
FLAME�lab: A Farewell to Indi
es�FLAME Working Note #11Paolo BientinesiDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712pauldj�
s.utexas.edu Enrique S. Quintana-Ort��Depto. de Ingenier��a y Cien
ia de ComputadoresUniversidad Jaume I12.071{Castell�on (Spain)quintana�i

.uji.esRobert A. van de GeijnDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712rvdg�
s.utexas.eduApril 9, 2003Abstra
tMATLAB-like environments have been essential tools for the development of linear algebra libraries foralmost three de
ades. The bene�ts in
lude ease of implementation and maintenan
e of
ode, fun
tionality,and intera
tivity. In this paper, we make the seemingly outrageous
laim that the s
ript language usedfor su
h environments is unne
essarily
omplex and stands in the way of the rapid development ofrobust, readable, and maintainable
ode. To
orre
t this problem, we propose the introdu
tion of ninealmost trivial fun
tions, the FLAME�lab API, that hide
omplex index manipulation. In isolation, theFLAME�lab interfa
e illustrates how raising the level of abstra
tion at whi
h one
odes allows one toavoid intri
ate indexing in the
ode, thereby redu
ing the opportunity for the introdu
tion of errors andraising the
on�den
e in the
orre
tness of the
ode. In
ombination with our Formal Linear AlgebraMethods Environment (FLAME) approa
h to deriving linear algebra algorithms, FLAME�lab be
omesan API for implementing proven
orre
t algorithms. Finally, in
ombination with a similar API for Cand for distributed memory parallel ar
hite
tures (our PLAPACK environment), FLAME�lab be
omesa natural step in the development of high-performan
e and parallel linear algebra libraries.1 Introdu
tionThe Formal Linear Algebra Methods Environment (FLAME) en
ompasses a methodology for deriving prov-ably
orre
t algorithms for dense linear algebra operations as well as an approa
h to representing (
oding)the resulting algorithms. Central to the philosophy underlying FLAME are the observations that it is ata high level of abstra
tion that one best reasons about the
orre
tness of algorithms, that therefore algo-rithms should themselves be expressed at a high level of abstra
tion, and that
odes that implement su
halgorithms should themselves use an API that
aptures this high level of abstra
tion. A key observationis that in reasoning about algorithms intri
ate indexing is typi
ally avoided and it is with the introdu
tion�This work was supported in part by NSF grant ACR-0203685 and the Visiting Resear
her program of the Institute forComputational Engineering and S
ien
es (ICES). 1

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT1 is a row and �11 is a s
alarbT1 := bT1 � lT10B0bT1 := ��111 bT1Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1Aenddo Figure 1: Unblo
ked algorithm for the trsm example.of
omplex indexing that programming errors are often en
ountered and
on�den
e in
ode is diminished.Thus a
arefully designed API should avoid expli
it indexing whenever possible.We have illustrated to the high-performan
e linear algebra library
ommunity the bene�ts of the formalderivation of algorithms in a series of previous papers [8, 12, 4℄. While there we alluded at an API thatallows
ode to re
e
t algorithms that have been derived to be
orre
t, in this paper we expli
itly give thisAPI for the MATLAB [11℄ M-s
ript programming language. Noti
e that in [14℄ we present a similar API forthe C programming language.Our FLAME�lab interfa
e
omes to �ll a gap in the development
y
le of linear algebra algorithms,giving the user the
exibility of MATLAB to test the algorithms designed using FLAME before goingto a high-performan
e sequential implementation using our FLAME/C API, and the subsequent parallelimplementation using, e.g., the Parallel Linear Algebra Pa
kage (PLAPACK) [15, 3, 1℄.This paper is organized as follows: In Se
tion 2, we present an example of how we represent a broad
lassof linear algebra algorithms in our previous papers. The most important
omponents of the FLAME�labAPI are presented in Se
tion 3. A dis
ussion of how the developed algorithms,
oded using the M-s
riptlanguage,
an be migrated to sequential and parallel
ode written in C is dis
ussed in Se
tion 4. A few
on
luding remarks are given in Se
tion 5.2 A Typi
al Dense Linear Algebra AlgorithmIn [4℄ we introdu
ed a methodology for the systemati
 derivation of provably
orre
t algorithms for denselinear algebra algorithms. It is highly re
ommended that the reader be
ome familiar with that paper beforepro
eeding with the remainder of this paper. This se
tion gives the minimal ba
kground in an attempt tomake the present paper self-
ontained.The algorithms that result from the derivation pro
ess present themselves in a very rigid format. Weillustrate this format in Fig. 1 whi
h gives an (unblo
ked) algorithm for the
omputation of B := L�1B,where B is an m�n matrix and L is an m�m lower triangular matrix. This operation is often referred to asa triangular solve with multiple right-hand sides (trsm). Noti
e that the presented algorithm was derived2

in [4℄.At the top of the loop-body, it is assumed that di�erent regions of the operands L and B have been usedand/or updated in a
onsistent fashion. These regions are initialized byPartition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0Here T , B, L, and R stand for Top, Bottom, Left, and Right, respe
tively.Note 1 Of parti
ular importan
e in the algorithm are the single and double lines used to partition andrepartition the matri
es. Double lines are used to demark regions in the matri
es that have been used and/orupdated in a
onsistent fashion. Another way of interpreting double lines is that they keep tra
k of how farinto the matri
es the
omputation has progressed.Let B̂ equal the original
ontents of B and assume that B̂ is partitioned like B. At the top of the loopit will be assumed that BB
ontains the original
ontents B̂B while BT has been updated with the
ontentsL�1TLB̂T . As part of the loop, the boundaries between these regions are moved one row and/or
olumn at atime so that progress towards
ompletion is made. This is a

omplished byRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT1 is a row and �11 is a s
alar...Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1ANote 2 Single lines are introdu
ed in addition to the double lines to demark regions that are to be updatedand/or used in the next step of the algorithm. Upon
ompletion of the update, the regions de�ned by thedouble lines are updated to re
e
t that the
omputation has moved forward.Note 3 We adopt the often-used
onvention where matri
es, ve
tors, and s
alars are denoted by upper-
ase,lower-
ase, and Greek letters, respe
tively [13℄.Note 4 A row ve
tor is indi
ated by adding a transpose to a ve
tor, e.g. bT1 and lT10.The repartitioning exposes submatri
es that must be updated before the boundaries
an be moved. Thatupdate is given bybT1 := bT1 � lT10B0bT1 := ��111 bT1Finally, the desired result has been
omputed when LTL en
ompasses all of L so that the loop
ontinuesuntil m(LTL) 6= m(L) be
omes false. Here m(X) returns the row dimension of X .Note 5 We would like to
laim that the algorithm in Fig. 1
aptures how one might naturally explain aparti
ular algorithmi
 variant for
omputing the solution of a triangular linear system with multiple right-hand sides. 3

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doDetermine blo
k size bRepartition� BTBB �! 0� B0B1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1Awhere m(B1) = b and m(L11) = n(L11) = bB1 := B1 � L10B0B1 := L�111 B1Continue with� BTBB � 0� B0B1B2 1A and � LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1Aenddo Figure 2: Blo
ked algorithm for the trsm example.[m, n ℄ = size(B);for i=1:mb:mb = min(mb, m-i+1);B(i:i+b-1, :) = B(i:i+b-1, :) - ...L(i:i+b-1, 1:i-1) * B(1:i-1, :);B(i:i+b-1, :) = ...inv(tril(L(i:i+b-1, i:i+b-1))) * B(i:i+b-1, :);end Figure 3: MATLAB implementation of blo
ked trsm algorithm in Fig. 2Note 6 The presented algorithm only requires one to use indi
es from the sets fT;Bg, fL;Rg, and f0; 1; 2g.It is Note 6 that is
aptured in the title of this paper.For performan
e reasons, it is often ne
essary to formulate the algorithm as a blo
ked algorithm asillustrated in Fig. 2. The performan
e bene�t
omes from the fa
t that the algorithm is ri
h in matrixmultipli
ation whi
h allows pro
essors with multi-level memories to a
hieve high performan
e [7, 2, 8, 5℄.Note 7 The algorithm in Fig. 2 is implemented by the more traditional MATLAB
ode given in Fig. 3.We
laim that the introdu
tion of indi
es to expli
itly indi
ate the regions involved in the update
ompli
atesreadability and redu
es
on�den
e in the
orre
tness of the MATLAB implementation. Indeed, an explanationof the
ode will inherently require the drawing of a pi
ture that
aptures the repartitioned matri
es in Fig. 2.In other words, someone experien
ed with MATLAB
an easily translate the algorithm in Fig. 2 into theimplementation in Fig. 31. The
onverse is
onsiderably more diÆ
ult.1We realize that the use of inv(tril(L(i:i+mb-1, i:i+mb-1)))
an introdu
e numeri
al instability and that there-fore one in pra
ti
e would
ode this as the solution of a triangular system with multiple right-hand sides.4

3 The FLAME�lab Interfa
e for Linear Algebra AlgorithmsIn this se
tion we introdu
e a set of MATLAB M-s
ript fun
tions that will allow us to
apture in
ode thelinear algebra algorithms presented in the format illustrated in the previous se
tion. The idea is that bymaking the
ode look like the algorithms in Figs. 1 and 2 the opportunity for the introdu
tion of
odingerrors is redu
ed.3.1 Bidimensional partitioningsAs illustrated in Figs. 1 and 2, in stating a linear algorithm one may wish to partition matri
es likePartition B ! � BTBB � and A! � ATL ATRABL ABR �where BT has k rows and ATL is k � kWe hide
ompli
ated indexing by using MATLAB matri
es. Given a MATLAB matrix A, the following
all
reates one matrix for ea
h of the four quadrants:[ATL, ATR,...ABL, ABR ℄ = FLA_Part_2x2(A,...mb, nb, quadrant)Purpose: Partition matrix A into four quadrants where the quadrant indi
ated by quadrant ismb� nb.Here quadrant is a MATLAB string that
an take on the values 'FLA TL', 'FLA TR', 'FLA BL', and'FLA BR' to indi
ate that mb and nb are the dimensions of the Top-Left, Top-Right, Bottom-Left, orBottom-Right quadrant, respe
tively.Note 8 Note that invo
ation of the operation[ATL, ATR,...ABL, ABR ℄ = FLA_Part_2x2(A,...mb, nb, 'FLA_TL')in MATLAB
reates four new matri
es, one for ea
h quadrant. Subsequent modi�
ations of the
ontents of aquadrant do not a�e
t therefore the original
ontents of the matrix. This is an important di�eren
e to
onsider with respe
t to other FLAME APIs [14℄ where the quadrants are views (referen
es)into the original matrix, not
opies of it!As an example of the use of this routine, the translation of the algorithm fragment on the left results inthe
ode on the rightPartition A! � ATL ATRABL ABR �where ATL is mb � nb [ATL, ATR,...ABL, ABR ℄ = FLA_Part_2x2(A,...mb, nb, ...'FLA_TL')where the parameters mb and nb have values mb and nb, respe
tively. Examples of the use of this routine
an also be found in Figs. 4 and 5.Note 9 The above example stresses the fa
t that the formatting of the
ode
an be used to help
apture thealgorithm in
ode. Clearly, some of the bene�t of the API would be lost if in the example the
ode appearedas [ATL, ATR, ABL, ABR ℄ = FLA_Part_2x2(A, mb, nb, 'FLA_TL')5

1 fun
tion [X ℄ = Trsm_llnn_unb_var1(L, B)2 %3 [LTL, LTR,...4 LBL, LBR ℄ = FLA_Part_2x2(L,...5 0, 0, 'FLA_TL');6 [BT,...7 BB ℄ = FLA_Part_2x1(B,...8 0, 'FLA_TOP');910 while(size(LTL, 1) ~= size(L, 1))11 [L00, l01, L02,...12 l10t, lambda11, l12t,...13 L20, l21, L22 ℄ = FLA_Repart_2x2_to_3x3(LTL, LTR,...14 LBL, LBR,...15 1, 1, 'FLA_BR');16 [B0,...17 b1t,...18 B2 ℄ = FLA_Repart_2x1_to_3x1(BT,...19 BB,...20 1, 'FLA_BOTTOM');21 %* ** *%22 b1t = b1t - l10t * B0;23 b1t = inv(lambda11) * b1t;24 %* ** *%25 [LTL, LTR,...26 LBL, LBR ℄ = FLA_Cont_with_3x3_to_2x2(L00, l01, L02,...27 l10t, lambda11, l12t,...28 L20, l21, L22,...29 'FLA_TL');30 [BT,...31 BB ℄ = FLA_Cont_with_3x1_to_2x1(B0,...32 b1t,...33 B2,...34 'FLA_TOP');35 end3637 X = BT;38 return;Figure 4: FLAME implementation of unblo
ked trsm algorithm in Fig. 1 using the FLAME�lab interfa
e.
6

1 fun
tion [X ℄ = Trsm_llnn_blk_var1(L, B, mb)2 %3 [LTL, LTR,...4 LBL, LBR ℄ = FLA_Part_2x2(L,...5 0, 0, 'FLA_TL');6 [BT,...7 BB ℄ = FLA_Part_2x1(B,...8 0, 'FLA_TOP');910 while(size(LTL, 1) ~= size(L, 1))11 b = min(mb, size(LBR, 1));1213 [L00, L01, L02,...14 L10, L11, L12,...15 L20, L21, L22 ℄ = FLA_Repart_2x2_to_3x3(LTL, LTR,...16 LBL, LBR,...17 b, b, 'FLA_BR');18 [B0,...19 B1,...20 B2 ℄ = FLA_Repart_2x1_to_3x1(BT,...21 BB,...22 b, 'FLA_BOTTOM');23 %* ** *%24 B1 = B1 - L10 * B0;25 B1 = Trsm_llnn_unb_var1(L11, B1);26 %* ** *%27 [LTL, LTR,...28 LBL, LBR ℄ = FLA_Cont_with_3x3_to_2x2(L00, L01, L02,...29 L10, L11, L12,...30 L20, L21, L22,...31 'FLA_TL');32 [BT,...33 BB ℄ = FLA_Cont_with_3x1_to_2x1(B0,...34 B1,...35 B2,...36 'FLA_TOP');37 end3839 X = BT;40 return;Figure 5: FLAME implementation of blo
ked trsm algorithm in Fig. 2 using the FLAME�lab interfa
e.
7

Also from Figs. 1 and 2, we noti
e that it is useful to be able to take a 2 � 2 partitioning of a givenmatrix A and repartition that into a 3 � 3 partitioning so that the submatri
es that need to be updatedand/or used for
omputation
an be identi�ed. To support this, we introdu
e the
all[A00, A01, A02,...A10, A11, A12,...A20, A21, A22 ℄ = FLA_Repart_2x2_to_3x3(ATL, ATR,...ABL, ABR,...mb, nb, quadrant)Purpose: Repartition a 2� 2 partitioning of matrix A into a 3� 3 partitioning where the mb� nbsubmatrix A11 is split from the quadrant indi
ated by quadrant.Here quadrant
an again take on the values 'FLA TL', 'FLA TR', 'FLA BL', and 'FLA BR' to indi
ate thatthe mb and nb submatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respe
tively.ThusRepartition� ATL ATRABL ABR �! 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is mb � nbtranslates to the
ode[A00, A01, A02,...A10, A11, A12,...A20, A21, A22 ℄ = FLA_Repart_2x2_to_3x3(ATL, ATR,...ABL, ABR,...mb, nb, 'FLA_BR')where the parameters mb and nb have values mb and nb, respe
tively. Other examples of the use of thisroutine
an also be found in Figs. 4 and 5.Note 10 Similarly to what is expressed in note 8, the invo
ation of the operation[A00, A01, A02,...A10, A11, A12,...A20, A21, A22 ℄ = FLA_Repart_2x2_to_3x3(...)
reates nine new matri
es, and any modi�
ation of the
ontents of A00, A01, A02, : : :, does not a�e
t theoriginal matrix A nor the four quadrants ATL, ATR, ABL, ABR.Note 11 Choosing variable names
an further relate the
ode to the algorithm, as is illustrated by
omparing0� L00 0 0lT10 �11 0L20 l21 L22 1A and L00, l01, L02,l10t, lambda11,l12t,L20, l21, L22,in Figs. 1 and 4. Noti
e here that although in the algorithm
ertain regions are identi�ed as
ontaining onlyzeroes, variables are needed to identify those regions when partitioning.On
e the
ontents of the so-identi�ed submatri
es have been updated, the des
riptions of ATL, ATR,ABL, and ABR must be updated to re
e
t that progress is being made, in terms of the regions identi�ed bythe double-lines. This moving of the double-lines is a

omplished by a
all to8

[ATL, ATR,...ABL, ABR ℄ = FLA_Cont_with_3x3_to_2x2(A00, A01, A02,...A10, A11, A12,...A20, A21, A22,...quadrant)Purpose: Update the 2 � 2 partitioning of matrix A by moving the boundaries so that A11 isadded to the quadrant indi
ated by quadrant.This time the value of quadrant ('FLA TL', 'FLA TR', 'FLA BL', or 'FLA BR') indi
ates to whi
h quadrantsubmatrix A11 is to be added.For example,Continue with� ATL ATRABL LBR � 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Atranslates to the
ode[ATL, ATR,...ABL, ABR ℄ = FLA_Cont_with_3x3_to_2x2(A00, A01, A02,...A10, A11, A12,...A20, A21, A22,...'FLA_TL')Further examples of the use of this routine
an again be found in Figs. 4 and 5.3.2 Horizontal partitioningsSimilarly, a matrix
an be partitioned horizontally into two submatri
es with the
all[AT,...AB ℄ = FLA_Part_2x1(A,...mb, side)Purpose: Partition matrix A into a top and a bottom side where the side indi
ated by side hasmb rows.Here side
an take on the values 'FLA TOP' or 'FLA BOTTOM' to indi
ate that mb indi
ates the row dimensionof AT or AB , respe
tively.Given that matrix A is already partitioned horizontally it
an be repartitioned into three submatri
eswith the
all[A0,...A1,...A2 ℄ = FLA_Repart_2x1_to_3x1(AT,...AB,...mb, side)Purpose: Repartition a 2� 1 partitioning of matrix A into a 3 � 1 partitioning where submatrixA1 with mb rows is split from the side indi
ated by side.Here side
an take on the values 'FLA TOP' or 'FLA BOTTOM' to indi
ate that submatrix A1, with mb rows,is partitioned from AT or AB , respe
tively.Given a 3� 1 partitioning of a given matrix A, the middle submatrix
an be appended to either the �rstor last submatrix with the
all 9

[AT,...AB ℄ = FLA_Cont_with_3x1_to_2x1(A0,...A1,...A2,...side)Purpose: Update the 2�1 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indi
ated by side.Examples of the use of the routine that deals with the horizontal partitioning of matri
es
an be found inFigs. 4 and 5.3.3 Verti
al partitioningsFinally, a matrix
an be partitioned and repartitioned verti
ally with the
alls[AL, AR ℄ = FLA_Part_1x2(A,...int nb, int side)Purpose: Partition matrix A into a left and a right side where the side indi
ated by side has nb
olumns.and [A0, A1, A2 ℄ = FLA_Repart_1x2_to_1x3(AL, AR,...nb, side)Purpose: Repartition a 1� 2 partitioning of matrix A into a 1 � 3 partitioning where submatrixA1 with nb
olumns is split from the side indi
ated by side.Here side
an take on the values 'FLA LEFT' or 'FLA RIGHT'. Adding the middle submatrix to the �rst orlast submatrix is now a

omplished by a
all to[AL, AR ℄ = FLA_Cont_with_1x3_to_1x2(A0, A1, A2,...side)Purpose: Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indi
ated by side.4 From FLAME�lab to FLAME/C to PLAPACKThose familiar with our paper on the FLAME/C API [14℄ will have noti
ed the similarity between thatpaper and the present paper. This was, of
ourse, a
ons
ious de
ision sin
e it emphasizes the fa
t thatthe FLAME�lab interfa
e is part of a path for the development of high-performan
e sequential and parallellinear algebra libraries.In Fig. 6 we further illustrate how the algorithms implemented using FLAME�lab
an be subsequentlytranslated into C using the FLAME/C API. It shows an implementation of the unblo
ked trsm algorithm inFig. 1 using the FLAME/C API. Noti
e the similarity between the algorithm that employs the FLAME�labAPI in Fig. 4 and the one that uses the FLAME/C API.Sin
e
learly algorithms
an be dire
tly translated to C, the question of the ne
essity for the FLAME�labAPI arises. As is well known, MATLAB-like environments are extremely powerful intera
tive tools formanipulating matri
es and investigating algorithms; intera
tivity is probably the key feature, allowing theuser to speed up dramati
ally the design of pro
edures su
h as input generation and output analysis.The authors have had the
han
e to exploit the FLAME�lab API in a number of resear
h topi
s:10

� In [12℄, the interfa
e was used to investigate the numeri
al stability properties of algorithms derivedfor the solution of the triangular Sylvester equation.� In an ongoing study, we are similarly using it for the study of the stability of di�erent algorithms forinverting a triangular matrix. Several algorithms exist for this operation. We derived them by usingthe FLAME methodology and implemented them with FLAME�lab. For ea
h variant measurementsof di�erent forms of residuals and forward errors had to be made [9℄. As part of the study, the inputmatri
es needed to be
hosen with extreme
are and often they are the result from some other operation,like the lu fun
tion in MATLAB.For these kinds of investigative studies high performan
e is not required. It is the intera
tive nature of toolslike MATLAB that is espe
ially useful.On
e derived algorithms have been implemented and investigated with FLAME�lab, the transition toa high-performan
e implementation using the FLAME/C API is trivial, requiring only the translation forthe operations in the loop-body to
alls to subroutines with the fun
tionality of the Basi
 Linear AlgebraSubprograms (BLAS) [10, 6, 5℄. Parallel implementations using PLAPACK
an subsequently be
reated,sin
e a similar API has been
reated for that environment.The most signi�
ant di�eren
e between the FLAME/C and FLAME�lab APIs is that for theFLAME/C interfa
e, the partitioning routines return views (i.e., referen
es) into the matrix. Thus, anysubsequent modi�
ation of the view results in a modi�
ation of the original
ontents of the matrix. The useof views on the FLAME/C API avoids mu
h of the unne
essary data
opying that o

urs in the FLAME�labAPI, leading to a high-performan
e implementation.5 Con
lusionIn this paper, we have presented a simple API for implementing linear algebra algorithms using MATLAB.In isolation, the FLAME�lab interfa
e illustrates how raising the level of abstra
tion at whi
h one
odesallows one to avoid intri
ate indexing in the
ode, whi
h redu
es the opportunity for the introdu
tion oferrors and raises the
on�den
e in the
orre
tness of the
ode. In
ombination with our formal derivationmethodology, the API
an be used to implement algorithms derived using that methodology so that theproven
orre
tness of those algorithms translates to a high degree of
on�den
e in the implementation.We want to emphasize that the presented API is merely a very simple one that illustrates the issues.Similar interfa
es for the Fortran, C++, and other languages are easily de�ned, allowing spe
ial features ofthose languages to be used to even further raise the level of abstra
tion at whi
h one
odes.Finally, an in
reasing number of linear algebra operations have been
aptured with our formal derivationmethodology. This set of operations in
ludes, to name but a few, the
omplete levels 1, 2, and 3 BLAS,fa
torization operations su
h as the LU and QR (with and without pivoting), redu
tion to
ondensed forms,and linear matrix equations arising in
ontrol. An ever-growing
olle
tion of linear algebra operations writtenusing the FLAME�lab interfa
e
an be found at the URI given below.Further InformationFor further information, visit http://www.
s.utexas.edu/users/flame/FLAME�lab/. At that site, we alsogive a number of examples.A
knowledgmentsAn ever-growing number of people have
ontributed to date to the methodology that underlies the FormalLinear Algebra Methods Environment. These in
lude� UT-Austin: Mark Hinga, Dr. Margaret Myers, Vinod Valsalam, and Thierry Jo�rain.11

1 #in
lude "FLAME.h"23 void Trsm_llnn_unb_var1(FLA_Obj L, FLA_Obj B)4 {5 FLA_Obj LTL, LTR, L00, l01, L02, BT, B0,6 LBL, LBR, l10t, lambda11, l12t, BB, b1t,7 L20, l21, L22, B2;89 FLA_Part_2x2(L, <L, /**/ <R,10 /* ************** */11 &LBL, /**/ &LBR, 0, 0, /* submatrix */ FLA_TL);12 FLA_Part_2x1(B, &BT,13 /***/14 &BB, 0, /* length submatrix */ FLA_TOP);1516 while (FLA_Obj_length(LTL) != FLA_Obj_length(L)){17 FLA_Repart_2x2_to_3x3(LTL, /**/ LTR, &L00, /**/ &l01, &L02,18 /* ************* */ /* *************************** */19 /**/ &l10t, /**/ &lambda11, &l12t,20 LBL, /**/ LBR, &L20, /**/ &l21, &L22,21 1, 1, /* lambda11 from */ FLA_BR);22 FLA_Repart_2x1_to_3x1(BT, &B0,23 /**/ /**/24 &b1t,25 BB, &B2,26 1, /* length b1t from */ FLA_BOTTOM);27 /* *** */28 FLA_Gemv(FLA_TRANSPOSE, MINUS_ONE, B0, l10t, ONE, b1t);29 FLA_Inv_s
al(lambda11, b1t);30 /* *** */31 FLA_Cont_with_3x3_to_2x2(<L, /**/ <R, L00, l01, /**/ L02,32 /**/ l10t, lambda11, /**/ l12t,33 /* ************** */ /* ************************* */34 &LBL, /**/ &LBR, L20, l21, /**/ L22,35 /* lambda11 added to */ FLA_TL);36 FLA_Cont_with_3x1_to_2x1(&BT, B0,37 b1t,38 /***/ /**/39 &BB, B2,40 /* b1t added to */ FLA_TOP);41 }42 }Figure 6: FLAME implementation of unblo
ked trsm algorithm in Fig. 1 using the FLAME/C API.
12

� IBM's T.J. Watson Resear
h Center: Dr. John Gunnels and Dr. Fred Gustavson.� Intel: Dr. Greg Henry.� Mississippi State University: Prof. Anthony Skjellum and Wenhao Wu.In addition, numerous students in undergraduate and graduate
ourses on high-performan
e
omputing atUT-Austin have provided valuable feedba
k.Referen
es[1℄ Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, Robertvan de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra pa
kage { design overview. InPro
eedings of SC97, 1997.[2℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.M
Kenney, S. Ostrou
hov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[3℄ Greg Baker, John Gunnels, Greg Morrow, Beatri
e Riviere, and Robert van de Geijn. PLAPACK: Highperforman
e through high level abstra
tion. In Pro
eedings of ICCP98, 1998.[4℄ P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ort�i, and R. A. van de Geijn. The s
ien
e ofderiving dense linear algebra algorithms. ACM Trans. Math. Soft. Submitted.[5℄ J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Du�. A set of level 3 basi
 linear algebrasubprograms. ACM Trans. Math. Soft., 16(1):1{17, Mar
h 1990.[6℄ J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN basi
linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1{17, Mar
h 1988.[7℄ J. J. Dongarra, I. S. Du�, D. C. Sorensen, and Henk A. van der Vorst. Solving Linear Systems on Ve
torand Shared Memory Computers. SIAM, Philadelphia, PA, 1991.[8℄ J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME: Formal linear algebramethods environment. ACM Trans. Math. Soft., 27(4):422{455, De
ember 2001.[9℄ Ni
holas J. Higham. A

ura
y and Stability of Numeri
al Algorithms. So
iety for Industrial and AppliedMathemati
s, Philadelphia, PA, USA, se
ond edition, 2002.[10℄ C. L. Lawson, R. J. Hanson, D. R. Kin
aid, and F. T. Krogh. Basi
 linear algebra subprograms forFortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.[11℄ C. Moler, J. Little, and S. Bangert. Pro-Matlab, User's Guide. The Mathworks, In
., 1987.[12℄ E. S. Quintana-Ort�� and R. A. van de Geijn. Formal derivation of algorithms for the triangular Sylvesterequation. ACM Trans. Math. Soft. To appear.[13℄ G. W. Stewart. Introdu
tion to Matrix Computations. A
ademi
 Press, Orlando, Florida, 1973.[14℄ R. A. van de Geijn. Representing Linear Algebra algorithms in
ode: The FLAME API. ACM Trans.Math. Soft. Submitted.[15℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pa
kage. The MIT Press, 1997.
13

