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Abstract. In this article we look at the generation of libraries for dense
linear algebra operations from a different perspective: instead of focus-
ing on the optimization (possibly automatically) of a routine, we address
the question “what would it take for a computer to mechanically (au-
tomatically) generate high-performance algorithms, much like a human
expert?”’. We will show that for a large class of operations, the math-
ematical description of the input and output variables represents the
necessary and sufficient information for a symbolic system to generate
loop-based algorithms as well as high-performance routines. Surprisingly,
the generation process is entirely prescribed by a proof of correctness:
taking Dijkstra’s advice, rather than starting from an algorithm and
trying to prove its correctness, we systematically build one so that its
correctness is guaranteed. This methodology is thus fundamentally differ-
ent with respect to a standard auto-tuning approach: while auto-tuning
often performs a parameter optimization over a large search space, our
methodology and system rely on symbolic and algebraic transformations,
and in principle, can be used to produce cost and error analyses hand in
hand with the generated algorithms.

1 Introduction

Dense linear algebra libraries provide the building blocks for a wide range of
scientific applications. Even applications that yield sparse linear systems often
require the manipulation of smaller dense subproblems. Consequently, these li-
braries are needed for each and every computing architecture, and undergo a
constant process of revision and upgrade. It is more than ten years that automa-
tion has been proposed as a means to both improve the quality, and decrease
the development effort, of such libraries [6,11]. In practice, the term automatic
is often used as synonym for optimization: given a routine and a target architec-
ture, implementation parameters—such as block size and unrolling factor—are
tuned over a search space by generating, executing and timing a massive number
of different implementations.

In a contrasting definition, automation is used to indicate that the decision
process leading to the solution of a target problem is so systematic that can be
reproduced by a mechanical system without human intervention. With respect
to libraries for dense linear algebra, we asked ourselves whether it is possible to



have a computer generate them, and what would be the necessary and sufficient
knowledge for this to happen. In this paper we demonstrate that for a class
of dense linear algebra operations, it is possible to transform the mathematical
description of the input and output variables a target operation into a family of
loop-based algorithms and into high-performance routines. Since these transfor-
mation steps can be performed by a computer algebra system like Mathematica,
then automation is achieved.

We show that the process for generating loop-based algorithms and routines
is entirely dictated by a proof of correctness. By adopting a formal derivation
approach, we transform the description of the target operation into constraints
that must be satisfied at different stages of the computation. The statements
constituting an algorithm are then constructed so that they satisfy such con-
straints. The key discovery was that if we limit the structure of the algorithm to
contain an initialization block followed by a loop, then for many operations it
is possible to identify —systematically and a priori- one or more loop-invariants
for the loop [1]. Once a loop-invariant is available, the corresponding loop can
be obtained through symbolic and algebraic manipulations, i.e., automatically.

The focus of this paper is on the formal derivation techniques that lead to
the automatic derivation of loop-based algorithms. Loop-based algorithms are
preferred to purely recursive ones as they allow the users to carefully select the
size of the submatrices involved in each iteration of the loop. This size, in turn,
directly affects the amount of data movement and the performance of the calls
to the BLAS library. Although not directly addressed in the derivation process,
performance comes out as a byproduct of the fact that our methodology returns
not one, but a family of loop-based algorithms for each target operation; such
a richness is necessary as it is often observed that the best algorithm, in terms
of performance, varies depending on factors like target architecture, parallelism,
problem size and even underlying BLAS [4].

A separate note is in place for multi-core processors. The simplest way to
exploit the computational power of these architectures is by linking the routines
to multi-threaded BLAS. This solution leads to high-performance for problems
from medium to very large size as it decomposes the computation into large calls
to highly optimized library routines. Recently it has been shown that for small
and medium sized problems a different approach yields higher performance than
multi-threaded routines: the execution of out of order algorithms-by-blocks [5].
Because of space limitation we only state here that out methodology encompasses
the automatic generation of this type of routines.

The rest of the paper is organized as follows. Section 2 introduces the concept
of formal correctness and describes how a proof of correctness can be exploited
to guide the generation of algorithms. In Section 3 we uncover the actual deriva-
tion of algorithms and we present results from a prototype symbolic system. In
Section 4 we we draw conclusions.



2 Automation from Formal Correctness

In this section we show how a symbolic system can transform the mathematical
definition of a target linear algebra operation into a family of loop-based algo-
rithms and/or routines. Key to this result are concepts from classical computer
science, such as formal correctness and goal-oriented programming. In order
simplify the exposition, we will carry out the derivation of algorithms for the
Cholesky factorization as an example.

Input. The initial information required for the generation of algorithms is the
mathematical definition of a target operation Op. This is specified by means
of two predicates, the Precondition (Ppy.) and the Postcondition (Ppost). Ppre
describes the domain, the dimensions and the properties of the input and output
operands before the execution of Op, while P,.s defines the relations involving
the input and output operands that hold true upon completion of the operation.
For the Cholesky factorization L := I'(A), Pyre and Ppogt are defined as

Ppre : { m(A) =n(A) =m(L) =n(L) N SPD(A) A
LowerTriangular(L) A Unknown(L) }, and (1)
Ppost : { LLT = A }, (2)

and they represent a description of the input matrix A and the output matrix
L. In these definitions, the functions m(Z) and n(Z) return the number of rows
and columns of matrix Z, the predicate SPD(Z) is true iff Z is a symmetric
positive definite matrix, LowerTriangular(Z) returns ¢rue iff Z is a square lower
triangular matrix, and predicate Unknown(Z) indicates that the matrix Z is an
output variable.

Partitioned Matrix Expression (PME). The PME is a predicate that estab-
lishes how different submatrices of the output matrices for Op can be expressed
in terms of submatrices of the input operands. This predicate, in conjunction
with Ppre and Ppogt contains the sufficient and necessary information to generate
algorithms. If an operation does not admit PME, then the following methodology
is not, applicable.

For a given operation, the PME is not unique. For many operations the PMEs
can be directly derived from the precondition and postcondition, solely by means
of partitioning and pattern matching, i.e., mechanically. For other operations,
like the LU factorization with pivoting, the PMEs are still derived from P, and
Ppost, but not exclusively through symbolic transformations. In these cases, it is
more challenging to achieve automation, as ad-hoc logic rules are to be deployed.
Depending on the target operation, one or more PMEs may be provided by the
user.

In general, the derivation of loop-based algorithms for an operation Op re-
quires knowledge of more PMEs than just those for Op. Consequently, the PMEs
are not arguments to be passed as input to the symbolic system. Instead, they



constitute a library of definitions, in the form of rewrite rules, that specify how
the computation of an operation can be decomposed into simpler operations. A
symbolic system will deduce these pieces of information either from the input
(Ppre and Ppost), or by accessing a database of pre-computed PMEs.

The PME for the Cholesky factorization is easily obtained by partitioning the
input matrix A in the postcondition, expanding, and through pattern matching.
The result is

Lyl O I'(Aryp) | 0 )
PME : = A 3
{ (LBL LBR) (ABLL;EF(ABR - LBLLgL) ®)

Size(Lrr) = Size(Arr) =k x k, k € [O,W(L)]}a

where the subscript letters T, B, L and R indicate a matrix partitioning, and
signify Top, Bottom, Left and Right, respectively. This predicate indicates that
independently of the partitioning size, the Top Left quadrant of the solution
matrix L contains the Cholesky factor of the corresponding quadrant of matrix
A: Lpp, = I'(Arp). Similarly, the Bottom Left and Bottom Right quadrants of L
contain respectively ABLL;E and the Cholesky factor of matrix ABRfLBLLgL.
These three relations have to be satisfied at the same time for a matrix L to be
the Cholesky factor of A.

Not only does the PME carry information on how to decompose an opera-
tion into suboperations, but it also contains information on dependencies among
them. Such dependencies can be easily detected through pattern-matching. Look-
ing again at the PME (3), quantity Ly, is function of Apy, only, therefore can be
directly computed. Quadrant Lpy depends on Apy, as well as Lrp, so it should
be computed only once Ly, is available; likewise, Lgg is function of Agr and
Lpr. These considerations lead to the dependency chain Lr; — Ly — Lpr,
where one quantity in the chain should be computed only once all the preceding
quantities have been computed.

Formal Correctness of Algorithms. Once the predicates Pyre, Ppost and
PME are available, we can set up a proof of correctness that the loop-based
algorithms for Op will have to satisfy. In E.W.Dijkstra’s words: “|...] the pro-
grammer should let correctness proof and program grow hand in hand. [...] If one
first asks oneself what the structure of a convincing proof would be and, having
found this, then constructs a program satisfying this proof’s requirements, then
these correctness concerns turn out to be a very effective heuristic guidance.” [7].

Hoare triples are the central tool of the Floyd-Hoare logic [8,10], a formal
system for reasoning about the correctness of computer programs. A triple de-
scribes how the execution of a section of code changes the state of the computa-
tion. A Hoare triple is of the form {P} C {Q} where P and () are predicates—
precondition and postcondition, respectively—and C'is a command. Such a triple
is read as: whenever the command C' is executed in a state in which P holds,
it will terminate and @ holds upon completion. In our settings, knowing the



predicates Py and Ppost, the goal is to construct an algorithm A such that the
Hoare’s triple

{Pore} A {Ppost } (4)

is satisfied. If such an algorithm A can be found, then it will correctly compute
the operation Op, by construction.

The Skeleton of a Proof of Correctness. In secking algorithms for Op, we
restrict our search to algorithms that consist of a simple initialization followed
by a loop. Expression (4) can be rewritten to take into account that A has the
structure Znit; A2, where Init represents an initialization block and A2 is a
loop:

{Ppre} Init; A2 {Ppost }-

The Floyd-Hoare logic tells us that this triple is satisfied if the following two
triples are in turn satisfied for a suitable state Q:

{Ppre} Init {Q}, {Q} A2 {Ppost}‘

Substituting A2 with the explicit loop structure While G do Body end, where
G is the loop-guard and Body denotes the computation executed at each iteration
of the loop, we obtain 5the triples

{Ppre} Init {Q}, {Q} While G do Body end {Ppos }- (5)

In order to fix the predicate ), we exploit the “Fundamental Invariance
Theorem for Loops”. This theorem refers to an assertion P, that holds before
and after each iteration of loop-based algorithms. Such a predicate is called a
loop-invariant. Here we paraphrase the theorem from Gries and Schneider’ book
A Logical Approach to Discrete Math [9]:

(12.43) Fundamental Invariance Theorem. Suppose
1. {Pny A G} S {Punyv} holds — i.e., execution of S begun in a state in
which P, and G are true terminates with P, true — and
2. {Pyv} while G do S end {true} — i.e., execution of the loop begun
in a state in which P, is true terminates.
Then {Pi} while G do S end {P,,, A =G} holds. In other words, if
the loop is entered in a state where P,,, is true, it will complete in a
state where P, is true and guard G is false.

The theorem tells us that if we could 1) discover a loop-invariant P, for our
loop A2, and 2) prove the termination of such a loop, then the following Hoare’s
triple would hold true:

{Pinv} While G do Body end {P,,, A ~G}. (6)

A comparison between Expressions (5), our goal, and (6), the theorem’s the-
sis, leads us to the following consideration: if the predicate { Py, A =G} implies



the postcondition Ppes;, then the natural choice for the state @ is P, (note
that a loop-invariant is ¢rue before the loop is ever entered). The triples (5) can
now be rewritten as

{Ppre} Init {Pny}, {Pinv} While G do Body end {-G A Py} (7)
under the following assumptions:

1. The predicate P, is a loop-invariant for loop A2;
2. The loop A2, when executed in a state in which P, is true, terminates;
3. The predicate {—G A Py} implies Ppogt.

We have thus reduced the problem of building correct loop-based algorithms A
that compute Op to the the problem of finding a predicate Py, and statements
Init, G and Body that satisfy the above assumptions and the triples (7).

3 Derivation of Algorithms

In this section we outline the steps necessary to derive systematically predicate
Pi, and statements Znit, G and Body from the predicates Ppre, Ppost and PME.

We begin by enforcing the termination of the loop A2. To this end we re-
quire 1) the loop-guard G to measure the advancement in the traversal of the
operands, and 2) the loop-body to include statements to make progress towards
traversing the operands. Specifically, we fix the structure of Body: we impose that
each iteration consist of a first stage in which one or more Repartition state-
ments expose new submatrices and subvectors of the operands, a second stage
of numerical computations (Sy) and a third and last stage in which Continue
with statements re-assemble submatrices and subvectors to guarantee progress.
In addition, we also require the Znit to only consist of simple assignments and
partitioning statements. Figure 1 (left) shows the structure of the two Hoare
triples (7) in light of these new constraints.

A Worksheet for Deriving Algorithms. Figure 1 (right) contains a generic
“worksheet” for deriving linear algebra algorithms of the form specified in Fig. 1
(left). The gray-shaded boxes contain statements that would appear in actual
code (Steps 3, 4, 5, 8), while the white boxes contain predicates expressing the
status of input/output variables at different stages in the algorithm (Steps la,
2,24, 6,7, 1b). The numbers in the “Step” column refer to the order in which
the worksheet is filled out to generate algorithms.

Step 1 requires no work, as the predicates P, and Pyos represent the in-
put to our methodology. Step 2 concerns with the identification of viable loop-
invariants. This piece of information will allow us to select the initialization
block, Step 3, and the loop guard, Step 4. The loop guard, in turn, allows us
to determine how the input and output operands are traversed in the algo-
rithm, corresponding to Steps 5a and 5b. These statements, which only consist
of repartitioning (indexing) operations, provide us with the tools to express the



‘StepH[D,E, F,..]=0p(A,B,C,D,.. )‘
{Ppre} Ta [[{ Pore }
Partition ... Partition ...
3
where ... ; where
{an} 2 { an }
4 ||While G do
2,4 {( Puv )A(G)}
{Punv} 5 Repartition
a
While G do where ...
6 P)e ore
Repartition ... { Pherore }
where ; 8 Su
Y 7 { Pafter }
Su 5b Continue with
Continue with ... ; 5 (P}
endwhile; endwhile
{RHVA_‘G} 274 {( Piny )/\_‘( G)}
1b { Ppost }

Fig. 1. Left: template for a formal proof of correctness for algorithms consisting of an
initialization step followed by a loop. Right: worksheet for developing algorithms.

loop-invariant before the execution of any computation, Step 6, and right after
the execution of the numerical computation, Step 7. Finally, by comparing these
two predicates we will identify the computational statements in Step 8.

Figure 2 shows a complete worksheet, filled out to generate one algorithm
for the Cholesky factorization.

Loop-Invariants (Step 2). The loop-invariant is a predicate that expresses
the state of the input and output variables during the execution of a loop. It has
the property of being true at the top and bottom of each loop iteration. If we
are able to find a loop-invariant for an algorithm that computes Op, then the
first hypothesis of the Fundamental Invariance Theorem [9] is satisfied:
{an A G} S {Pinv}~

Different loop-invariants are derived from the PME by considering individual
operations that contribute to the final result. Each such operation may or may
not have been performed at an intermediate stage of the computation: a loop-
invariant is a subset of the operations appearing in the PME. On the other hand,
not every subset of the operations from the PME yields a feasible loop-invariant.
We have already seen that the PME carries information about dependencies
among quadrants: one condition for a subset to be feasible is that it must satisfy
the dependency chains. A mechanical system can build the dependency chain
and keep track of the dimensions for each PME subexpression, thus discarding
infeasible choices of loop-invariants.>

3 A loop-invariant may result to be infeasible even if it satisfies the dependency chain.



The following table contains three loop-invariants for the Cholesky factor-
ization, corresponding to three choices of subsets of the operations appearing in
the PME. For the rest of this section we focus on the derivation of the algorithm
corresponding to loop-invariant #1.

#| Loop-invariants for Cholesky Factorization

1 (LTL =I'(Arp)|  x )
Lpr=0 |Lpr=0

5 ( Ly =I(Arp) | = >

Lor = AprLyt|Lyp =0

5 Lry =I'(Arp) | *
Lpr = ABLL:Fg‘LBR =Apr — LpLL}y,

Initialization (Step 3). Since the loop-invariant holds true before the loop
commences, the initialization Znit, Step 3 in Fig. 1, must have the property
that when executed in the state P, sets the variables to a state in which P,
holds: {Ppre} Znit { Py }. We require the initialization to consist of a (possibly
empty) list of statements to partition input and output operands and/or to set
them to specific values.

Since the derivation methodology requires no computation to be performed
at this stage, the initialization reduces to partitioning some or all the variables
(from Pp,e) in such a way that, for each variable that is partitioned, at least one
of the submatrices (vectors are a special case of matrices) is null.* A mechanical
system can exhaustively try out all the possible partitionings (conformally to
the matrix properties describes in P,,.), selecting the ones that render ¢rue the
implication Pye = Piny. If no such partitioning is found, the loop-invariant
is labelled as infeasible and no further steps are executed.

In our example, the initialization that makes the loop invariant true is

L= <%‘E),A = (%‘A*TR) with Ly and A7 empty matrices.

Loop Guard (Step 4). The loop-guard G is the condition under which the pro-
gram enters the loop; conversely, when the loop completes, =G is true. If the loop
terminates, then the second hypothesis of the Fundamental Invariance Theorem
is satisfied too, hence the thesis of the theorem can be asserted: (P, A —G)
holds true after the loop. Note that if (P,y A —G) implies Ppost then we can
conclude that, upon termination, the loop correctly computes Ppyos;. An appro-
priate loop-guard can be derived by comparing the loop-invariant P, with the
postcondition Ppost.

4 A matrix is null if one or both its dimensions are zero.



The variables that have been partitioned as part of the initialization contain
at least one null submatrix. At each iteration of the loop, one of the empty
submatrices is expanded, until it encompasses the entire matrix. The loop-guard
is given by a predicate of the form “the null submatrix Z,, is not equal in size
to the entire matrix Z;” the submatrix xy can be found by a system, testing
exhaustively all the alternatives and selecting one for which the implication
Py AN ~G = Ppo is true. If no such partitioning is found, the loop-invariant
is labelled as infeasible and no further steps are executed.

The loop guard for the Cholesky factorization is ~SameSize(L, Lrr).

Traversing the Operands (Steps 5a & 5b). Step 5a and 5b are responsible
to guarantee termination of the loop by traversing the operands. Step ba ex-
poses new regions of the operands and Step 5b re-assembles the regions so that
progress is achieved. In terms of a Hoare triple, these two statements are cho-
sen so that {Py, A G} while G do Step 5a; Step 5b; end {true} is satisfied.
No actual computation happens at these stages, they merely represent indexing
operations.

How to traverse through the variables follows directly from the initialization
and the loop-guard. The Repartition and Continue statements are responsible
to make progress towards making G false by increasing the size of the initially
null matrix in G. Every other variable is then re-partitioned conformally. Fur-
thermore, operands with a particular structure (triangular, symmetric, diagonal)
can only be partitioned and traversed in a way that preserves the structure. This
analysis can be made mechanically.

The Repartition statements for the Cholesky example are

LOO AOO * *
(éLLIL_> — | Lio|L11 ; (%I%) — | Awo])Au] x |,
BLITBR Loo|Lo1|Lao BLIZBR Asp|Aai|Aso

where L1; and A7 are b x b

and the Continue statements are
L A * | ~

Lor 00 A | * 00
17 — | Lio|L11 N1z — | Aio|Air] *
BLIBR Log| Lot |La2 BLIEBR Agp| A1 | Aso

From Loop-Invariant to Algorithm (Steps 6—8). With respect to the skele-
ton in Fig. 1 (left), we are left to determine the computational statements Sy .
We know that for each iteration it holds

{Puv} Repartition...; Sy; Continue... {Py,},

where the Repartition and Continue statements have already been deter-
mined. Thus it is possible to compute states Ppefore and Phager to satisfy the
chain of triples

{Pwnv} Repartition... {Pycfore} Su {Patter} Continue... {Py,},
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and finally Sy will be determined by comparing Ppefore and Pagier-

Piofore: This predicate corresponds to P, expressed in terms of newly exposed
parts of the operands, right after the Repartition statements. The expression
for Pyefore is computed by 1) applying the textual substitution rules dictated
by Repartition to the P, 2) expanding by means of the rewrite rules de-
fined by the PMEs (and by common linear algebra identities) and, 3) simplify-
ing. Performing textual substitution is straightforward, while the expansion and
simplification of the expressions requires powerful symbolic computation tools.
In our example Pyefore becomes

Loo I'(Ago)
Lig| L1y = 0 0
Log | La1 | Lo 0 00

Patter: Similarly to the previous step, this predicate only expresses P, in terms
of partitioned operands. In particular, P,ser equals P, before the execution of
the Continue statements. The computation of this predicate is analogous to the
computation of Ppefore except that the textual substitution rules are dictated by
the Continue statements.

Predicate Pagter for the Cholesky factorization is

Lo I'(Ago)
Lio|L1: = | ALl | (A1 — LioL%)
Log|La1 | Loz 0 0 0

Su: The computational statements are chosen so that the triple

{Poetore} Su {Phatter} holds true. In other words, we have to identify a set of
updates that transform the state Ppefore into Pagter. The goal is achieved by a
direct comparison of the two states. This step can be executed mechanically by
a system with strong pattern matching capabilities.

From a comparison of the predicates Ppefore and Phagier that we derived for the
Cholesky factorization, we realize the following facts. The contents of submatrix
L1, are the same before and after Sy, so no computation is required. This is
not the case for the quadrants L1y and L7, which need to be updated for the
loop-invariant to be satisfied at the end of the iteration. L1 requires a triangular
solve, and because of the dependency chain, this operation has to be performed
before any update on L1; can happen. In fact, in order to compute L1, one has
to first update matrix Ay; by means of the just computed L1g, and then solve a
small Cholesky subproblem. The updates are listed here:

LlO = AlO LEOT (TRSM)
L11 = All - Ll()L,’lTO (GEMM)
L11 = F(Lll) (Cholesky)
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8-step Procedure. We have demonstrated that there exists an 8-step proce-
dure to fill out the worksheet in Fig. 1. The procedure transforms predicates
Ppre and Ppost into an algorithm—appearing in Steps 3, 4, 5 and 8—together
with its proof of correctness—in Steps 1, 2, 2,4, 6, and 7. This procedure can
be repeated as many times as the number of feasible loop-invariants, return-
ing a family of distinct algorithms. A complete worksheet for loop-invariant #1
of the Cholesky factorization is shown in Fig. 2. The worksheet for a different
loop-invariant would differ only in Steps 6-8.

Thanks to a set of APIs developed as part of the FLAME project [2], the
same procedure is used to generate routines in a variety of languages, including
Matlab, C and Fortran, and targeting both sequential and parallel architectures.
Fig. 4 shows the Matlab implementation for the algorithm we just derived.

A Prototype System. Not every step in the 8-step procedure requires com-
plicated calculations. Steps 2 through 5 are relatively simple, and often times
coincide across many algorithms in the same family. The bulk of the complexity
lies with Steps 6, 7 and 8, as they require decomposition (through PMEs), ma-
nipulation, simplification, and matching of symbolic expressions. Furthermore,
these steps differ for each loop-invariant.

In order to facilitate the computation of Pyefore, Patter and Sy, we prototyped
a mechanical system. The system provides an environment to perform symbolic
operations with blocked matrices, and allows us to manipulate matrix functions
by means of substitution rules, simplifications and pattern matching [3]. When
fed with a loop-invariant, the system returns the corresponding loop-based al-
gorithm, in the form of a filled worksheet or a Matlab or C routine.

Figures 3 and 4 illustrate the worksheet and a Matlab routine, respectively,
as generated by the mechanical system for loop-invariant #1 of the Cholesky fac-
torization. The graphical style of Fig. 3, in particular, is designed to resemble the
worksheet in Fig. 2. The boxes labelled “loop invariant” correspond to Steps 2, 6
and 7 in the worksheet. The expression for Pagier (Step 7) contains annotations
to simplify the successive task of identifying computational updates (Step 8).
Expressions with a gray background are quantities readily available in one of
the operands and require no computation. Expressions in red, instead, indicate
a dependency: computation is required, but it can be reused. The computa-
tional statements in Step 8 are ordered so that the dependencies are satisfied.
In Fig. 3, for example, the update for submatrix Li; contains the submatrix
L9, highlighted in red. This means that the update for Ly should be computed
first, and then the result used for computing L;;. The computational statements
satisfy such an ordering.

Our prototype system has been applied to a number of problems. In some
cases it acted as a sanity check against which to test results; examples are the
derivation of algorithms for the Sylvester equation AX + XB = C, and the
inversion of symmetric positive definite matrices. In many other cases it was
used to tackle problems that otherwise could not have been solved by hand. For
example, as part of the development of a full Level-3 BLAS library, the system
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lStepHL = 1'(A)
la [|{ (see Predicate (1))}

3 Partition L = ( LTL ) and A = <ATL * )

Lpr | LBr Apr | ABRr
where L7y and Arp are 0 X 0

: [ (o) - (59 )}

4 ||While —SameSize(L, Lrr) do

2.4 {(( LI LBH) - (F("é“) - )) A (—\SameSize(L,LTL))}

Repartition
Jb, A
Lrw 00 Ary " 00| * *
Sa 7 7 — | Lio|L1: "\ A A — | Ao Ai| *
B Loo | La1 | Loz BEIEBR Ao | A21 | Aso
where Li; and A1 are b X b
Loo I'(Aoo)
6 L10 L11 - 0 O
Log | Loy | La22 0[0
Lio := A1o Ly (TRSM)
8 La1 := A1y — LioLY, (GEMM)
L11 = F(Lll) (Cholesky)
Loo I'(Aoo)
7 Lio | L11 = A10L50 I'(A11 — LioLTp)
Lao | Lo1 | La22 0 0

Continue with
5b LTL| EOO 17 ATL| * joo A* a
(LBL LBR)(_ 10|11 7<ABL ABR><— 10[A11) *
Log| L2y | Loz Az |Aa1 | Az
| () - (7))
Lpr | Ler 0 0

endwhile

2,4 {(( gi — ) _ <F(f(1)n) . >> A ﬁ(ﬁsameSize(L,LTL))}

1b [[{L=TI(A),ie., LLT = A}

Fig. 2. Worksheet completed for the computation of the Cholesky factor.

generated algorithms for each operation and for each parameter combination
(transpose/no-transpose, upper/lower triangular, etc.), resulting in more than
300 mechanically derived algorithms. More examples come from control theory
equations, on which our system has been extensively tested: the system gener-
ated dozens of algorithms for many such equations including the particularly
challenging triangular coupled Sylvester equation; for this operation we found
more than 50 algorithms, out of which only three were previously known.
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Operation:  [L] =cholesky1(A)

Partition

Are | T[AeL] L | O
AH(ABL Agr ) LH(LBL LBR)
wher e AL Lt are enpty

| oop invariant:

L1 I'[-lga. T[lkga] + 33]

(LTL‘O)i(F[ATL]‘O)
Le. |Ler /| AeL | Aer
Wil e Lo <> L
Repartition
Ao | (T[Aw] T[Ax]) Loo 0
AL TlAeL] L O
S| TA Ai TiAz] ST Ly O
(a a1 ()] (B 0T ] e ) () [ Lzz)]
| oop invariant before the updates:
Loo | 0 T[Aoo] | 0
[ L1o ‘ Ly O }: A1o ‘ Air T[An] ]
(o ) [ (0 to )] (e ) | (e e )
L1o | = lkig. T (koo *]

Continue with

A  T[Aw] T[A0] Loo O
{ ( Ao Anr ) ‘ ( T[A2 ] ) J - ( :L ;B[ABL ] ) s [ ( Lio L1z ) 0 } - ( l[TL (E
(Ao A1) | Az - a (L2o La1i ) |La2 BTER

J}

| oop invariant (s) after the updates:

Lo | O | O Loo 0 0
{Lm Lin | O | = | ko, Tkoo ] |T[-kso. T(kge] +bkgg] | O
Loo [La1 | L22 L2o Lo1 L2z

end while

Fig. 3. Mechanically derived blocked algorithm for computing the Cholesky factor.

4 Conclusions

We have shown that for a class of linear algebra operations, the mathematical
description of the operation—encoded in the predicates Ppre, Ppost and PME—
contains the necessary and sufficient information to automatically generate algo-
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function [A] = choleskyL1( A , nb )

[ ATL, ATR,
ABL, ABR ]

FLA_Part_2x2( A,0,0,’FLA_TL’);

%% Loop Invariant

%% ATL=choleskyL [ATL]
%% ABL’=0

%% ABL=ABL

%% ABR=ABR

while( size(ATL,1) ~= size(A,1) | size(ATL,2) ~= size(A,2) )
b = min( nb, min( size(ABR,1), size(ABR,2) ));

[ A00, AO1, AO2,
A10, A11, A12,
A20, A21, A22 ] = FLA_Repart_2x2_to_3x3(ATL, ATR,...
ABL, ABR,...
b, b, ’FLA_BR’);

%* >k 5k 5k 5k 3k >k 5k ok >k ok >k 5k ok 5k ok 5k 3k ok 5k ok 5k 3k ok 5k ok 5k 5k 5k 5k ok ok ok >k 3k >k ok ok >k 5k >k ok ok >k 5k >k 5k >k >k >k >k %k %k >k %k *%
A10 = A10 . inv(A0O)’;
A11 = choleskyL(A11 - A10 . A10’);
%* >k 5k 5k 5k 3k >k 3k ok >k 5k >k 5k ok 5k ok 5k 3k ok 5k ok 5k 3k >k 5k ok 5k 5k >k 5k ok ok 5k 5k 3k >k ok ok >k 5k >k 5k ok >k k >k 5k >k >k >k >k %k %k >k %k *%
[ ATL, ATR,
ABL, ABR ] = FLA_Cont_with_3x3_to_2x2(A00, AO01, A02,
A10, A11, A12,
A20, A21, A22,
"FLA_TL’);

end;
A = ATL;
return;

Fig. 4. Mechanically generated Matlab routine for computing the Cholesky factor.

rithms. From this information it is in fact possible to identify, a priori, a family
of loop-invariants for algorithms that compute a target operation. Using formal
derivation techniques, we set up a proof of correctness that algorithms have to
satisfy. The constraints set by the proof, together with the knowledge of a loop-
invariant, fully dictate the steps of a derivation procedure that transforms Ppye,
P,ost and PME into algorithms and routines.

We also presented a prototype of a mechanical system that implements the
most challenging steps of the aforementioned derivation procedure. The system
takes a loop-invariant as input and returns a formally correct algorithm descrip-
tion or routine as output. Since we reasoned that loop-invariants can also be
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mechanically derived from the operation specifications, we conclude that for-
mally correct algorithms can be generated mechanically.

Performance is a direct consequence of the fact that our derivation procedure
yields not one, but a family of algorithms. A variety of algorithms, together with
a set of APIs for distributed and shared memory architectures, leads to high-
performance in many different scenarios. In the case of multicore processors it
has been shown that the algorithms-by-block parallel paradigm leads to high-
performance. Our methodology naturally extends to this paradigm too.

Finally one comment on numerical stability. We have established that for-
mally correct algorithms can be mechanically generated. Unfortunately, since
we deal with floating point computations, formal correctness does not translate
into accuracy. A stability analysis of every generated algorithm is needed. To
this end we have extended the derivation worksheet and the derivation proce-
dure to investigate numerical properties [3]. The analysis is made systematic and
modular, and in principle can be automated.
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