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ontribution of this paper is also the fat that we an systematially derive the loop-invariants that ditatethe di�erent algorithmi variants for omputing a given operation.The tehniques in this paper apply to linear algebra operations for whih there are algorithms that onsistof a simple initialization followed by a loop. While this may appear to be extremely restritive, the linearalgebra libraries ommunity has made tremendous strides towards modularity. As a onsequene, almostany operation an be deomposed into operations (linear algebra building bloks) that, on the one hand, arethemselves meaningful linear algebra operations and, on the other hand, whose algorithms have this simplestruture. At this time, we do not have a lean haraterization of the operations that fall into this ategory.Over the last few years, we have shown that it inludes all Basi Linear Algebra Subprograms (BLAS)(levels 1, 2, and 3) [1, 2, 17, 6, 5, 13℄, all major fatorization algorithms (LU, Cholesky, and QR) [11℄, matrixinversion (of general, symmetri, and triangular matries) [18℄, and a large number of operations that arisein ontrol theory [19℄. A subset of these operations is given in Fig. 1.The format of the paper is that of a tutorial and inludes exerises for the reader. We assume only thatthe reader has a basi understanding of linear algebra. In partiular, it is important for the reader to reallhow to multiply partitioned matries. For those not uent in the art of high-performane implementation oflinear algebra algorithms we suggest �rst reading [11℄. That paper also disusses better how our approahrelates to the state-of-the-art in high-performane linear algebra library development.This paper is organized as follows: In Setion 2 we introdue a few of the basis regarding the veri�ationof the orretness of algorithms. In Setion 3 we show how to use these tehniques to verify the orretnessof algorithms for linear algebra operations by onentrating on a relatively simple operation that omputesthe solution of a triangular system of equations with multiple right-hand sides. In Setion 4 we go onestep further by showing that by onstruting an algorithm hand-in-hand with the proof of its orretness, astep-by-step method emerges for deriving families of orret algorithms for a given linear algebra operation.While the methodology inherently derives loops for omputing a given operation, we briey disuss howreursive algorithms �t into the piture in Setion 5. Conluding remarks whih largely onentrate on thefuture diretions of this researh an be found in the �nal setion.While it is the derivation of the algorithms that is the entral fous of this paper, we do address thepratial issues of stability, implementation, and performane. So as not to distrat from the entral message,these topis are disussed in Appendix A.2 Corretness of AlgorithmsIn this setion we review the relevant formal derivation tehniques.2.1 NotationAs part of our reasoning about the orretness of algorithms we will use prediates to indiate assertionsabout the state of the variables enountered in an algorithm. For example, after the ommand� := 1whih assigns the value 1 to the salar variable �, we an assert that the prediate \� = 1" is true. We anthen indiate the state of variable � after the assignment by the prediate f� = 1g.Similarly, we an use prediates to assert how a statement hanges the state. If Q and R are prediatesand S is a sequene of ommands then fQgSfRg has the following interpretation ([8℄, page 100):If exeution of S is begun in a state satisfying Q, then it is guaranteed to terminate in a �niteamount of time in a state satisfying R.Here fQgSfRg is alled the Hoare triplet and Q and R are referred to as the preondition and postonditionfor the triplet, respetively.
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Level-3 BLAS Symmetri Matrix-Matrix Multipliation (SYMM)C := �(L+ L̂T )B + �C C := �(U + ÛT )B + �CC := �B(L+ L̂T ) + �C C := �B(U + ÛT ) + �CSymmetri Rank-K Update (SYRK)lo(C) := �lo(AAT ) + �lo(C) up(C) := �up(AAT ) + �up(C)lo(C) := �lo(ATA) + �lo(C) up(C) := �up(ATA) + �up(C)Symmetri Rank-2K Update (SYR2K)lo(C) := �lo(ABT +BAT ) + �lo(C) up(C) := �up(ABT +BAT ) + �up(C)lo(C) := �lo(ATB +BTA) + �lo(C) up(C) := �up(ATB +BTA) + �up(C)Triangular Matrix-Matrix Multipliation (TRMM)B := �LB B := �LTB B := �UB B := �UTBB := �BL B := �BLT B := �BU B := �BUTTriangular Solve with Multiple Right-Hand Sides (TRSM)B := �L�1B B := �L�TB B := �U�1B B := �U�TBB := �BL�1 B := �BL�T B := �BU�1 B := �BU�TLevel-3 BLAS-Like OperationsTRMM-Like OperationsL1 := �L1L2 L2 := �L1L2 L := �LUT L := �UTLU1 := �U1U2 U2 := �U1U2 U := �LTU U := �ULTTRSM-Like OperationsL1 := �L1L�12 L2 := �L�11 L2 L := �LU�T L := �U�1LU1 := �U1U�12 U2 := �U�11 U2 U := �L�TU U := �UL�TMisellaneouslo(C) := lo(LLT ) + lo(C) up(C) := up(LLT ) + up(C)lo(C) := lo(LTL) + lo(C) up(C) := up(LTL) + up(C)lo(C) := lo(UUT ) + lo(C) up(C) := up(UUT ) + up(C)lo(C) := lo(UTU) + lo(C) up(C) := up(UTU) + up(C)lo(L) := lo(L�1L�T ) lo(L) := lo(L�TL�1)up(U) := up(R�1R�T ) up(U) := up(R�TR�1)C := �UL+ �C C := �LU + �CFatorization OperationsA := LnU = LU(A) A := UnL = UL(A)A := L = Chol(A) A := U = Chol(A)A := QnR = QR(A) A := QnL = QL(A)A := RnQ = RQ(A) A := LnQ = QL(A)Inversion OperationsA := A�1 lo(A) := lo(A�1) (symmetri A)L := L�1 U := U�1Operations from Control TheorySolution of the Sylvester EquationC := X where L1X +XL2 = C C := X where U1X +XU2 = CC := X where LX +XU = C C := X where UX +XL = CSolution of the Lyapunov Equation (symmetri C)C := X where LX +XLT = C C := X where LTX +XL = CC := X where UX +XUT = C C := X where UTX +XU = CFigure 1: A sampling of operations to whih the formal derivation tehnique has been applied. Note thatfor most of these, real as well as omplex oating point implementations are required. In this �gure, lo(A)and up(A) return (referene) the lower and upper triangular part of that matrix, repetively.3



Example The prediatef� = �g� := �+ 1f� = (� + 1)gis true. Here � = � is the preondition while � = (� + 1) is the postondition.2.2 The orretness of loopsIn a standard text by Gries and Shneider, used to teah program veri�ation to undergraduates in omputersiene, we �nd the following([9℄, pages 236{237)1:We prefer to write a while loop using the syntaxdo G! S odwhere Boolean expression G is alled the [loop-℄guard and statement S is alled the repetend.[The l℄oop is exeuted as follows: If G is false, then exeution of the loop terminates; otherwiseS is exeuted and the proess is repeated.Eah exeution of repetend S is alled an iteration. Thus, if G is initially false, then 0 iterationsour.The text goes on to state:We now state and prove the fundamental invariane theorem for loops. This theorem refers to anassertion P that holds before and after eah iteration (provided it holds before the �rst). Suh aprediate is alled a loop-invariant.(12.43) Fundamental Invariane Theorem. Suppose1. fP ^ GgSfPg holds { i.e. exeution of S begun in a state in whih P and G aretrue terminates with P true { and2. fPg do G! S od ftrueg { i.e. exeution of the loop begun in a state in whih Pis true terminates.Then fPg do G ! S od fP ^ :Gg holds. [In other words, if the loop is entered in astate where P is true, it will omplete in a state where P is true and guard G is false.℄The text proeeds to prove this theorem using the axiom of mathematial indution.3 Veri�ation of Linear Algebra AlgorithmsIn this setion, we use the operation that omputes the solution of a triangular system with multiple right-hand sides to relate formal veri�ation methods to algorithms for linear algebra operations.Given a nonsingular m�m lower triangular matrix L and an m� n general matrix B, let X equal thesolution of the equation LX = B: (1)Partitioning matries X and B in (1) by olumns yieldsL � x1 x2 � � � xn � = � b1 b2 � � � bn �1Small hanges from the original text are delimited by [: : :℄. In addition, in that text B is used to denote the (loop-)guard,while we use G. The primary reason for this is that B is ommonly used to denote one of the matrix operands.4



or � Lx1 Lx2 � � � Lxn � = � b1 b2 � � � bn � :From this we onlude that eah olumn of the solution, xj , must satisfy Lxj = bj . In other words, thesolution of (1) requires the solution of a triangular system for eah olumn of B. Sine the oeÆient matrix,L, is the same for all olumns, the overall omputation is referred to as a triangular solve with multipleright-hand sides (trsm). A simple algorithm for overwriting B with the solution X ,B := X = L�1B; (2)is now given in Fig. 2. We emphasize that rather than omputing L�1, the solution of Lxj = bj is omputed,overwriting bj . Computing the solution of a triangular system of equations this way is often referred to asforward substitution.In order to relate the above material to the disussion in the previous setion regarding the veri�ationof the orretness of a loop, we turn our attention to Fig. 3. Let B̂ denote the original ontents of B, letm(A) and n(A) return the row and olumn dimensions of matrix A, respetively, and let LowTr(A) be trueif and only if A is a lower triangular matrix. The preondition (Step 1a in Fig. 3) is given byPpre : (B = B̂) ^ (n(L) = m(L)) ^ LowTr(L) ^ (n(L) = m(B)):Note 1 For brevity, we will assume throughout this paper that the dimensions and struture of the matriesare orret and will simply give the preondition as Ppre : B = B̂ ^ : : :.Sine upon ompletion the loop is to have omputed (2) the postondition is given by Ppost : B = L�1B̂(Step 1b).If one asks what has been omputed at the top of the loop in Fig. 2, one disovers that the �rst j � 1olumns have been overwritten by the desired solution. In our approah, we partition B and B̂ asB ! � BL BR � and B̂ ! � B̂L B̂R � (3)where (relating this to Fig. 2) BL and B̂L represent the �rst j�1 olumns of B and B̂, respetively. (Notiethat subsripts L and R stand for Left and Right, respetively.) Thus, at the top of the loop the desiredurrent ontents of B are given by Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :, the loop-invariant (Step2). Sine the loop in Fig. 2 is exeuted as long as not all olumns have been updated, the loop-guard is givenby n(BL) 6= n(B) (Step 3).Now, the loop-invariant must be true before the loop ommenes, whih is ahieved by \boot-strapping"the partitioning in (3) by letting BL have no olumns (Step 4).Finally, we are ready to disuss the body of the loop in Fig. 3. In Fig. 2, the left-most olumn of the setof olumns yet to be updated is updated, moving it to the set of olumns that have been updated. In ournotation, we aomplish this by repartitioning as in Step 5a, whih means that the urrent ontents of B,in terms of the repartitioned matries, is given byQbefore : � B0 b1 B2 � = � L�1B̂0 b̂1 B̂2 � ^ : : :(Step 6). Next, the exposed olumn is updated (Step 8), whih updates the ontents of B toQafter : � B0 b1 B2 � = � L�1B̂0 L�1b̂1 B̂2 � ^ : : :(Step 7). After this, the updated olumn is moved from BR to BL (Step 5b).The Fundamental Invariane Theorem an now be used to show that all assertions in Fig. 3 are truewhih shows that the algorithm is orret. Finally, we notie that B̂ was only introdued for the bene�t ofthe assertions in Fig. 3. Sine the update in the body of the loop never referened B̂ or its submatries, a�nal algorithm is given in Fig. 4.Exerise 3.1 Consider the alternative algorithm for omputing the olumns of B in reverse order:for j = n; : : : ; 1bj := xj = L�1bjendforCreate an annotated algorithm like that given in Fig. 3 for this algorithm.5



for j = 1; : : : ; nbj := xj = L�1bjendforFigure 2: Simple algorithm for omputing B := X = L�1B.Step Annotated Algorithm: B := L�1B1a nPpre : B = B̂ ^ : : :o4 Partition B ! � BL BR � and B̂ ! � B̂L B̂R �where n(BL) = n(B̂L) = 02 �Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :	3 while G : (n(BL) 6= n(B)) do2,3 ��Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :� ^ (G : (n(BL) 6= n(B)))	5a Repartition� BL BR �! � B0 b1 B2 � and � B̂L B̂R �! � B̂0 b̂1 B̂2 �where n(b1) = 16 �Qbefore : � B0 b1 B2 � = � L�1B̂0 b̂1 B̂2 � ^ : : :	8 b1 := L�1b17 �Qafter : � B0 b1 B2 � = � L�1B̂0 L�1b̂1 B̂2 � ^ : : :	5b Continue with� BL BR � � B0 b1 B2 � and � B̂L B̂R � � B̂0 b̂1 B̂2 �2 �Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :	enddo2,3 ��Pinv : � BL BR � = � L�1B̂L B̂R � ^ : : :� ^ : (G : (n(BL) 6= n(B)))	1b nPpost : B = L�1B̂oFigure 3: Annotated algorithm for the omputation of B := X = L�1B by olumns.Partition B ! � BL BR � and B̂ ! � B̂L B̂R �where n(BL) = n(B̂L) = 0while G : (n(BL) 6= n(B)) doRepartition� BL BR �! � B0 b1 B2 � and � B̂L B̂R �! � B̂0 b̂1 B̂2 �where n(b1) = 1b1 := L�1b1Continue with� BL BR � � B0 b1 B2 � and � B̂L B̂R � � B̂0 b̂1 B̂2 �enddoFigure 4: Final algorithm for the omputation of B := X = L�1B by olumns.6



Annotated Algorithm: [D;E;F; : : :℄ = op(A;B;C;D; : : :)fPpregPartitionwherefPinvgwhile G dof(Pinv) ^ (G)gRepartitionwherefQbugSUfQaugContinue withfPinvgenddof(Pinv) ^ : (G)gfPpostgFigure 5: Worksheet for developing linear algebra algorithms.4 Derivation of Linear Algebra AlgorithmsThe example in the previous setion is suh that one might onlude that asserting that the algorithm inFig. 2 is orret is rather trivial. In this setion, we laim that in fat the \worksheet" that we reated for thetrsm operation an be applied to onstrutively derive a large number of algorithms for this operation andfor a large lass of linear algebra operations. Indeed, given the preondition and postondition, wewill show that all other omponents of the generi worksheet given in Fig. 5 are systematiallypresribed, leading to a family of algorithms for a given linear algebra operation. We desribe the derivationproess in this setion, illustrating the steps by deriving a somewhat more omplex algorithm for omputingtrsm.The most general form that a linear algebra operation takes is given by[D;E; : : :℄ := op(A;B;C;D; : : :); (4)where the variables on the left of the assignment := are the output variables. Notie that, as for the trsmoperation in the previous setion, some of the input variables an appear as output variables.Example (trsm) In the previous setion we saw that the triangular solve with multiple right-handsides, trsm, an be expressed as B := L�1B = trsm(L;B), where L is a m �m lower triangularmatrix and B is an m � n general matrix. For the matrix multipliation on the right to be well-de�ned, the olumn dimension of L must math the row dimension of B. We will want to overwriteB with the result without requiring a work array.Step 1The desription of the input and output variables ditates the preondition Ppre. For variables that are tobe overwritten, it is important to introdue variables that indiate the original ontents. If X is both aninput and an output variable, we will typially use Ẑ to denote the original ontents of Z.
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Example (ontinued) The variables for trsm an be desribed by the preonditionPpre : B = B̂ ^ n(L) = m(L) ^ LowTr(L) ^ n(L) = m(B)where, as before, B̂ indiates the original ontents of B. For brevity, we will typially only expliitlystate the most important part of this prediate: Ppre : B = B̂ ^ : : :.The operation to be performed and the substitutions required to indiate the original ontents of variablesditate the postondition Ppost.Example (ontinued) The operation to be performed, B := L�1B, translates to the postonditionPpost : B = L�1B̂.Step 2The primary way in whih we now deviate from the disussion in Setion 3 is that we now sys-tematially derive the di�erent parts of the annotated algorithm. In partiular, we derive possibleloop-invariants rather than starting with an implementation from whih the loop-invariant is dedued.To determine a set of possible loop-invariants, we pik one of the variables and partition it into twosubmatries, either horizontally or vertially, or into quadrants. The general rule is that if a matrix hasspeial struture, e.g., triangular or symmetri, it is typially partitioned into quadrants that are onsistentwith the struture. If the matrix has no speial struture, it an be partitioned vertially or horizontally, orinto quadrants.Example (ontinued) Let us pik variable L. Sine it is triangular, we partition it asL! � LTL 0LBL LBR � :Here LTL is square so that both submatries on the diagonal are themselves lower triangular. (Thesubsripts TL, BL, and BR stand for Top-Left, Bottom-Left, and Bottom-Right, respetively.)Next, we substitute this partitioned variable into the postondition, whih is then used to determine thepartitioning of the other variables.Example (ontinued) Substituting the partitioning of L into the postondition yields(some partitioning of B) = � LTL 0LBL LBR ��1 (some partitioning of B̂)This suggests that B and B̂ should be partitioned horizontally into two submatries, or into quad-rants. Let us onsider the ase where B and B̂ are partitioned horizontally into two submatries.Then � BTBB � = � LTL 0LBL LBR ��1 B̂TB̂B !In order to be able to multiply the matries on the right out and to be able to then set the submatrieson the left equal to the result on the right we �nd that the following must hold:n(LTL) = m(B̂T ) ^m(LTL) = m(BT ) (5)whih in turn implies that m(BT ) = m(B̂T ) sine LTL is a square matrix. This is onvenient, sineB and B̂ will referene the same matrix (B is being overwritten).8



Table 1: Possible loop-invariants for the trsm example when the proess is started by partitioning matrixL into quadrants. The reason listed for rejeting the loop-invariant given in the olumn labeled \Comment"may not be the only reason for doing so.Loop-invariant Comment� BTBB � = � B̂TB̂B � Infeasible (Reason 2).� BTBB � = � L�1TLB̂TB̂B � Loop-invariant 1.� BTBB � = � L�1TLB̂TB̂B � LBLL�1TLB̂T � Loop-invariant 2.� BTBB � = � L�1TLB̂T�LBLL�1TLB̂T � Infeasible (Reason 1).� BTBB � = � L�1TLB̂TL�1BR(B̂B � LBLL�1TLB̂T ) � Infeasible (Reason 3).We now perform the operation using the partitioned matries. This gives us the desired �nal ontents ofthe output parameter(s) in terms of the submatries.Example (ontinued)� BTBB � = � LTL 0LBL LBR ��1 B̂TB̂B ! =  L�1TL 0�L�1BRLBLL�1TL L�1BR ! B̂TB̂B !and hene � BTBB � =  L�1TLB̂TL�1BR(B̂B � LBLL�1TLB̂T ) ! (6)Di�erent possible loop-invariants an now be derived by onsidering individual operations that ontributeto the �nal result. Eah suh operation may or may not have been performed at an intermediate stage.Careful attention has to be paid to the inherent order in whih the operations should be resolved. Anyof the resulting onditions on the urrent ontents of the output variable together with the onstraints onthe struture and dimensions of the submatries is now onsidered a possible loop-invariant. For eah suhpossible loop-invariant the subsequent steps performed will either show it to be infeasible or will yield analgorithm for omputing the operation. Reasons for delaring a loop-invariant infeasible inludeReason 1: (Data dependeny) The loop-invariant assumes that data that is needed in a subsequent omputationhas been overwritten with a partial or �nal result.Reason 2: No loop-guard exists suh that Pinv ^ :G) Ppost.Reason 3: No initialization step SI exists that involves only the partitioning of the variables suh that fPpregSIfPinvgis true.Reason 4: (Operation dependeny) The loop-invariant requires redundant omputation to be performed. Notiethat sometimes is beomes bene�ial to perform redundant omputation in an e�ort to ahieve higherperformane, in whih ase this reason for rejeting a possible loop-invariant would not apply.Example (ontinued) A areful look at (6) shows that inherently L�1TLB̂T should be omputed�rst, followed by B̂B �LBL(L�1TLB̂T ), and, �nally, L�1BR(B̂B �LBL(L�1TLB̂T )). This leads to a subsetof possible loop-invariants given in Table 1. 9



Example (ontinued) The feasibility of di�erent possible loop-invariants is disussed in Table 1.We will subsequently use the loop-invariant� BTBB � =  L�1TLB̂TB̂B ! (7)as our example, showing it to be feasible by deriving an algorithmi variant orresponding to it.Notie that, stritly speaking, the onditions indiated in (5) should be part of the loop-invariant.Step 3The loop-invariant Pinv and postondition Ppost ditate the loop-guard G sine it must have the propertythat Pinv ^ :G) Ppost.Example (ontinued) Comparing the loop-invariant in (7) with the postondition B = L�1B̂we see that if B = BT , B̂ = B̂T , and L = LTL then the loop-invariant implies the postondition,i.e., that the desired result has been omputed. Thus, we must hoose a loop-guard G so that itsnegation, :G, implies that the dimensions of these matries math appropriately and therefore that(Pinv ^ :G)) Ppost. The loop-guard G : (m(LTL) 6= m(L)) meets this ondition.Note 2 If no loop-guard an be found so that Pinv^:G ) Ppost, then the loop-invariant is delared infeasibleby Reason 2 in Step 2.Step 4The loop-invariant Pinv and preondition Ppre ditate the initialization step, SI . More preisely, SI shouldpartition the variables so that fPpregSIfPinvg is true.Example (ontinued) Consider the initialization statement SI :Partition B ! � BTBB �, B̂ !  B̂TB̂B !, and L! � LTL 0LBL LBR �where BT and B̂T have 0 rows and LTL is 0� 0in Step 4 in Fig. 6. Sine then BT and B̂T have no rows, and BB = B and B̂B = B̂, it is not hardto see that fPpregSI fPinvg is true.Note 3 If no initialization SI an be found so that fPpregSifPinvg is true then the loop-invariant is delaredinfeasible by Reason 3 in Step 2.Step 5The loop-guard G and the initialization SI ditate in what diretion the variables need to be repartitionedto make progress towards making G false.Example (ontinued) Loop-guard G indiates that eventually LTL should equal all of L, at whihpoint G beomes false and the loop is exited. After the initialization, LTL is 0�0. The partitioningof L is also suh that LTL should always be square. Thus, the repartitioning should be suh that asthe omputation proeeds the dimensions of LBR should derease as the dimensions of LTL inrease.This is aomplished by the shifting of the double-lines as indiated in Steps 5a and 5b in Fig. 6.Notie that we are exposing bloks of rows and/or olumns as part of the movement of the doublelines. The reason for this is related to performane and will beome more learly apparent inAppendix A.2. 10



Step 6The repartitioning of the variables and the loop-invariant Pinv in Step 5a ditates Qbefore, the state of thevariables before the update SU . In partiular, the double lines in the repartitioning have semanti meaningin that they show what submatries of the repartitioned matrix orrespond to the original submatries.Substituting the submatries of the repartitioned matrix into the appropriate plae in the loop-invariantyields Qbefore. This is (often referred to as) textual substitution into the expression that de�nes the loop-invariant.Example (ontinued) The repartitionings in Step 5a in Fig. 6 identify thatLTL = L00LBL = � L10L20 � LBR = � L11 0L21 L22 � ; BT = B0BB = � B1B2 � ; and B̂T = B̂0B̂B = � B̂1B̂2 � :Textual substitution into the loop-invariant yields the stateQbefore : 0� B0� B1B2 � 1A = 0B� L�100 B̂0� B̂1B̂2 � 1CA ^ : : : (8)Step 7The rede�nition via partitioning of the variables in Step 5b and the loop-invariant Pinv ditate the desiredstate of the variables after the update SU and before the shifting of the double-lines, Qafter. This an againbe viewed as textual substitution of the various submatries into the loop-invariant.Example (ontinued) The rede�nition in Step 5b in Fig. 6 identi�es the following equivalentsubmatries:LTL = � L00 L0L10 L11 �LBL = � L20 L21 � LBR = L22 ; BT = � B0B1 �BB = B2 ; and B̂T = � B̂0B̂1 �B̂B = B̂2 :Textual substitution into the loop-invariant implies that the following state must be true before therede�nition in Step 5b. In other words, the update in Step 8 must leave the variables in the stateQafter : 0� � B0B1 �B2 1A = 0B� � L00 0L10 L11 ��1� B̂0B̂1 �B̂2 1CAwhih, inverting the triangular matrix and multiplying out the right-hand side, is equivalent toQafter : 0� � B0B1 �B2 1A = 0B� � L�100 B̂0L�111 (B̂1 � L10L�100 B̂0) �B̂2 1CA (9)Step 8The di�erene in the states Qbefore and Qafter ditates the update SU .
11



Example (ontinued) Comparing (8) and (9) we �nd that the updatesB1 := B1 � L10B0B1 := L�111 B1are required to hange the state from Qbefore to Qafter.Note 4 If no update an be found that does not use the original ontents of a matrix to be overwritten, theneither the loop-invariant is infeasible (for Reason 1 in Step 2) or inherently a temporary variable is required.Example (ontinued) In our example, if the update inherently has to use submatries of B̂(referening the original ontents of B), the loop-invariant would be infeasible sine the operation isexpeted to overwrite the original matrix without requiring a temporary variable.Step 9: The �nal algorithmOften variables that indiate the original ontents of a variable are only introdued to failitate the predi-ates denoting the states at di�erent stages of the algorithm. Whenever possible, suh variables should beeliminated from the �nal algorithm.Example (ontinued) By reognizing that B̂ is never referened we an eliminate all parts of thealgorithm that refer to this matrix, yielding the �nal algorithm given in Fig. 7.Exerise 4.1 (Partition L Variant 2) Repeat Steps 3{8 for the feasible loop-invariantPinv : � BTBB � =  L�1TLB̂TB̂B � LBLL�1TLB̂T ! ^ : : :State the �nal algorithm by removing referenes to B̂, similar to the algorithm given in Fig. 7Exerise 4.2 Repeat Step 2 by hoosing to partition B vertially:B ! � BL BR � :Show that this leads to a vertial partitioning of B̂: B̂ ! � B̂L B̂R � while L is not partitioned at all.Finally, show that this leads to two possible loop-invariants:� BL BR � = � L�1B̂L B̂R � ^ : : : (10)and � BL BR � = � B̂L L�1B̂R � ^ : : : (11)Exerise 4.3 (Partition B Variant 1) In Exerise 4.2 onsider loop-invariant (10). Show that by applyingSteps 3-9 one an systematially derive the algorithms in Figs. 3 and 4.If one repartitions � BL BR �! � B0 b1 B2 � ; : : :one reovers exatly those algorithms, while the repartitioning� BL BR �! � B0 B1 B2 � ; : : :yields the orresponding bloked algorithm.Exerise 4.4 (Partition B Variant 2) Repeat Exerise 4.3 with loop-invariant (11) and relate the result toExerise 3.1. 12



Step Annotated Algorithm: B := L�1B1a nB = B̂ ^ : : :o4 Partition B ! � BTBB �, B̂ !  B̂TB̂B !, and L! � LTL 0LBL LBR �where BT and B̂T have 0 rows and LTL is 0� 02 (� BTBB � =  L�1TLB̂TB̂B !)3 while m(LTL) 6= m(L) do2,3 ( � BTBB � =  L�1TLB̂TB̂B !! ^ (m(LTL) 6= m(L)))5a Determine blok size bRepartition� LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1A,� BTBB �! 0� B0B1B2 1A,  B̂TB̂B !! 0B� B̂0B̂1B̂2 1CAwhere m(B1) = m(B̂1) = b and m(L11) = b6 8><>:0� B0� B1B2 � 1A = 0B� L�100 B̂0� B̂1B̂2 � 1CA9>=>;8 B1 := B1 � L10B0B1 := L�111 B17 8><>:0� � B1B2 �B2 1A = 0B� � L�100 B̂0L�111 (B̂1 � L10L�100 B̂0) �B̂2 1CA9>=>;5b Continue with� LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1A,� BTBB � 0� B0B1B2 1A,  B̂TB̂B ! 0B� B̂0B̂1B̂2 1CA2 (� BTBB � =  L�1TLB̂TB̂B !)enddo2,3 ( � BTBB � =  L�1TLB̂TB̂B !! ^ : (m(LTL) 6= m(L)))1b nPpost : B = L�1B̂oFigure 6: Annotated algorithm for trsm example.13



Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doDetermine blok size bRepartition� BTBB �! 0� B0B1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1Awhere m(B1) = b and n(L11) = bB1 := B1 � L10B0B1 := L�111 B1Continue with� BTBB � 0� B0B1B2 1A and � LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1Aenddo Figure 7: Algorithm for the trsm example.5 ReursionFor the unbloked algorithms, where the boundaries move one row and/or olumn at a time, the operationsthat update the ontents of some of the matries tend to be relatively simple. Algorithms for those operationsan also be systematially derived, hand-in-hand with the proof of their orretness. Ultimately, thesealgorithms are build upon addition, subtration, multipliation, and division as well as operations suh astaking the square root of a salar. Thus, orret algorithms for these operations an be derived using ourtehniques.For the bloked algorithms, the operation for whih we are deriving the algorithms tends to show up asan operation in the body of the loop (the repetend). Clearly the orretness of the bloked algorithm anbe ensured by employing some orret algorithm for this operation in the repetend. In the simplest ase,a orret unbloked algorithm an be derived and utilized. However, the implementation of the blokedalgorithm itself an be alled reursively, or a di�erent bloked algorithmi variant an be used. It isnot diÆult to see that, as long as only a �nite number of levels of suh alls are allowed and a orretimplementation is alled at every level, the orretness of the overall algorithm is ensured.6 Conlusions and Future DiretionsIn this paper we have presented a systemati approah to the derivation of provably orret linear algebraalgorithms. The methodology represents what we believe to be a signi�ant re�nement of our earlier ap-proah, presented in [11℄. The result is a formal method whih, in our opinion, puts the derivation of familiesof orret algorithms for a lass of dense linear algebra operations on solid theoretial footing. We wouldlike to think that it has sienti�, pedagogial, and pratial impliations.The fat that we an now systematially derive orret algorithms leads to a number of additionalquestions:� One a orret algorithm has been derived, there is still the problem of translating this algorithm toode without introduing programming bugs. We hint at a solution to this problem in Appendix A.1as well as in [11, 13, 2℄. 14



� If it were possible to fully automate the derivation and implementation of provably orret algorithmsfor linear algebra operations, then one ould laim that this area of researh is well-understood.A prototype system, implemented by Sergey Kolos at UT-Austin as part of a semester projet, auto-matially derives all algorithms for some linear algebra operations using Mathematia [21℄ as a tool.This indiates that automation may be ahievable.� In pratie, implementations of di�erent algorithms will have di�erent performane harateristis asa funtion of suh parameters as operand dimensions and arhitetural spei�s (see also Setion A.3).Thus, given that a family of algorithms has been derived, one must hoose from among the algorithms.Systemati (or automati) derivation of parameterized ost analysis hand-in-hand with the algorithmsand implementations would be highly desirable. An alternative to this would be the identi�ation ofgeneral tehniques for a heuristi for seletion.Some preliminary work on the automati derivation of ost analyses for parallel arhitetures showsthat this may be possible [10℄.� Not all algorithmi variants will neessarily have the same stability properties. The most attrativesolution to this problem would be to make systemati or to automate the derivation of the stabilityanalysis, hand-in-hand with the derivation of the algorithm. It is not lear that this is ahievable.� We have shown that the presented tehniques apply to a wide range of linear algebra operations, someof whih are given in Fig. 1. It would be highly desirable to more preisely haraterize the lass ofproblems to whih the tehnique applies.In onlusion, it is our belief that the appliation of formal derivation methods to dense linear algebraoperations provides a new tool for examining a number of hallenging open questions.Additional InformationAdditional information regarding formal derivation of algorithms for linear algebra operations an be foundat http://www.s.utexas.edu/users/flame/.AknowledgmentsWe would like to thank Fred G. Gustavson and G.W. (Pete) Stewart for extensive feedbak on this researh.Referenes[1℄ Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Margaret E. Myers, Enrique S.Quintana-Orti, and Robert A. van de Geijn. The siene of programming high-performane linearalgebra libraries. In Proeedings of Performane Optimization for High-Level Languages and Libraries(POHLL-02), June 2002. To appear.[2℄ Paolo Bientinesi and Robert A. van de Geijn. Developing linear algebra algorithms: Class projetsSpring 2002. Tehnial Report CS-TR-02-??, Department of Computer Sienes, The University ofTexas at Austin, June 2002. In preparation. http://www.s.utexas.edu/users/flame/.[3℄ E. W. Dijkstra. A onstrutive approah to the problem of program orretness. BIT, 8:174{186, 1968.[4℄ E. W. Dijkstra. A disipline of programming. Prentie Hall, 1976.[5℄ Jak J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3 basi linearalgebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Marh 1990.15
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A.1 ImplementationThe systemati derivation of provably orret algorithms solves only part of the problem, namely that ofestablishing that there are no logi errors in the algorithm. So-alled programming bugs are generallyintrodued in the translation of the algorithm into ode. While the implementation of the algorithms is notthe topi of this paper, we show in Fig. 8 how an appropriately de�ned API, our FLAME library [14, 11, 13℄,an be used to program algorithms so that the ode losely resembles the algorithms.Notie that the orretness of the implementations depends on the orretness of the operations used toimplement the derived algorithms. The operations that partition matries, reating referenes into the orig-inal matries, are extremely simple. Thus their orretness an be established through normal (exhaustive)debugging methods or, preferably, they an themselves be formally proven orret. As mentioned in Se-tion 5, algorithms and implementations for operations required in the body of the algorithm an themselvesbe derived using our tehniques.The ode in Fig. 8 illustrates how the FLAME API an be used to implement the algorithms for trsmthat start by partitioning L. This example also illustrates how reursion and iteration an be easily mixedin the implementation, as mentioned in Setion 5.A.2 Experimental ResultsIn this setion we illustrate how the derivation method, ombined with the FLAME API, leads to high-performane algorithms and implementations for the trsm operation. Performane was measured on a 650MHz Intel (R) Pentium (R) III proessor-based laptop with a 256K L2 ahe running the Linux (Red Hat7.1) operating system. All omputations were performed in 64-bit (double preision) arithmeti. For ourimplementations, the FLAME API linked to BLAS provided by the ATLAS Version R3.2 BLAS library forthe Pentium III proessor [20℄. In other words, whenever a all like FLA Ger is made, it results in a allto the orresponding BLAS routine, in this ase the rank-1 update dger. The only exeption ours whenFLA Gemm is alled: For some of the experiments, the ATLAS implementation of the dgemm routine is alledby this routine. For other experiments, our ITXGEMM [12℄ implementation of matrix-matrix multipliationis alled instead.In our graphs we report the rate of omputation, in millions of oating point operations per seond(MFLOPS/se.), using the aepted operation ount of n3 oating point operations, where B is n � n.Notie that the theoretial peak of this partiular arhiteture is 650 MFLOPS/se. However, due to memorybandwidth limitations, in pratie the peak performane ahieved by dgemm is around 525 MFLOPS/se. [12℄.In Fig. 9 we report the performane of various unbloked algorithms. These implementations performthe bulk of their omputation in the level-2 BLAS operations dger, dgemv, and/or dtrsv [6℄. It is well-known that these operations annot attain high-performane sine they perform O(n2) operations on O(n2)data, whih makes the limited memory bandwidth a bottlenek. Note that Partition L variant 1 andPartition L variant 2 perform most of their omputation in dgemv and dger, respetively. This explainsthe relative performane of these implementations sine high-performane implementations of dgemv inurabout half the memory traÆ of dger. Partition B variant 1 performs the bulk of its omputation indtrsv. In theory, this implementation should atually be able to attain higher performane than eitherof the other two implementations for small matries as matrix L an be kept in the L1 ahe. However,its performane su�ers onsiderably from the fat that the FLAME approah to traking submatries ispartiularly expensive for this implementation.In Fig. 10 we report the performane of bloked versions of the algorithms when the algorithmi bloksizebequals 120 and an unbloked implementation of the indiated variant is used for the smaller subproblem.We also show the performane of reursive implementations where the bloks were hosen to equal b =120; 40; 20; 10, after whih an unbloked algorithm was used one matrix L was smaller than 10� 10. Thematrix-matrix multiply alled by FLA Gemm in this ase is provided by ATLAS. These blok sizes were hosenin an attempt to optimize the implementation that uses ATLAS.In Fig. 11 we report the same experiments as reported in Fig. 10 exept that our ITXGEMM matrixmultipliation kernel is used rather than the ATLAS ounterpart. The blok sizes were adjusted to aom-modate di�erent design deisions made when implementing this matrix multipliation kernel, as indiated17



void Trsm_partL_re( int variant, FLA_Obj L, FLA_Obj B, int nblks, int *nb_alg ){ FLA_Obj LTL, LTR, L00, L01, L02, BT, B0,LBL, LBR, L10, L11, L12, BB, B1,L20, L21, L22, B2;int b;FLA_Part_2x2( L, &LTL, /**/ &LTR,/* ************** */&LBL, /**/ &LBR, 0, 0, /* submatrix */ FLA_TL );FLA_Part_2x1( B, &BT,/***/&BB, 0, /* length submatrix */ FLA_TOP );while ( FLA_Obj_length( LTL ) != FLA_Obj_length( L ) ){b = min( FLA_Obj_length( LBR ), nb_alg[ 0 ℄ );FLA_Repart_2x2_to_3x3( LTL, /**/ LTR, &L00, /**/ &L01, &L02,/* ************* */ /* ********************* *//**/ &L10, /**/ &L11, &L12,LBL, /**/ LBR, &L20, /**/ &L21, &L22,b, b, /* L11 from */ FLA_BR );FLA_Repart_2x1_to_3x1( BT, &B0,/**/ /**/&B1,BB, &B2,b, /* length B1 from */ FLA_BOTTOM );/* ********************************************************************* */if ( variant == 1 )FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, L10, B0, ONE, B1 );if ( nblks > 1 ) Trsm_partL_re( variant, L11, B1, nblks-1, &nb_alg[ 1 ℄ );else Trsm_partL_unb( variant, L11, B1 );if ( variant == 2 )FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, L21, B1, ONE, B2 );/* ********************************************************************* */FLA_Cont_with_3x3_to_2x2( &LTL, /**/ &LTR, L00, L01, /**/ L02,/**/ L10, L11, /**/ L12,/* ************** */ /* ****************** */&LBL, /**/ &LBR, L20, L21, /**/ L22,/* L11 added to */ FLA_TL );FLA_Cont_with_3x1_to_2x1( &BT, B0,B1,/***/ /**/&BB, B2,/* B1 added to */ FLA_TOP );}}Figure 8: FLAME implementation of reursive bloked trsm algorithm in Fig. 7 (variant == 1) and thealgorithm in Exerise 4.1 (variant == 2).
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