# A Compiler for Linear Algebra Operations

## Henrik Barthels

| Introduction                                                                                                                                                                                                                                                                                 | Encoded Linear Algebra Knowledge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <ul> <li>Translating the mathematical description of a linear algebra problem to efficient<br/>code is a difficult task. Examples of such problems are:</li> </ul>                                                                                                                           | Knowledge about linear algebra is used to simplify and rewrite expressions, as well as to infer properties. Matrix properties are crucial to select the most suitable kornels, as well as for simplifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| b := $(X^{T}X)^{-1}X^{T}y$<br>$x := (A^{-T}B^{T}BA^{-1} + R^{T}[\Lambda(Rz)]R)^{-1}A^{-T}B^{T}BA^{-1}y$                                                                                                                                                                                      | Inference of Properties Simplifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| <ul> <li>Languages such as Matlab and Julia are easy to use, but performance is usually suboptimal.</li> <li>We are developing a compiler that offers the ease-of-use, and thus, productivity of Matlab paired with performance that comes close to what a human expert achieves.</li> </ul> | $\begin{array}{cccc} A & \rightarrow & A^{T} \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline SPD(S) & \rightarrow & SPD(S^{-1}) \\ expr & = expr^{T} & \rightarrow & Symmetric(expr) \end{array} \begin{array}{ccc} (AB)^{T} & \rightarrow & B^{T}A^{T} \\ \hline A & B & \rightarrow & AB \\ \hline Q^{T}Q & \rightarrow & I \\ Q^{-1} & \rightarrow & Q^{T} \\ \hline \alpha & A + & \beta & A \\ \hline \alpha & A + & \beta & A \\ \hline A & B & \rightarrow & AB \\ \hline Q^{T}Q & \rightarrow & I \\ \hline Q^{-1} & \rightarrow & Q^{T} \\ \hline \alpha & A + & \beta & A \\ \hline A & B & \rightarrow & AB \\ \hline Q^{T}Q & \rightarrow & I \\ \hline A & B & \rightarrow & AB \\ \hline Q^{T}Q & \rightarrow & I \\ \hline A & B & \rightarrow & AB \\ \hline Q^{T}Q & \rightarrow & I \\ \hline A & B & \rightarrow & AB \\ \hline Q^{T}Q & \rightarrow & I \\ \hline A & B & \rightarrow & AB \\ \hline Q^{T}Q & \rightarrow & I \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & \rightarrow & AB \\ \hline A & B & AB \\ \hline A & $ | c(A)<br>al(Q)<br>al(Q) |
| Compute $X^T X$ directly<br>or apply factorization                                                                                                                                                                                                                                           | Derivation Graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |

Algorithms are derived by repeatedly applying different derivation steps.



Input  $\rightarrow$  Simplifications  $\rightarrow$  Common Subexpr.  $\longrightarrow$  Compute  $\rightarrow$  Algorithms

Each of these steps yields one or more results. We use a graph to represent all algorithms. The root of the graph is the input expression, and each path in the graph corresponds to one algorithm. Below, a part of such a graph is shown. The full graph has 83 nodes.



size  $\rightarrow$  (*rows*, *columns*) property  $\rightarrow$  LowerTriangular | Orthogonal | ...  $expr^{-1} | expr^{T} | expr^{-T}$ operand  $\rightarrow$  *symbol* | *symbol*<sub>indices</sub> indices  $\rightarrow$  *index*<sup>+</sup>

### **Instruction Set**

As the instruction set, we use optimized kernels as offered by linear algebra libraries.

**BLAS** [3]

•

LAPACK [1]

•  $\mathbf{y} \leftarrow \alpha \mathbf{A}\mathbf{x} + \beta \mathbf{y}$ 

- $C \leftarrow \alpha AB + \beta C$
- $\mathbf{B} \leftarrow \alpha \mathbf{A}^{-1}\mathbf{B}$  •
- Matrix factorizations.
- Eigensolvers.

Solvers for linear systems with specific properties.

## Optimizations

#### **Common Subexpression Elimination**

- FLOPS can be saved by reusing subexpressions that appear more than once, for example AB in AB + ABC.
- Operators such as transposition and inversion make the detection of common subexpression more complicated:

 $\underbrace{AB^{-T}}_{}\underbrace{B^{-1}A^{T}}_{} \rightarrow C_{1}C_{1}^{T} \qquad C_{1} = AB^{-T} = \left(B^{-1}A^{T}\right)^{T} = C_{2}^{T}$ 

## Results

• Example:  $z := (X^T M^{-1} X)^{-1} X^T M^{-1} y$ ,  $M \in \mathbb{R}^{n \times n}$ ,  $X \in \mathbb{R}^{n \times m}$ ,  $y \in \mathbb{R}^n$ ,  $n \ge m$ . *M* is symmetric positive definite.

- The compiler (written in Python) finds 23 algorithms in less than a second.
- The algorithm shown below is identified as the cheapest one in terms of FLOPS.
- It is compared to two other implementations that rely on Matlab's strategy to evaluate expressions.

Naive implementation
z = inv(X'\*inv(M)\*X)\*X'\*inv(M)\*y;

Recommended implementation  $z = (X'*(M\backslash X))\backslash X'*(M\backslash y);$ 

Compiler implementation
L1 = chol(M, 'lower');
t1 = linsolve(L1, X, opts1);





• We developed algorithms to detect such common subexpressions.

#### **Generalized Matrix Chain Problem**

- The cost of a product  $M_0 \cdots M_n$  highly depends on the parenthesization.
- We developed a generalized version of the  $O(n^3)$  matrix chain algorithm [2].
- It finds the optimal parenthesization for matrix chains containing transposition and inversion, for example  $X := AB^{-T}C^{-1}D$ .
- This algorithm also takes properties into account.

t2 = t1'\*t1; L2 = chol(t2, 'lower'); t3 = linsolve(L1, y, opts1); t4 = t1'\*t3; t5 = linsolve(L2, t4, opts1); z = linsolve(L2, t5, opts2);

#### References

[1] E. Anderson, Z. Bai, et al. LAPACK Users' guide, volume 9. SIAM, 1999.
[2] T. H. Cormen, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill, Inc., 1990.
[3] J. J. Dongarra, J. Du Croz, et al. A set of Level 3 Basic Linear Algebra Subprograms. ACM TOMS, 16(1):1–17, 1990.

#### Henrik Barthels

Aachen Institute for Advanced Study in Computational Engineering Science (AICES)

RWTH Aachen, Germany

http://hpac.rwth-aachen.de

barthels@aices.rwth-aachen.de



