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How to efficiently solve... ?

... classic problems

b :=
(
XTX

)−1
XT y

å GELS

b :=
(
XTM−1X

)−1
XTM−1y

å ? → Reduce to above

... sequences of such problems{
bij := (XT

i M
−1
j Xi)

−1XT
i M

−1
j yj

Mj := hjΦ + (1− hj)I

å Smart mapping onto BLAS/LAPACK

å The decomposition is not unique: many algorithms
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We propose . . .

Linear Algebra Compiler

Input Matrix equation + App-specific Knowledge

Output Family of algorithms

Approach Map onto high-performance kernels

Search: Not exhaustive. Guidelines. Led by knowledge.
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1 Goal

2 Automation: Engine

3 Automation: Extensions

4 Conclusions
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Guidelines

How to explore the search space
Inverse operator:

A−1: factorization
å LLT = A, QR = A, ZWZT = A, ...

(XTX)−1: factorization or mapping onto kernels
å S := XTX
å QR = X

Mapping onto kernels
Reuse computations: S = XTL−TL−1XC

(1) K := L−1X
(2) S = KTKC

Reducing flops: S = R−1QTLy
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Compiler’s engine
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                          Kernels
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roperties

    A
lgebraic M

anipulation

Math
Core

Math core:
Matrix, Vector, Scalar, Size/Shape, ...
Diagonal, L/U triangular, Symm, ...
Operators: +, -, *, −1, T . Properties.

Inference of properties / Propagation
Arithmetic, simplifications
Kernels

X: {Matrix, FullRank, ColumnPanel}

L: {Matrix, Square, Lower Triangular}

(LLT )−1 → L−TL−1

(XTX)−1 → (XTX)−1
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Diagonal, L/U triangular, Symm, ...
Operators: +, -, *, −1, T . Properties.

Inference of properties / Propagation

Arithmetic, simplifications
Kernels

A := XTX → A is SPD
QR = X → Q is Orthonormal, R is Triangular
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Math
Core

Math core:
Matrix, Vector, Scalar, Size/Shape, ...
Diagonal, L/U triangular, Symm, ...
Operators: +, -, *, −1, T . Properties.

Inference of properties / Propagation
Arithmetic, simplifications
Kernels

Factorizations: QR, LU, Cholesky, Eigen, ...
BLAS: GEMM, TRSM, GEMV, DOT, ...
LAPACK: inverse of a triangular matrix, ...

Extensible
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Example: Input

{
b := (XTM−1X)−1XTM−1y

M := hΦ + (1− h)I

equation = {

equal[b,

times[ inv[ times[ trans[X], inv[M], X ] ],

...

y ]

] };

properties = {

{X, {�Input�, �Matrix�, �ColPanel�, �FullRank�}}

{y, {�Input�, �Vector� }}

...

{b, {�Output�, �Vector� }}

};
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Example: Generation

b := (XTM−1X)−1XTM−1y

. . . . . .b := (XT (LLT )−1X)−1XT (LLT )−1y

b := (XTL−TL−1X)−1XTL−TL−1y

b := (XTX)−1XTL−1y

b := S−1XTL−1y

b := G−TG−1XTL−1y. . .

Algorithm 1

Algorithm 2

LLT = M

X := L−1X

S := XTX

GGT := S

y := L
−1

y

b := X
T
y

b := G
−1

b

b := G
−T

b

QR = X

y := L
−1

y

b := Q
T
y

b := R
−1

b
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Sequences of correlated problems

{
bij = (XT

i M
−1
j Xi)

−1XT
i M

−1
j yj

Mj = hjΦ + (1− hj)I

with 1 ≤ i ≤ m

and 1 ≤ j ≤ t.

We have to solve not one but a sequence of correlated problems

Goal: reuse of computation
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Sequences of correlated problems
Naive approach: for i, for j, ...

bij =
(
XT

i M
−1
j Xi

)−1
XT

i M
−1
j yj

for i = 1 : m

for j = 1 : t

LLT = Mj

XT ← XT
i L

−T

QR = X

y ← L−1yj

b← QT y

bij ← R−1b
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Sequences of correlated problems
Propagating the dependencies

bij =
(
XT

i M
−1
j Xi

)−1
XT

i M
−1
j yj

for i = 1 : m

for j = 1 : t

LjL
T
j = Mj

XT
ij ← XT

i L
−T
j

QijRij = Xij

yj ← L−1
j yj

bij ← QT
ijyj

bij ← R−1
ij bij
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Sequences of correlated problems
Loop Transposition

bij =
(
XT

i M
−1
j Xi

)−1
XT

i M
−1
j yj

for i = 1 : m

for j = 1 : t

LjL
T
j = Mj

XT
ij ← XT

i L
−T
j

QijRij = Xij

yj ← L−1
j yj

bij ← QT
ijyj

bij ← R−1
ij bij

for j = 1 : t

for i = 1 : m

LjL
T
j = Mj

XT
ij ← XT

i L
−T
j

QijRij = Xij

yj ← L−1
j yj

bij ← QT
ijyj

bij ← R−1
ij bij
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Sequences of correlated problems
Reordering
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Computational cost
How to pick a variant?

Many algorithms for a single target equation. How do we pick one?

Metric: flop count (often times not too descriptive)

Scenario Alg. 1 Alg. 2 Alg. 3

One instance O(n3) O(n3) O(n3)

2D sequence O(tn3 + mtn2) O(tn3 + mtn2) O(n3 + mtn)

Elmar Peise, Hierarchical Performance Modeling for Ranking Dense
Linear Algebra Algorithms, 2012. http://arxiv.org/abs/1207.5217
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Conclusions and future work

So far...
Domain-specific linear algebra compiler
Equation + Knowledge→ Families of algorithms

Guidelines + Engine
Extensions: Sequences, cost analysis

Sequences of GLSs (GWAS): speedups > 100

TO-DO
Encode more available knowledge

Rank algorithms to pick the “best”
Matlab/Fortran code generator
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More details in

D. Fabregat, P. Bientinesi, A Domain-Specific
Compiler for Linear Algebra Operations, 2012.
http://arxiv.org/abs/1205.5975

Further questions?

fabregat@aices.rwth-aachen.de
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