
Code Generation in Linnea
Henrik Barthels

AICES, RWTH Aachen University
Aachen, Germany

barthels@aices.rwth-aachen.de

Paolo Bientinesi
Umeå Universitet
Umeå, Sweden

pauldj@cs.umu.se

Abstract
Linnea is a code generator for the translation of high-level linear
algebra problems to efficient code. Unlike other languages and
libraries for linear algebra, Linnea heavily relies on domain-specific
knowledge to rewrite expressions and infer matrix properties.

Here we focus on two aspects related to code generation and
matrix properties: 1) The automatic generation of code consisting of
explicit calls to BLAS and LAPACK kernels, and the corresponding
challenge with specialized storage formats. 2) A general notion of
banded matrices can be used to simplify the inference of many ma-
trix properties. While it is crucial to make use of matrix properties
to achieve high performance, inferring those properties is challeng-
ing. We show how matrix bandwidth can be used as a unifying
language to reason about many common matrix properties.

ACM Reference Format:
Henrik Barthels and Paolo Bientinesi. 2019. Code Generation in Linnea.
In 6th ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, June 22, 2019, Phoenix, AZ. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Linnea is a code generator which translates the mathematical de-
scription of a linear algebra problem to an efficient sequence of
BLAS [5] and LAPACK [2] calls [3, 6]. While high-level languages
and libraries such as Matlab [1], Julia [4], Eigen [9], and Armadillo
[10] offer a convenient interface to describe linear algebra prob-
lems, the resulting code is frequently suboptimal compared to code
written in C or Fortran by a human expert. The goal of Linnea is
to offer a tool that allows domain specialists to “code” at the same
level at which they reason about application problems, and still
achieve close to optimal performance. Linnea is written in Python
and targets mid-to-large scale linear algebra expressions, where
problems are typically compute bound.

The input to Linnea is a mathematical description of a linear al-
gebra problem, similar to the notation in Matlab or Julia. In addition,
Linnea also allows to specify properties of the input matrices, for
example symmetric, triangular or diagonal. Examples of possible
inputs are problems such as

H† := HT (HHT)−1

yk := H†y + (In − H†H)xk ,

which appears in an image restoration application [11], or Xk+1 :=
Xk +WAT S(STAWAT S)−1ST (In −AXk), an expression that is part
of a randomized matrix inversion algorithm [8].

As output, we decided to generate Julia code because it offers
a good tradeoff between simplicity and performance: Low-level
wrappers expose the full functionality of BLAS and LAPACK, while

ARRAY ’19, June 22, 2019, Phoenix, AZ
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

additional routines can be implemented easily without compromis-
ing performance.

2 Storage Formats
Internally, the algorithms generated by Linnea are represented as
a symbolic sequence of kernels calls; they still have to be trans-
lated to actual code. Most importantly, all operands are represented
symbolically, with no notion of where and how they are stored
in memory. During the code generation, operands are assigned
to memory locations, and it is decided in which storage format
they are stored. The BLAS and LAPACK interface introduces some
challenges for this phase because kernels commonly overwrite one
of their input operands, and because some operands are stored in
specialized formats.

Overwriting As an example, the gemm kernel αAB + βC writes
the result into the buffer containing C . Linnea performs a basic
liveness analysis to identify if an operand can be overwritten. Only
if this is not the case, the operand is copied. At present, Linnea does
not reorder kernel calls to avoid unnecessary copies.

Storage Formats Some kernels use specialized storage formats
for matrices with properties. As an example, factorizations that
output triangular matrices only store the non-zero upper or lower
part. Those storage formats have to be considered when generating
code: While specialized kernels for triangular matrices only access
the non-zero entries, a more general kernel would read from the
entire buffer. Thus, it has to be ensured that operands are always in
the correct storage format, if necessary by converting the storage
format. During the code generation, operands are converted to
different storage formats when necessary. To avoid unnecessary
conversions, in Linnea we implemented mechanisms to reason
about those storage formats.

We define a set of storage formats used by BLAS and LAPACK
kernels. As an example, full describes operands where all values
are explicitly stored in memory, and the lower_triangular format
is used for lower triangular matrices where only the non-zero part
is stored explicitly. ipiv is the format used by the LU factorization
for the pivoting information, representing a permutation matrix. In
the diagonal_vector format, only the non-zero entries of diagonal
matrices are stored in a one-dimensional vector.

For those storage formats, we define a partial ordering that rep-
resents whether one format is compatible with the other. As an
example, consider the trsv kernel that accesses only the lower (or
upper) triangular half of the input matrixA. In this case, we say that
trsv requiresA to be in the lower_triangular format. If a matrix
that is stored as full is passed to trsv, no storage format conver-
sion is necessary because lower_triangular is compatible with
full. The reverse does not hold: If a kernel requires a full matrix,
it is not possible to use one that is stored as lower_triangular.
However, not all storage formats for matrices with certain proper-
ties are compatible at all: One such example are diagonal matrices,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ARRAY ’19, June 22, 2019, Phoenix, AZ Barthels, et al.

which can be stored as full and diagonal_vector. As a results,
storage format conversions are necessary in both directions.

Finally, we created a collection of functions for storage format
conversions. We distinguish between two different types of conver-
sions: In-place and out-of-place. Whenever possible, storage format
conversions are done in-place. This may not be possible if 1) the
amount of memory used increases, for example when converting
from diagonal_vector to full, or 2) when the conversion would
overwrite another operand that is still needed. The latter can hap-
pen after factorizations such as LU, when both L andU are stored
in the same memory location.

Due to the transitivity of the compatibility relation, it is not
necessary to provide conversions for all pairs of formats; if no
conversion to the required format is available, a conversion to an
even more general format can be used instead.

3 An Algebra of Banded Matrices
Oftentimes, matrices arising in application problems exhibit prop-
erties that can be exploited to achieve good performance. However,
not only is it important to identify and exploit the properties of the
input matrices, it is equally important to keep track of how such
properties propagate with the application of kernels. To this end, in
Linnea we implemented an inference engine for matrix properties.

The automatic reasoning about matrix properties and how they
propagate is challenging for two reasons: First, the relationships
between properties are complex. For example, a diagonal matrix
can be seen as a special case of both a lower triangular and an
upper bidiagonal matrix. Second, for operators with more than one
operand, for example addition and multiplication, there is a large
number of ways in which the properties of the result matrix are
determined by the properties of the input matrices.

The inference can be simplified by representingmatrix properties
with a unifying formalism: Several properties, including diagonal,
triangular and Hessenberg, can fall under the class of banded ma-
trices [7]: A matrix A ∈ Rm×n has lower bandwidth lA if ai j = 0
whenever i > j + lA, and upper bandwidth uA if j > i + uA im-
plies ai j = 0. Intuitively, lA and uA specify the number of non-zero
off-diagonals below and above the main diagonal, respectively. In
the following, we write these bandwidths as a pair (lA,uA). In this
notation, a diagonal matrix is a banded matrix with bandwidth
(0, 0), a lower triangular matrix has bandwidth (m − 1, 0), and an
upper Hessenberg matrix is described as (1,n − 1).

We observed that the notion of bandwidth can also be used to
infer how matrix properties propagate. For the sum of two matrices
A+B, the bandwidth can be computed as (max(lA, lB),max(uA,uB)).
For the product AB with A ∈ Rm×k and B ∈ Rk×n , the bandwidth
is (min(lA + lB ,m− 1),min(uA +uB ,n− 1)). Formula can be derived
for operations such as inversion and transposition. This formalism
can even be extended to allow for negative bandwidth, covering the
case where the main diagonal is zero. With this extension, one can
also easily compute the bandwidth of the blocks of a partitioned
matrix.

The bandwidth-based notation significantly simplifies the infer-
ence of properties because it removes redundancy, and it is elimi-
nates the need to explicitly specify the property resulting from the
sum or product of other known properties. Unfortunately, many
common operations with banded matrix are not supported by the
standard linear algebra libraries.

1

10

100

1
Test problems

Sp
ee
du

p
of

Li
nn

ea

Jl n Jl r Arma n Arma r
Eig n Eig r Mat n Mat r

Figure 1. Speedup of Linnea over other languages and libraries for
22 application problems. The problems are sorted by computational
intensity (increasing from left to right).

4 Experiments
In Fig. 1, we present the speedup of the code generated by Linnea
over Julia, Matlab, Eigen, and Armadillo, for 22 application test
cases. For each library and language, two different implementations
are used: naive and recommended. The naive implementation is
the one that comes closest to the mathematical description of the
problem. It is also closer to input to Linnea. As an example, the
naive implementation forA−1B in Julia is inv(A)*B. However, since
documentations almost always discourage this use of the inverse
operator, we also consider a so called recommended implementation,
which uses dedicated functions to solve linear systems (A\B). In all
cases, Linnea generates the fastest algorithm.

Acknowledgments
Financial support from the Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation) through grants GSC 111 is gratefully
acknowledged.

References
[1] 2017. Matlab. http://www.mathworks.com/help/matlab.
[2] Edward Anderson, Zhaojun Bai, et al. 1999. LAPACK Users’ guide. Vol. 9. SIAM.
[3] Henrik Barthels and Paolo Bientinesi. 2017. Linnea: Compiling Linear Algebra

Expressions to High-Performance Code. In Proceedings of the 8th International
Workshop on Parallel Symbolic Computation. ACM, Kaiserslautern, Germany,
Article 1, 3 pages. https://doi.org/10.1145/3115936.3115937

[4] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. 2012. Ju-
lia: A Fast Dynamic Language for Technical Computing. (September 2012).
arXiv:cs.PL/1209.5145

[5] Jack J. Dongarra, Jeremy Du Croz, et al. 1990. A set of Level 3 Basic Linear
Algebra Subprograms. ACM TOMS 16, 1 (1990), 1–17.

[6] Diego Fabregat-Traver and Paolo Bientinesi. 2013. A Domain-Specific Compiler
for Linear Algebra Operations. In High Performance Computing for Computational
Science – VECPAR 2010 (Lecture Notes in Computer Science), O. Marques M. Dayde
and K. Nakajima (Eds.), Vol. 7851. Springer, Heidelberg, 346–361.

[7] Gene H. Golub and Charles F. Van Loan. 2013. Matrix Computations. Vol. 4. Johns
Hopkins.

[8] Robert M. Gower and Peter Richtárik. 2017. Randomized Quasi-Newton Updates
Are Linearly Convergent Matrix Inversion Algorithms. SIAM J. Matrix Analysis
Applications 38, 4 (2017), 1380–1409.

[9] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[10] Conrad Sanderson. 2010. Armadillo: An Open Source C++ Linear Algebra Library

for Fast Prototyping and Computationally Intensive Experiments. (2010).
[11] Tom Tirer and Raja Giryes. 2017. Image Restoration by Iterative Denoising and

Backward Projections. arXiv.org (Oct. 2017), 138–142. arXiv:cs.CV/1710.06647v1

http://www.mathworks.com/help/matlab
https://doi.org/10.1145/3115936.3115937
http://eigen.tuxfamily.org
http://arxiv.org/abs/cs.CV/1710.06647v1

	Abstract
	1 Introduction
	2 Storage Formats
	3 An Algebra of Banded Matrices
	4 Experiments
	Acknowledgments
	References

