
Parallelism in Linnea

Henrik Barthels, Paolo Bientinesi

Introduction: Linnea

• How to compute the following expressions?

b := (XTX)−1XTy

b := (XTM−1X)−1XTM−1y

x := W(AT(AWAT)−1b− c)

x :=
(
A−TBTBA−1 + RT [Λ(Rz)]R

)−1
A−TBTBA−1y

• High-level languages are easy to use, but performance is usually suboptimal.
• BLAS and LAPACK can be fast, but require a lot of expertise.

BLAS [DDC+90], LAPACK [AB+99]
• y← Ax+ y

• C← AB+ C

• B← A−1B

• . . .

2 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Introduction: Linnea

Input

z := (XTS−1X)−1XTS−1y S is symmetric positive definite

Output

L := chol(S) (potrf)
U1 := L−1X (trsm)

(Q,R) := qr(U1) (geqrf)
u2 := L−1y (trsv)
u3 := QTu2 (ormqr)
z := R−1u3 (trsv)

?iiTb,ff;Bi?m#X+QKf>S�*fHBMM2�

3 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

https://github.com/HPAC/linnea

Linear Algebra Knowledge

• Properties: i`KK vs. ;2KK
• Inference of properties: A B → AB

• Simplifications: AT → A if Symmetric(A)

• Rewriting expressions:

X := ATA+ATB+ BTA →
Y := B+A/2

X := ATY + YTA

• Common subexpressions:

X := AB−TC+ B−1AT →
Z := AB−T

X := ZC+ ZT

• Matrix chains:

(AB)c O(n3)

A(Bc) O(n2)

4 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Problem 1: Generation of Parallel Code

Problem 2: Parallel Code Generation

Problem 1: Generation of Parallel Code

Problem 2: Parallel Code Generation

Generation of Parallel Code

How to make use of parallelism?

• Threaded kernels.
• Kernels in parallel.
• Both.

7 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Generation of Parallel Code

Step 1: Parallelize a given sequence of kernels.

The Good
• Constructing dependency graph is easy.

T1 := AB

T2 := L−1C

X := T1 + T2 X := T1 + T2

T1 := AB T2 := L−1C

• If operand sizes are known, amount of work is known (#FLOPs).

A ∈ Rm×k, B ∈ Rk×n → AB requires 2mnk FLOPs

• BLAS and LAPACK are parallelized.

8 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Generation of Parallel Code

The Bad
• FLOP count is not a good prediction for execution time.
• Performance modeling is a hard problem [PB12].
– Performance is not composable.
– Efficiency decreases with number of threads.

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

Ef
fic

ie
nc

y

Matrix dimension

Efficiency of GEMM

1 thread
2 threads
4 threads
8 threads
16 threads
32 threads

– “Overbooking”: Parallelizing a sequence of n LU’s [PB15].

9 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Generation of Parallel Code

The Bad
• FLOP count is not a good prediction for execution time.
• Performance modeling is a hard problem [PB12].
– Performance is not composable.
– Efficiency decreases with number of threads.
– “Overbooking”: Parallelizing a sequence of n LU’s [PB15].

9 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Generation of Parallel Code

Existing Tools

PaRSEC, OmpSs, StarPU, SuperGlue,…
• Built for large dependency graphs/large number of tasks.
• Only one thread per task.
• Do not consider cost (except StarPU [ATN09]).

We have:
• Small number of tasks.
• Multiple threads per task.
• Cost is (roughly) known.

10 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Generation of Parallel Code

Step 2: Generate sequence that parallelizes well.

A good sequence of kernels for sequential execution may not be good for
parallel execution.

Example: X := ABCD A,B,C ∈ Rn×n

D ∈ Rn×m

m < n

A(B(CD))
• min #FLOPs
• dependencies
• threaded kernels still possible

(AB)(CD)
• more FLOPs
• fewer dependencies

Existing work: Matrix Chain Products on Parallel Systems [LKHL03]

11 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Problem 1: Generation of Parallel Code

Problem 2: Parallel Code Generation

Parallel Code Generation

Motivation

• For sufficiently large matrices and/or enough runs of the program, generation time will
be amortized.

• What about small computations?
• What about computations in interactive environment such as Matlab?

13 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

b := XTM−1Xy

b := XT(LTL)−1Xy …

Z := L−TX

b := ZTZy

b := XTL−1L−Tt1

…

L := chol(M)

t1 := Xy

14 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

b := XTM−1Xy

b := XT(LTL)−1Xy …

Z := L−TX

b := ZTZy

b := XTL−1L−Tt1

…

L := chol(M)

t1 := Xy

14 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

b := XTM−1Xy

b := XTL−1L−TXy …

Z := L−TX

b := ZTZy

b := XTL−1L−Tt1

…

L := chol(M)

t1 := Xy

14 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

b := XTM−1Xy

b := XTL−1L−TXy …

Z := L−TX

b := ZTZy

b := XTL−1L−Tt1

…

L := chol(M)

t1 := Xy

14 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

b := XTM−1Xy

b := XTL−1L−TXy …

Z := L−TX

b := ZTZy

b := XTL−1L−Tt1

…

L := chol(M)

t1 := Xy

14 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

b := XTM−1Xy

b := XTL−1L−TXy …

Z := L−TX

b := ZTZy

b := XTL−1L−Tt1

…

L := chol(M)

t1 := Xy

14 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

Reducing Redundancy

X := ABC+ CDE

X := T1C+ CDE X := AT3 + CDE

X := T2 + CDE X := T4 + CDE

X := T2 + CDE

T1 := AB T3 := BC

T2 := T1C T4 := AT3

T2 := T1C T2 := AT3

Table of expressions and intermediate operands:
tmp expr
T1 AB
T2 ABC
T3 BC

15 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

Reducing Redundancy

X := ABC+ CDE

X := T1C+ CDE X := AT3 + CDE

X := T2 + CDE X := T4 + CDE

X := T2 + CDE

T1 := AB T3 := BC

T2 := T1C T4 := AT3

T2 := T1C T2 := AT3

Table of expressions and intermediate operands:
tmp expr
T1 AB
T2 ABC
T3 BC

15 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

Reducing Redundancy

100

101

102

103

104

105

Test problems

N
um

be
ro
fn
od
es

exhaustive, merging exhaustive, no merging
constructive, merging constructive, no merging

10−3 10−2 10−1 100 101 102 103
100

101

102

103

104

105

Time [s]
N
um

be
ro
fn
od
es

16 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

z := (XTS−1X)−1XTS−1y S is symmetric positive definite

17 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

x := W(AT(AWAT)−1b− c) W is diagonal, diagonal elements are positive

18 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

Parallel Code Generation

The Good
• Finding redundant nodes can be done efficiently using hash table.

The Bad
• Access to table of expressions & intermediates has to be protected.
• Merging nodes requires synchronization.
• Graph is not uniform at all.
• Graph is initially not known.

Possible solutions:
• Tradeoff between merging and redundancy?
• Parallelize computations on nodes?
• Nodes as tasks?

19 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

References

[AB+99] Edward Anderson, Zhaojun Bai, et al. LAPACK Users’ guide,
volume 9. SIAM, 1999.

[ATN09] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. Automatic
Calibration of Performance Models on Heterogeneous Multicore
Architectures. Euro-Par Workshops, 6043(Chapter 9):56–65, 2009.

[DDC+90] Jack J. Dongarra, Jeremy Du Croz, et al. A set of Level 3 Basic
Linear Algebra Subprograms. ACM TOMS, 16(1):1–17, 1990.

[LKHL03] Heejo Lee, Jong Kim, Sung Je Hong, and Sunggu Lee. Processor
Allocation and Task Scheduling of Matrix Chain Products on Parallel
Systems. Parallel and Distributed Systems, IEEE Transactions on,
14(4):394–407, 2003.

[PB12] Elmar Peise and Paolo Bientinesi. Performance Modeling for Dense
Linear Algebra. In Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis

20 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

References

(PMBS12), SCC ’12, pages 406–416, Washington, DC, USA,
November 2012. IEEE Computer Society.

[PB15] Elmar Peise and Paolo Bientinesi. The ELAPS Framework -
Experimental Linear Algebra Performance Studies. CoRR, cs.PF,
2015.

21 of 21 Parallelism in Linnea | Henrik Barthels, Paolo Bientinesi | RWTH Aachen | April 18,
2018

	Introduction: Linnea
	Linear Algebra Knowledge
	Generation of Parallel Code
	Parallel Code Generation
	References
	Backup

