A Compiler for Linear Algebra Operations
Henrik Barthels

Introduction Encoded Linear Algebra Knowledge
* Translating the mathematical description of a linear algebra problem to efficient Knowledge about linear algebra is used to simplify and rewrite expressions, as
code is a difficult task. Examples of such problems are: well as to infer properties. Matrix properties are crucial to select the most suitable
b= (XTX) Xy xii == ABc, kernels, as well as for simplifications.
. (A‘TBTBA_1 n RT[/\(Rz)]R)_1 A‘TBTBA_1y Inference of Properties Simplifications
A = AT (AB)" — BTAT
. Latr)mgu?ge? such as Matlab and Julia are easy to use, but performance is usually b@\ ?K N @ AT 5 A if Symmetric(A)
subbplima %;%ﬁ % Q' Q—1I if Orthogonal(Q)
* \We are developing a compiler that offers the ease-of-use, and thus, productivity 1 T :
_ | SPD(S) — SPD(S™ Q —Q if Orthogonal(Q)
of Matlab paired with performance that comes close to what a human expert) — D A A A
achieves. expr = expr' — Symmetric(expr) X 5 o+ 3
Compute XTX directly

or apply factorization Tor T DerivatiOn Graph
to account for inverse. X X X How to solveT 1XT

(Q,R) := V \ XX depends on the Algorithms are derived by repeatedly applying different derivation steps.
properties of 1. I |

((QR)'QR)™! b:=T "Xy Input — Simplifications — Common Subexpr. —--— Compute — Algorithms
|
Can be simplified by distributing the Each. of these steps yields one or more rgsults. We usg a graph to represgnt all
symbolic simplifications transposition and using orthogonality of Q. algorithms. The root of the graph is the input expression, and each path in the
; graph corresponds to one algorithm. Below, a part of such a graph is shown. The
v_] T Different parenthesizations yield algorithms full graph has 83 nodes.
b:=R7QY \ith 9(n3) and O(n2) FLOPS.

| 7 = (XTM—1x)—1xTM—1y

(zuwu:eigenu\y | | L1 := chol(m)
1=

I
R'(Q'y) R7'QNy |
|
e (NTT =T7 =Ty \ =1 T7 =T =1
L z:= (X'L; ' L7 X) 7' X'Ly 'Ly
// @, R) :=qr(X) ... // tmpl := X°T X / \ | iy
dgeqrf(...) dsyrk(...) T, = LT]X T1 - TLTT
// tmpl := Q°T L := chol(tmpl | _ _ 2
P Q y // (1%) Z = (T1TT1) 1T1TL1 19 T3 ::XTTZ
dormqr(...) dpotrf (...)
|T=17"X
2= (T Ty z=T, XL 'Ly
|m=T1 | L = chol(T3)
| | | | =T, LYy z=LL XL Ly
Unlike Matlab, the input language allows to annotate operands with properties. (Q1,Rq) = qr(T\z/ l T,
Lz := chol Tz
definitions — definition™ assignments — assignment™ o [T
definition — type name size (property™) assignment — operand := expr — k2 2 kY
type — Matrix | Vector | Scalar expr — operand | expr + expr | expr - expr | T, = L_1y Ty = L1_1y
size — (rows, co_lumns) expr | | expr’ | expr " . :: T1TT T LTTT4
property — LowerTriangular | operand — symbol | symbol-gices T4 ' L]_ﬁ’r To = X'Ts
Orthogonal | ... indices — index™ > 2 4 T 1T
TSIZLZ_ T5 7 2T6
Tg = LZ_ 17

As the instruction set, we use optimized kernels as offered by linear algebra li-
braries.

BLAS [3] LAPACK [1]

oy — aAx + By . Matrix factorizations. e Example: z := (X'M'X)" XMy, M e R¥™™, X € R™™ y € R, n > m.
.C « AB + BC Eigensolvers. M is symmetric positive definite.

‘B« xA B . Solvers for linear systems with specific properties. * The compiler (written in Python) finds 23 algorithms in less than a second.

* The algorithm shown below is identified as the cheapest one in terms of FLOPS.

* It is compared to two other implementations that rely on Matlab’s strategy to
evaluate expressions.

Optimizations
Common Subexpression Elimination el 'm'?}'(er:?”taétb'q‘;ix)*x i () 4 g)
_ _ z = inv(X'*inv '*inv v, T
* FLOPS can be saved by reusing subexpressions that appear more than once, | | |
for example AB in AB - ABC Recommended implementation ; ¢l
P ' z = (X' *(M\X)O\X'*(M\y); 0 /
» Operators such as transposition and inversion make the detection of common L . o
_ _ _ Compiler implementation 34
subexpression more complicated: L1 = chol(M, 'lower'): 3 P
_ _ _ _ T — 74 : Q. A—Ah——h— —%—4—3
AB TB]AT N C] C-1|— C] — AB T _ (B]AT) _ C;— t1 linsolve (L1, X, OptSl) ; o 94
N t2 = t1'*xtl; 11
G ¢ L2 = chol(t2, 'lower'); 0 . . N
* We developed algorithms to detect such common subexpressions. t3 = linsolve(L1l, y, optsl); 1000 1500 2000
: : : t4 = t1'*t3; n
Generalized Matrix Chain Problem £5 = linsolve(L2, t4, optsi): —e—naive, m = 600 —— recommended, m = 600
» The cost of a product My - - - M, highly depends on the parenthesization. z = linsolve(L2, t5, opts2); —e—naive, m = 1200 ——recommended, m = 1200
- We developed a generalized version of the O(n?) matrix chain algorithm [2].
o |t fln.dS the. optimal parenthesization for matrix chains containing transposition References
and inversion, for example X := AB~'C~'D.
.] . . [1] E. Anderson, Z. Bai, et al. LAPACK Users’ guide, volume 9. SIAM, 1999.
e This a|gor|thm also takes properties into account. [2] T. H. Cormen, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill, Inc., 1990,
[3] J. J. Dongarra, J. Du Croz, et al. A set of Level 3 Basic Linear Algebra Subprograms. ACM TOMS, 16(1):1-17, 1990.

Henrik Barthels

Aachen Institute for Advanced Study in Computational Engineering Science (AICES)
RWTH Aachen, Germany

http://hpac.rwth-aachen.de

barthels@aices.rwth-aachen.de

High Performance and
Automatic Computing

