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Introduction

* How to compute the following expressions?
b= (X"X)"'XTy
x:= (A"TBTBA™' + R"A(Rz)]R) " A" "B"BA 'y
Xij = AiBCj

» Matlab is easy to use, but performance is usually suboptimal.
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Hint at results.


Introduction

(Q,R) := ar(X)

b= T 'XTy b:= ((QR)TQR)7'(QR) 'y

symbolic simplifications

b:=R'Qly

R (Q/ \Q%

Algorithm 1 Algorithm 2 Algorithm 3
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Input Grammar

z:=(X"MTX)X"TMy
M c RZOOOXZOOO

M is symmetric positive definite.
X € RZOOOX]OOO

y € RZOOO
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Compiler? Show language. I don't want to.



I don't care about the language.



Prototype in Python.



Not yet another compiler, yet another language.


Instruction Set

BLAS [DDC"90]
cy <+ Ax+Yy
cC+ AB+C
B+ A 'B
LAPACK [AB99]
» Matrix factorizations.
* Eigensolvers.
* Solvers for linear systems with specific properties.
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Highly optimized kernels.



They have to be used in the right way.



Sequence of kernels.


Encoded Linear Algebra Knowledge

Properties
Operation Cost
N B n3
A1 B 2.7n’
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>>LA knowledge<<







No properties: Assume most general case.


Encoded Linear Algebra Knowledge

Inference of Properties
A AT
An

expr = expr' — Symmetric(expr)

Simplifications
(AB)" — BTAT
AT 5 A if Symmetric(A)
Q'Q—1 if Orthogonal(Q)
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...how properties propagate with application...


Optimizations

Common Subexpression Elimination

AB B 'AT = cC’

ABT=(B"'AT) =cC
Generalized Matrix Chain Problem

A

— N

(AB)c O(n?) A(Bc) 0O(n?)

In practice:
X:=AB'C'D
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Optimal parenthesization.


Derivation Graph

z:=(XTMX)"' XMy

(Z1,W1) = eigenU\V
‘L1 := chol(M)

z:= (XL, LX) XL L Ty Ty =L
‘ T=TT
T3 = XTTZ

T :=1,'X

o z =T, XTL L
z:= (T{T) 'Ly 3 s
‘Lz := chol(T3)
‘ﬂ::Lﬂx
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Repeated application of different derivation steps.



Full graph: 83 nodes



Path corresponds to algorithm.


Results

z:= (XTM'X)'XTM 1y, X € Rvm,

Naive implementation A
z = inv (X' *inv (M) *X) %X ' *inv (M) *y; 81
Compiler implementation 61 /
L1 chol(M, 'lower');

tl = linsolve(L1l, X, optsl);
t2 = tl1'*xtl;

L2 = chol(t2, 'lower');

speedup over naive
N

t3 = linsolve(L1l, y, optsl); 2+
t4 = t1'¥t3; 14
t5 = linsolve(L2, t4, optsl); 0 : : N
z = linsolve(L2, t5, opts2); 1000 1500 2000
n
—o— m = 600 —e—m = 1200
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23 algorithms in less than a second.



Compiler: Cheapest in terms of FLOPS.



>>Productivity<<


Results

z:= (XTM'X)'XTM 1y, X € Rvm,

Recommended implementation o] A
z = (X'*(M\X)\X'*(M\y); § /‘M\\‘\A——A
)
Compiler implementation E 24
L1 = chol(M, 'lower'); S
tl = linsolve(L1l, X, optsl); g
t2 = tl1'xtl; 4
L2 = chol(t2, 'lower'); g_ T
t3 = linsolve(L1, y, optsl); 3
t4d = t1'*t3; o
t5 = linsolve(L2, t4, optsl); n 0 : : N
z = linsolve(L2, t5, opts2); 1000 1500 2000
n
——m = 600 —+—m = 1200
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23 algorithms in less than a second.



Compiler: Cheapest in terms of FLOPS.



>>Productivity<<
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