.
• Eigensolvers.
• Solvers for linear systems with specific properties.

Optimizations
Common Subexpression Elimination
• FLOPS can be saved by reusing subexpressions that appear more than once,
for example AB in AB+ABC.
• Operators such as transposition and inversion make the detection of common
subexpression more complicated:

AB−T
︸ ︷︷ ︸

C1

B−1AT
︸ ︷︷ ︸

C2

→ C1C
T
1 C1 = AB−T =

(
B−1AT

)T
= CT

2

•We developed algorithms to detect such common subexpressions.
Generalized Matrix Chain Problem
• The cost of a product M0 · · ·Mn highly depends on the parenthesization.
•We developed a generalized version of the O(n3) matrix chain algorithm [2].
• It finds the optimal parenthesization for matrix chains containing transposition
and inversion, for example X := AB−TC−1D.
• This algorithm also takes properties into account.

Encoded Linear Algebra Knowledge
Knowledge about linear algebra is used to simplify and rewrite expressions, as
well as to infer properties. Matrix properties are crucial to select the most suitable
kernels, as well as for simplifications.

Inference of Properties

A → AT

A B → AB

A B → AB

SPD(S)→ SPD(S−1)

expr = exprT → Symmetric(expr)

Simplifications

(AB)T → BTAT

AT → A if Symmetric(A)

QTQ→ I if Orthogonal(Q)

Q−1→ QT if Orthogonal(Q)

αA+ βA→ (α+ β)A

Derivation Graph
Algorithms are derived by repeatedly applying different derivation steps.

Input Simplifications Common Subexpr. Compute Algorithms

Each of these steps yields one or more results. We use a graph to represent all
algorithms. The root of the graph is the input expression, and each path in the
graph corresponds to one algorithm. Below, a part of such a graph is shown. The
full graph has 83 nodes.

z := (XTM−1X)−1XTM−1y

z := (XTL−T
1 L−1

1 X)−1XTL−T
1 L−1

1 y

T1 := L−1
1 X

z := (TT
1 T1)

−1TT
1 L

−1
1 y

z := (TT
1 T1)

−1TT
1 L

−1
1 y

z := T−1
2 TT

1 L
−1
1 y

z := L−T
2 L−1

2 TT
1 L

−1
1 y

z := T8

L1 := chol(M)

T1 := L−1
1 X

T2 := TT1 T1

L2 := chol(T2)

T3 := L−1
1 y

T4 := TT1 T3

T5 := L−1
2 T4

T8 := L−T
2 T5

z := T−1
3 XTL−T

1 L−1
1 y

z := L−T
2 L−1

2 XTL−T
1 L−1

1 y

T1 := L−1
1 X

T2 := T−T
1 T1

T3 := XTT2

L2 := chol(T3)

T4 := L−1
1 y

T5 := L−T
1 T4

T6 := XTT5

T7 := L−1
2 T6

T8 := L−T
2 T7

…

… …

(Z1,W1) := eigen(M)

…

(Q1, R1) := qr(T2)

Results

• Example: z := (XTM−1X)−1XTM−1y, M ∈ Rn×n, X ∈ Rn×m, y ∈ Rn, n ! m.
M is symmetric positive definite.
• The compiler (written in Python) finds 23 algorithms in less than a second.
• The algorithm shown below is identified as the cheapest one in terms of FLOPS.
• It is compared to two other implementations that rely on Matlab’s strategy to
evaluate expressions.

Naive implementation

Recommended implementation

Compiler implementation

1000 1500 2000
0

2

4

6

8

1

n

sp
ee

du
p
ov

er
…

naive, m = 600 recommended, m = 600
naive, m = 1200 recommended, m = 1200

References
[1] E. Anderson, Z. Bai, et al. LAPACK Users’ guide, volume 9. SIAM, 1999.
[2] T. H. Cormen, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill, Inc., 1990.
[3] J. J. Dongarra, J. Du Croz, et al. A set of Level 3 Basic Linear Algebra Subprograms. ACM TOMS, 16(1):1–17, 1990.

