A Compiler for Linear Algebra Operations

Henrik Barthels, M.Sc.

Introduction

* How to compute the following expressions?
b= (X"X)"'XTy
x:= (A"TBTBA™' + R"A(Rz)]R) " A" "B"BA 'y
Xij = AiBCj

» Matlab is easy to use, but performance is usually suboptimal.

20of12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |
ACM Student Research Competition

RWTH

High Performance and
Automatic Computing

Hint at results.

Introduction

(Q,R) := ar(X)

b= T 'XTy b:= ((QR)TQR)7'(QR) 'y

symbolic simplifications

b:=R'Qly

R (Q/ \Q%

Algorithm 1 Algorithm 2 Algorithm 3

1
|
|
|
|
|
|
|

30of12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |
ACM Student Research Competition

RWTH

High Performance and
Automatic Computing

Input Grammar

z:=(X"MTX)X"TMy
M c RZOOOXZOOO

M is symmetric positive definite.
X € RZOOOX]OOO

y € RZOOO

4 of 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |
ACM Student Research Competition

RWTH

High Performance and
Automatic Computing

Compiler? Show language. I don't want to.

I don't care about the language.

Prototype in Python.

Not yet another compiler, yet another language.

Instruction Set

BLAS [DDC"90]
cy <+ Ax+Yy
cC+ AB+C
B+ A 'B
LAPACK [AB99]
» Matrix factorizations.
* Eigensolvers.
* Solvers for linear systems with specific properties.

50f 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |
ACM Student Research Competition

RWTH

High Performance and
Automatic Computing

Highly optimized kernels.

They have to be used in the right way.

Sequence of kernels.

Encoded Linear Algebra Knowledge

Properties
Operation Cost
N B n3
A1 B 2.7n’
6 of 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |

ACM Student Research Competition

High Performance and
Automatic Computing

RWTH

>>LA knowledge<<

No properties: Assume most general case.

Encoded Linear Algebra Knowledge

Inference of Properties
A AT
An

expr = expr' — Symmetric(expr)

Simplifications
(AB)" — BTAT
AT 5 A if Symmetric(A)
Q'Q—1 if Orthogonal(Q)
Tt ACompler for Linear Algebra Operaions | Honrik Bathel, M.Sc. | RWTH Aschen |

RWTH

ACM Student Research Competition

High Performance and
Automatic Computing

...how properties propagate with application...

Optimizations

Common Subexpression Elimination

AB B 'AT = cC’

ABT=(B"'AT) =cC
Generalized Matrix Chain Problem

A

— N

(AB)c O(n?) A(Bc) 0O(n?)

In practice:
X:=AB'C'D

8 of 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |
ACM Student Research Competition

RWTH

High Performance and
Automatic Computing

Optimal parenthesization.

Derivation Graph

z:=(XTMX)"' XMy

(Z1,W1) = eigenU\V
‘L1 := chol(M)

z:= (XL, LX) XL L Ty Ty =L
‘ T=TT
T3 = XTTZ

T :=1,'X

o z =T, XTL L
z:= (T{T) 'Ly 3 s
‘Lz := chol(T3)
‘ﬂ::Lﬂx

9 of 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |
ACM Student Research Competition

RWTH

High Performance and
Automatic Computing

Repeated application of different derivation steps.

Full graph: 83 nodes

Path corresponds to algorithm.

Results

z:= (XTM'X)'XTM 1y, X € Rvm,

Naive implementation A
z = inv (X' *inv (M) *X) %X ' *inv (M) *y; 81
Compiler implementation 61 /
L1 chol(M, 'lower');

tl = linsolve(L1l, X, optsl);
t2 = tl1'*xtl;

L2 = chol(t2, 'lower');

speedup over naive
N

t3 = linsolve(L1l, y, optsl); 2+
t4 = t1'¥t3; 14
t5 = linsolve(L2, t4, optsl); 0 : : N
z = linsolve(L2, t5, opts2); 1000 1500 2000
n
—o— m = 600 —e—m = 1200
10 of 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |

RWTH

ACM Student Research Competition

High Performance and
Automatic Computing

23 algorithms in less than a second.

Compiler: Cheapest in terms of FLOPS.

>>Productivity<<

Results

z:= (XTM'X)'XTM 1y, X € Rvm,

Recommended implementation o] A
z = (X'*(M\X)\X'*(M\y); § /‘M\\‘\A——A
)
Compiler implementation E 24
L1 = chol(M, 'lower'); S
tl = linsolve(L1l, X, optsl); g
t2 = tl1'xtl; 4
L2 = chol(t2, 'lower'); g_ T
t3 = linsolve(L1, y, optsl); 3
t4d = t1'*t3; o
t5 = linsolve(L2, t4, optsl); n 0 : : N
z = linsolve(L2, t5, opts2); 1000 1500 2000
n
——m = 600 —+—m = 1200
11 of 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |

RWTH

ACM Student Research Competition

High Performance and
Automatic Computing

23 algorithms in less than a second.

Compiler: Cheapest in terms of FLOPS.

>>Productivity<<

References

[ABT99] Edward Anderson, Zhaojun Bai, et al. LAPACK Users’ guide,
volume 9. SIAM, 19909.

[DDC*90] Jack J. Dongarra, Jeremy Du Croz, et al. A set of Level 3 Basic
Linear Algebra Subprograms. ACM TOMS, 16(1):1-17, 1990.

12 of 12 A Compiler for Linear Algebra Operations | Henrik Barthels, M.Sc. | RWTH Aachen |
ACM Student Research Competition

RWTH

High Performance and
Automatic Computing

	Introduction
	Input Grammar
	Instruction Set
	Encoded Linear Algebra Knowledge
	Optimizations
	Derivation Graph
	Results
	References

