Automating the generation of algorithms for Generalized Least-Squares problems

Diego Fabregat-Traver and Prof. Paolo Bientinesi

AICES, RWTH Aachen fabregat@aices.rwth-aachen.de

ECCOMAS 2012 Vienna, September 12th, 2012

How to efficiently solve...?

... classic problems

•
$$b := \left(X^T X\right)^{-1} X^T y$$

How to efficiently solve...?

How to efficiently solve... ?

How to efficiently solve... ?

$$\bullet \begin{cases} b_{ij} := (X_i^T M_j^{-1} X_i)^{-1} X_i^T M_j^{-1} y_j \\ M_j := h_j \Phi + (1 - h_j) I \end{cases}$$

... sequences of such problems • $\begin{cases} b_{ij} := (X_i^T M_j^{-1} X_i)^{-1} X_i^T M_j^{-1} y_j \\ M_j := h_j \Phi + (1 - h_j) I \end{cases}$ • Smart mapping onto BLAS/LAPACK

... sequences of such problems

•
$$\begin{cases} b_{ij} := (X_i^T M_j^{-1} X_i)^{-1} X_i^T M_j^{-1} y_j \\ M_j := h_j \Phi + (1 - h_j) I \end{cases}$$

- Smart mapping onto BLAS/LAPACK
- ➡ The decomposition is not unique: many algorithms

Input Matrix equation + App-specific Knowledge

InputMatrix equation + App-specific KnowledgeOutputFamily of algorithms

Input	Matrix equation + App-specific Knowledge
Output	Family of algorithms
Approach	Map onto high-performance kernels

Input	Matrix equation + App-specific Knowledge
Output	Family of algorithms
Approach	Map onto high-performance kernels

Search: Not exhaustive. Guidelines. Led by knowledge.

- 2 Automation: Engine
- 3 Automation: Extensions
- 4 Conclusions

How to explore the search space

- Inverse operator:
 - A^{-1} : factorization

$$\blacktriangleright \ LL^T = A, \qquad QR = A, \qquad ZWZ^T = A, \ldots$$

- Math core:
 - Matrix, Vector, Scalar, Size/Shape, ...
 - Diagonal, L/U triangular, Symm, ...
 - Operators: +, -, *, ⁻¹, ^T. Properties.

• X: {Matrix, FullRank, ColumnPanel} • L: {Matrix, Square, Lower Triangular} • $(LL^T)^{-1} \rightarrow L^{-T}L^{-1}$ • $(X^TX)^{-1} \rightarrow (X^TX)^{-1}$

- Math core:
 - Matrix, Vector, Scalar, Size/Shape, ...
 - Diagonal, L/U triangular, Symm, ...
 - Operators: +, -, *, ⁻¹, ^T. Properties.
- Inference of properties / Propagation

$\bullet \ A := X^T X \to A \text{ is SPD}$

• $QR = X \rightarrow Q$ is Orthonormal, R is Triangular

- Math core:
 - Matrix, Vector, Scalar, Size/Shape, ...
 - Diagonal, L/U triangular, Symm, ...
 - Operators: +, -, *, ⁻¹, ^T. Properties.
- Inference of properties / Propagation
- Arithmetic, simplifications

•
$$(R^T Q^T Q R)^{-1} R^T Q^T$$

- Math core:
 - Matrix, Vector, Scalar, Size/Shape, ...
 - Diagonal, L/U triangular, Symm, ...
 - Operators: +, -, *, ⁻¹, ^T. Properties.
- Inference of properties / Propagation
- Arithmetic, simplifications

•
$$(R^T Q^T Q R)^{-1} R^T Q^T$$

 $\Rightarrow (R^T R)^{-1} R^T Q^T$

- Math core:
 - Matrix, Vector, Scalar, Size/Shape, ...
 - Diagonal, L/U triangular, Symm, ...
 - Operators: +, -, *, ⁻¹, ^T. Properties.
- Inference of properties / Propagation
- Arithmetic, simplifications

•
$$(R^T Q^T Q R)^{-1} R^T Q^T$$

 $\Rightarrow (R^T R)^{-1} R^T Q^T$
 $\Rightarrow R^{-1} R^{-T} R^T Q^T$

- Math core:
 - Matrix, Vector, Scalar, Size/Shape, ...
 - Diagonal, L/U triangular, Symm, ...
 - Operators: +, -, *, ⁻¹, ^T. Properties.
- Inference of properties / Propagation
- Arithmetic, simplifications

•
$$(R^T Q^T Q R)^{-1} R^T Q^T$$

 $\Rightarrow (R^T R)^{-1} R^T Q^T$
 $\Rightarrow R^{-1} R^{-T} R^T Q^T$
 $\Rightarrow R^{-1} Q^T$

- Math core:
 - Matrix, Vector, Scalar, Size/Shape, ...
 - Diagonal, L/U triangular, Symm, ...
 - Operators: +, -, *, ⁻¹, ^T. Properties.
- Inference of properties / Propagation
- Arithmetic, simplifications
- Kernels

- Factorizations: QR, LU, Cholesky, Eigen, ...
- BLAS: GEMM, TRSM, GEMV, DOT, ...
- LAPACK: inverse of a triangular matrix, ...
- Extensible

Example: Input

$$\begin{cases} b := (X^T M^{-1} X)^{-1} X^T M^{-1} y \\ M := h \Phi + (1 - h) I \end{cases}$$

```
equation = {
    equal[b,
        times[ inv[ times[ trans[X], inv[M], X ] ],
        ...
        y ]
    ] };
```

```
properties = {
    {X, {"Input", "Matrix", "ColPanel", "FullRank"}}
    {y, {"Input", "Vector" }}
    ...
    {b, {"Output", "Vector" }}
};
```


Example: Generation

$$b := (X^T M^{-1} X)^{-1} X^T M^{-1} y$$

Example: Generation

$$\begin{cases} b_{ij} = (X_i^T M_j^{-1} X_i)^{-1} X_i^T M_j^{-1} y_j & \text{with } 1 \le i \le m \\ M_j = h_j \Phi + (1 - h_j) I & \text{and } 1 \le j \le t. \end{cases}$$

• We have to solve not one but a sequence of correlated problems

$$\begin{cases} b_{ij} = (X_i^T M_j^{-1} X_i)^{-1} X_i^T M_j^{-1} y_j & \text{with } 1 \le i \le m \\ M_j = h_j \Phi + (1 - h_j) I & \text{and } 1 \le j \le t. \end{cases}$$

We have to solve not one but a sequence of correlated problems

Goal: reuse of computation

Naive approach: for i, for j, ...

f

$$b_{ij} = \left(X_i^T M_j^{-1} X_i\right)^{-1} X_i^T M_j^{-1} y_j$$

or
$$i = 1 : m$$

for $j = 1 : t$
 $LL^T = M_j$
 $X^T \leftarrow X_i^T L^{-T}$
 $QR = X$
 $y \leftarrow L^{-1}y_j$
 $b \leftarrow Q^T y$
 $b_{ij} \leftarrow R^{-1}b$

RWITHAACHEN UNIVERSITY

Propagating the dependencies

f

$$b_{ij} = \left(X_i^T M_j^{-1} X_i\right)^{-1} X_i^T M_j^{-1} y_j$$

$$\begin{array}{ll} \text{ for } i=1:m \\ \text{ for } j=1:t \\ L_jL_j^T=M_j \\ X_{ij}^T \leftarrow X_i^TL_j^{-T} \\ Q_{ij}R_{ij}=X_{ij} \\ y_j \leftarrow L_j^{-1}y_j \\ b_{ij} \leftarrow Q_{ij}^Ty_j \\ b_{ij} \leftarrow R_{ij}^{-1}b_{ij} \end{array}$$

Loop Transposition

$$b_{ij} = \left(X_i^T M_j^{-1} X_i\right)^{-1} X_i^T M_j^{-1} y_j$$

$$\begin{array}{l} \text{for } i=1:m\\ \\ \text{for } j=1:t\\ \\ L_jL_j^T=M_j\\ \\ X_{ij}^T\leftarrow X_i^TL_j^{-T}\\ \\ Q_{ij}R_{ij}=X_{ij}\\ \\ y_j\leftarrow L_j^{-1}y_j\\ \\ b_{ij}\leftarrow Q_{ij}^Ty_j\\ \\ b_{ij}\leftarrow R_{ij}^{-1}b_{ij} \end{array}$$

$$\begin{array}{l} \text{or } j=1:t\\ \text{for } i=1:m\\ L_jL_j^T=M_j\\ X_{ij}^T\leftarrow X_i^TL_j^{-T}\\ Q_{ij}R_{ij}=X_{ij}\\ y_j\leftarrow L_j^{-1}y_j\\ b_{ij}\leftarrow Q_{ij}^Ty_j\\ b_{ij}\leftarrow R_{ij}^{-1}b_{ij} \end{array}$$

f

RWTHAACHEN UNIVERSITY

Reordering

$$b_{ij} = \left(X_i^T M_j^{-1} X_i\right)^{-1} X_i^T M_j^{-1} y_j$$

$$\begin{array}{l} \texttt{for} \ i=1:m \\\\ \texttt{for} \ j=1:t \\\\ L_jL_j^T=M_j \\\\ X_{ij}^T \leftarrow X_i^TL_j^{-T} \\\\ Q_{ij}R_{ij}=X_{ij} \\\\ y_j \leftarrow L_j^{-1}y_j \\\\ b_{ij} \leftarrow Q_{ij}^Ty_j \\\\ b_{ij} \leftarrow R_{ij}^{-1}b_{ij} \end{array}$$

$$\begin{array}{ll} \text{for } j=1:t\\ \text{for } i=1:m\\ L_jL_j^T=M_j\\ X_{ij}^T\leftarrow X_i^TL_j^{-T}\\ Q_{ij}R_{ij}=X_{ij}\\ y_j\leftarrow L_j^{-1}y_j\\ b_{ij}\leftarrow Q_{ij}^Ty_j\\ b_{ij}\leftarrow R_{ij}^{-1}b_{ij} \end{array}$$

Reordering

$$b_{ij} = \left(X_i^T M_j^{-1} X_i\right)^{-1} X_i^T M_j^{-1} y_j$$

$$\begin{array}{l} \text{for } i=1:m \\\\ \text{for } j=1:t \\\\ L_jL_j^T=M_j \\\\ X_{ij}^T \leftarrow X_i^TL_j^{-T} \\\\ Q_{ij}R_{ij}=X_{ij} \\\\ y_j \leftarrow L_j^{-1}y_j \\\\ b_{ij} \leftarrow Q_{ij}^Ty_j \\\\ b_{ij} \leftarrow R_{ij}^{-1}b_{ij} \end{array}$$

$$\begin{array}{l} \text{for } j=1:t\\ L_jL_j^T=M_j\\ y_j\leftarrow L_j^{-1}y_j\\ \text{for } i=1:m\\ X_{ij}^T\leftarrow X_i^TL_j^{-T}\\ Q_{ij}R_{ij}=X_{ij}\\ b_{ij}\leftarrow Q_{ij}^Ty_j\\ b_{ij}\leftarrow R_{ij}^{-1}b_{ij} \end{array}$$

RWTHAACHEN UNIVERSITY

Computational cost

RWITHAACHEN UNIVERSITY

How to pick a variant?

• Many algorithms for a single target equation. How do we pick one?

RWTHAACHEN UNIVERSITY

- Many algorithms for a single target equation. How do we pick one?
- Metric: flop count (often times not too descriptive)

Scenario	Alg. 1	Alg. 2	Alg. 3
One instance	$O(n^3)$	$O(n^3)$	$O(n^3)$
2D sequence	$O(tn^3 + mtn^2)$	$O(tn^3 + mtn^2)$	$O(n^3 + mtn)$

How to pick a variant?

- Many algorithms for a single target equation. How do we pick one?
- Metric: flop count (often times not too descriptive)

Scenario	Alg. 1	Alg. 2	Alg. 3
One instance	$O(n^3)$	$O(n^3)$	$O(n^3)$
2D sequence	$O(tn^3 + mtn^2)$	$O(tn^3 + mtn^2)$	$O(n^3 + mtn)$

Elmar Peise, *Hierarchical Performance Modeling for Ranking Dense Linear Algebra Algorithms*, 2012. http://arxiv.org/abs/1207.5217

- 2 Automation: Engine
- 3 Automation: Extensions

- Domain-specific linear algebra compiler
- $\bullet~$ Equation + Knowledge \rightarrow Families of algorithms

- Domain-specific linear algebra compiler
- Equation + Knowledge \rightarrow Families of algorithms
- Guidelines + Engine
- Extensions: Sequences, cost analysis

- Domain-specific linear algebra compiler
- Equation + Knowledge \rightarrow Families of algorithms
- Guidelines + Engine
- Extensions: Sequences, cost analysis
- Sequences of GLSs (GWAS): speedups > 100

- Domain-specific linear algebra compiler
- Equation + Knowledge \rightarrow Families of algorithms
- Guidelines + Engine
- Extensions: Sequences, cost analysis
- Sequences of GLSs (GWAS): speedups > 100

TO-DO

- Encode more available knowledge
- Rank algorithms to pick the "best"
- Matlab/Fortran code generator

Thanks to:

- Dr. Edoardo Di Napoli
- Matthias Petschow
- Roman lakymchuk
- Elmar Peise

Financial support from the **Deutsche Forschungsgemeinschaft** (German Research Association) through grant GSC 111 is gratefully acknowledged.

More details in

D. Fabregat, P. Bientinesi, A Domain-Specific Compiler for Linear Algebra Operations, 2012. http://arxiv.org/abs/1205.5975

Further questions?

fabregat@aices.rwth-aachen.de

