1

FLAME@lab: A Farewell to Indices®

FLAME Working Note #11

Paolo Bientinesi Enrique S. Quintana-Orti
Department of Computer Sciences Depto. de Ingenieria y Ciencia de Computadores
The University of Texas at Austin Universidad Jaume [

Austin, TX 78712 12.071-Castellén (Spain)
pauldj@cs.utexas.edu quintana@icc.uji.es

Robert A. van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
rvdg@cs.utexas.edu

April 9, 2003

Abstract

MATLAB-like environments have been essential tools for the development of linear algebra libraries for
almost three decades. The benefits include ease of implementation and maintenance of code, functionality,
and interactivity. In this paper, we make the seemingly outrageous claim that the script language used
for such environments is unnecessarily complex and stands in the way of the rapid development of
robust, readable, and maintainable code. To correct this problem, we propose the introduction of nine
almost trivial functions, the FLAME®@Ilab API, that hide complex index manipulation. In isolation, the
FLAMEQIlab interface illustrates how raising the level of abstraction at which one codes allows one to
avoid intricate indexing in the code, thereby reducing the opportunity for the introduction of errors and
raising the confidence in the correctness of the code. In combination with our Formal Linear Algebra
Methods Environment (FLAME) approach to deriving linear algebra algorithms, FLAME®@Ilab becomes
an API for implementing proven correct algorithms. Finally, in combination with a similar API for C
and for distributed memory parallel architectures (our PLAPACK environment), FLAME®@Ilab becomes
a natural step in the development of high-performance and parallel linear algebra libraries.

Introduction

The Formal Linear Algebra Methods Environment (FLAME) encompasses a methodology for deriving prov-
ably correct algorithms for dense linear algebra operations as well as an approach to representing (coding)
the resulting algorithms. Central to the philosophy underlying FLAME are the observations that it is at

a

high level of abstraction that one best reasons about the correctness of algorithms, that therefore algo-

rithms should themselves be expressed at a high level of abstraction, and that codes that implement such
algorithms should themselves use an API that captures this high level of abstraction. A key observation

is

that in reasoning about algorithms intricate indexing is typically avoided and it is with the introduction

*This work was supported in part by NSF grant ACR-0203685 and the Visiting Researcher program of the Institute for

Computational Engineering and Sciences (ICES).

B L 0
Partition B — < = > and L — < 1L >
B Lgy | LBr

where Br has 0 rows and Ly, is 0 x 0
while m(Lyy) # m(L) do
Repartition

By
B L 0
= — blj and 1L — 1{0 A1 0
B B, Lpr || LBr

where b7 is a row and \;; is a scalar

b; = b{;ﬁbBO
bi = A by

Continue with

BO Loo 0 0

B —T1 L 0
<B—T> « | b and <L—TLHL—> — o [M 0
s BL Il =BR Lyo | o1 || L2z

B,

enddo
Figure 1: Unblocked algorithm for the TRSM example.

of complex indexing that programming errors are often encountered and confidence in code is diminished.
Thus a carefully designed API should avoid explicit indexing whenever possible.

We have illustrated to the high-performance linear algebra library community the benefits of the formal
derivation of algorithms in a series of previous papers [8, 12, 4]. While there we alluded at an API that
allows code to reflect algorithms that have been derived to be correct, in this paper we explicitly give this
API for the MATLAB [11] M-script programming language. Notice that in [14] we present a similar APT for
the C programming language.

Our FLAMEG@lIab interface comes to fill a gap in the development cycle of linear algebra algorithms,
giving the user the flexibility of MATLAB to test the algorithms designed using FLAME before going
to a high-performance sequential implementation using our FLAME/C API, and the subsequent parallel
implementation using, e.g., the Parallel Linear Algebra Package (PLAPACK) [15, 3, 1].

This paper is organized as follows: In Section 2, we present an example of how we represent a broad class
of linear algebra algorithms in our previous papers. The most important components of the FLAME@lab
API are presented in Section 3. A discussion of how the developed algorithms, coded using the M-script
language, can be migrated to sequential and parallel code written in C is discussed in Section 4. A few
concluding remarks are given in Section 5.

2 A Typical Dense Linear Algebra Algorithm

In [4] we introduced a methodology for the systematic derivation of provably correct algorithms for dense
linear algebra algorithms. It is highly recommended that the reader become familiar with that paper before
proceeding with the remainder of this paper. This section gives the minimal background in an attempt to
make the present paper self-contained.

The algorithms that result from the derivation process present themselves in a very rigid format. We
illustrate this format in Fig. 1 which gives an (unblocked) algorithm for the computation of B := L™!B,
where B is an m x n matrix and L is an m x m lower triangular matrix. This operation is often referred to as
a triangular solve with multiple right-hand sides (TRSM). Notice that the presented algorithm was derived

in [4].
At the top of the loop-body, it is assumed that different regions of the operands L and B have been used
and/or updated in a consistent fashion. These regions are initialized by

and L —
B Lpr || LBr

where By has 0 rows and Ly, is 0 x 0

Partition B — <

Here T', B, L, and R stand for Top, Bottom, Left, and Right, respectively.

Note 1 Of particular importance in the algorithm are the single and double lines used to partition and
repartition the matrices. Double lines are used to demark regions in the matrices that have been used and/or
updated in a consistent fashion. Another way of interpreting double lines is that they keep track of how far
into the matrices the computation has progressed.

Let B equal the original contents of B and assume that B is partitioned like B. At the top of the loop
it will be assumed that Bp contains the original contents B B while By has been updated with the contents
L}iET. As part of the loop, the boundaries between these regions are moved one row and/or column at a
time so that progress towards completion is made. This is accomplished by

Repartition
By Lo | 0 | 0

B L 0
(L) — | 7T | and (L > [T TAa] 0
Bs B, Lpu || Lor Ly || l21 | La2

where b7 is a row and A;; is a scalar

Continue with

Bo Lo | 0 | 0

B 0 L 0
(B—T> P (L—TL”L—> L BT (T
B B, BLI =BR Loo | 21 || La2

Note 2 Single lines are introduced in addition to the double lines to demark regions that are to be updated
and/or used in the next step of the algorithm. Upon completion of the update, the regions defined by the
double lines are updated to reflect that the computation has moved forward.

Note 3 We adopt the often-used convention where matrices, vectors, and scalars are denoted by upper-case,
lower-case, and Greek letters, respectively [13].

Note 4 A row vector is indicated by adding a transpose to a vector, e.g. bi and l1,.

The repartitioning exposes submatrices that must be updated before the boundaries can be moved. That
update is given by

bi = bfl_flvlTOBO
by = Airbi

Finally, the desired result has been computed when Ly, encompasses all of L so that the loop continues
until m(Lyy) # m(L) becomes false. Here m(X) returns the row dimension of X.

Note 5 We would like to claim that the algorithm in Fig. 1 captures how one might naturally explain a
particular algorithmic variant for computing the solution of a triangular linear system with multiple right-
hand sides.

B L 0
Partition B — < = > and L — < 1L >
B Lgy | LBr

where Br has 0 rows and Ly, is 0 x 0
while m(Lyy) # m(L) do
Determine block size b

Repartition
B L 0
By — Lyp || 0 = ” |
= —+ | B; | and L T Li;| O
B By BL BR To1 | Lo

where m(B;) =0band m(Ly;) =n(L;) b

B, := B, — L1pBo
By :=L'B

Continue with

By By Lyy 0 Lo | O 0
=) B; | and —H—L—“L— | Lo | Lt | O
B B, BL |l =BR Lo | Lot || Loz

enddo

Figure 2: Blocked algorithm for the TRSM example.

[m, n] = size(B);
for i=1:mb:m
b = min(mb, m-i+1);
B(i:i+b-1, :) = B(i:i+b-1, :) - ...
L(i:i+b-1, 1:i-1) * B(1:i-1, :);
B(i:i+b-1, :) = ..
inv(tril(L(i: 1+b 1, i:i+b-1))) * B(i:i+b-1, :);
end

Figure 3: MATLAB implementation of blocked TRSM algorithm in Fig. 2

Note 6 The presented algorithm only requires one to use indices from the sets {T, B}, {L, R}, and {0, 1,2}.

It is Note 6 that is captured in the title of this paper.

For performance reasons, it is often necessary to formulate the algorithm as a blocked algorithm as
illustrated in Fig. 2. The performance benefit comes from the fact that the algorithm is rich in matrix
multiplication which allows processors with multi-level memories to achieve high performance [7, 2, 8, 5].

Note 7 The algorithm in Fig. 2 is implemented by the more traditional MATLAB code given in Fig. 3.
We claim that the introduction of indices to explicitly indicate the regions involved in the update complicates
readability and reduces confidence in the correctness of the MATLAB implementation. Indeed, an explanation
of the code will inherently require the drawing of a picture that captures the repartitioned matrices in Fig. 2.
In other words, someone experienced with MATLAB can easily translate the algorithm in Fig. 2 into the
implementation in Fig. 8. The converse is considerably more difficult.

We realize that the use of inv(tril(L(i:i+mb-1, i:i+mb-1))) can introduce numerical instability and that there-
fore one in practice would code this as the solution of a triangular system with multiple right-hand sides.

3 The FLAME@Ilab Interface for Linear Algebra Algorithms

In this section we introduce a set of MATLAB M-script functions that will allow us to capture in code the
linear algebra algorithms presented in the format illustrated in the previous section. The idea is that by
making the code look like the algorithms in Figs. 1 and 2 the opportunity for the introduction of coding
errors is reduced.

3.1 Bidimensional partitionings

As illustrated in Figs. 1 and 2, in stating a linear algorithm one may wish to partition matrices like

By > (Arp || Arr >
and A —
B AL || ABr

where Bt has k rows and Ay is k X k

Partition B — <

We hide complicated indexing by using MATLAB matrices. Given a MATLAB matrix A, the following call
creates one matrix for each of the four quadrants:

[ATL, ATR,...
ABL, ABR] = FLA_Part_2x2(A, ...
mb, nb, quadrant)

Purpose: Partition matrix A into four quadrants where the quadrant indicated by quadrant is
mb X nb.

Here quadrant is a MATLAB string that can take on the values >FLA_TL’, ’FLA_TR’>, ’FLABL’, and
’FLABR’ to indicate that mb and nb are the dimensions of the Top-Left, Top-Right, Bottom-Left, or
Bottom-Right quadrant, respectively.

Note 8 Note that invocation of the operation

[ATL, ATR,...
ABL, ABR] = FLA_Part_2x2(A,...
mb, nb, ’FLA_TL’)

in MATLAB creates four new matrices, one for each quadrant. Subsequent modifications of the contents of a
quadrant do not affect therefore the original contents of the matriz. This is an important difference to
consider with respect to other FLAME APIs [14] where the quadrants are views (references)
into the original matrix, not copies of it!

As an example of the use of this routine, the translation of the algorithm fragment on the left results in
the code on the right

Arp || Arg [ATL, ATR,...
Partition A — (> ABL, ABR] = FLA_Part_2x2(A,...

AL || ABr mb. nb

where Arpj is my X ny 'FLA_TL’)

where the parameters mb and nb have values m; and ny, respectively. Examples of the use of this routine
can also be found in Figs. 4 and 5.

Note 9 The above example stresses the fact that the formatting of the code can be used to help capture the
algorithm in code. Clearly, some of the benefit of the API would be lost if in the example the code appeared
as

[ATL, ATR, ABL, ABR] = FLA_Part_2x2(A, mb, nb, ’FLA_TL’)

1 function [X] = Trsm_1llnn_unb_vari(L, B)

A

3 [LTL, LTR,...

4 LBL, LBR] = FLA_Part_2x2(L,...

5 0, 0, ’FLA_TL’);

6 [BT,...

7 BB] = FLA_Part_2x1(B,...

8 0, ’FLA_TOP’);

9

10 while(size(LTL, 1) "= size(L, 1))

11 [LoO, 101, Lo2,...

12 110t, lambdall, 112t,...

13 L20, 121, L22] = FLA_Repart_2x2_to_3x3(LTL, LTR,...

14 LBL, LBR,...

15 1, 1, FLA_BR’);
16 [BO,...

17 blt,...

18 B2] = FLA_Repart_2x1_to_3x1(BT,...

19 BB, ...

20 1, ’FLA_BOTTOM’);

21 Yok kkokokokkokokokkokok Rk koo kR Rk kR ok ok ok ok o o o o ok sk ok sk Kok okok ok ok ok ok ok o ko sk Kok sk kR okok ok ok ok kR ok ok %)
22 blt = blt - 110t * BO;

23 blt = inv(lambdall) * bilt;

24 Yk kkokkokkok ok ok Rk kR R koo kR Kok kR ok ok o ok o o o o sk ok ok sk Kok skok ok ok ok ok ok o ko sk Kok sk kR okok ok ok Rk Rk k%)
25 [LTL, LTR,...

26 LBL, LBR] = FLA_Cont_with_3x3_to_2x2(L00O, 101, LO2,...
27 110t, lambdall, 112t,...
28 L20, 121, L22,...
29 FLA_TL’);

30 [BT,...

31 BB] = FLA_Cont_with_3x1_to_2x1(BO,...

32 blt,...

33 B2,...

34 FLA_TOP’);

35 end

36

37 X = BT;

38 return;

Figure 4: FLAME implementation of unblocked TRSM algorithm in Fig. 1 using the FLAMEQIlab interface.

1 function [X] = Trsm_llnn_blk_varli(L, B, mb)

2 %

3 [LTL, LTR,...

4 LBL, LBR] = FLA_Part_2x2(L,...

5 0, 0, ’FLA_TL’);

6 [BT,...

7 BB] = FLA_Part_2x1(B,...

8 0, ’FLA_TOP’);

9

10 while(size(LTL, 1) "= size(L, 1))

11 b = min(mb, size(LBR, 1));

12

13 [LOO, LO1, LO2,...

14 L10, L11, L12,...

15 L20, L21, L22] = FLA_Repart_2x2_to_3x3(LTL, LTR,...

16 LBL, LBR,...

17 b, b, FLA_BR’);
18 [BO,...

19 B1,...

20 B2] = FLA_Repart_2x1_to_3x1(BT,...

21 BB, ...

22 b, ’FLA_BOTTOM’);

23 Yok skokkokokokokokokokokokokokokokokokokok kokokakok kokokok ok ok ok ok o ok ok kok sk skokskok sk ok ok ok ok ok ok sk skok sk skokskokokok sk ok ok ok ok %%
24 Bl = B1 - L10 * BO;

25 Bl = Trsm_llnn_unb_vari(L11, Bl);

26 Yk kkokkok ok kR Rk kR Rk koo kR Kok kR ok ok ok ok o o o o ok sk ok sk Kok skok ok ok ok ok ok o ko sk Kok sk kR ok ok ok ok Rk Rk k%)
27 [LTL, LTR,...

28 LBL, LBR] = FLA_Cont_with_3x3_to_2x2(LOO, LO1, LO2,...
29 L10, L11, L12,...
30 L20, L21, L22,...
31 PFLA_TL’);

32 [BT,...

33 BB] = FLA_Cont_with_3x1_to_2x1(BO,...

34 B1,...

35 B2,...

36 FLA_TOP’);

37 end

38

39 X = BT;

40 return;

Figure 5: FLAME implementation of blocked TRSM algorithm in Fig. 2 using the FLAME@lab interface.

Also from Figs. 1 and 2, we notice that it is useful to be able to take a 2 x 2 partitioning of a given
matrix A and repartition that into a 3 x 3 partitioning so that the submatrices that need to be updated
and/or used for computation can be identified. To support this, we introduce the call

[AOO, AO1, AO2,...
A10, A11, A12,...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR,...
ABL, ABR,...
mb, nb, quadrant)

Purpose: Repartition a 2 x 2 partitioning of matrix A into a 3 x 3 partitioning where the mb x nb
submatrix Aj; is split from the quadrant indicated by quadrant.

Here quadrant can again take on the values ’FLA_TL’, *FLA_TR’, ’FLA BL’, and ’FLA BR’ to indicate that
the mb and nb submatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respectively.
Thus

Repartition
Aoo || Aot | Ao
Arn | Arg 00 || 01 | 02
o [Asn) T\
Ago || A2y | Az

where A;; is my X ny
translates to the code

[A00, AO1, AO2,...
A10, Al11, A12,...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR,...
ABL, ABR,...
mb, nb, ’FLA_BR’)

where the parameters mb and nb have values m; and ny, respectively. Other examples of the use of this
routine can also be found in Figs. 4 and 5.

Note 10 Similarly to what is expressed in note 8, the invocation of the operation

[A0O, AO1, AOQ2,...
A10, A11, A12,...
A20, A21, A22] = FLA_Repart_2x2_to_3x3(...)

creates nine new matrices, and any modification of the contents of AOO, A01, A02, ..., does not affect the
original matriz A nor the four quadrants ATL, ATR, ABL, ABR.

Note 11 Choosing variable names can further relate the code to the algorithm, as is illustrated by comparing

Lo | 0] O L00, 101, L02,
ALl o and 110t, lambdall, 112t,
Loo || lo1 | Lao L20, 121, L22,

in Figs. 1 and 4. Notice here that although in the algorithm certain regions are identified as containing only
zeroes, variables are needed to identify those regions when partitioning.

Once the contents of the so-identified submatrices have been updated, the descriptions of App, Arg,
App, and Agpg must be updated to reflect that progress is being made, in terms of the regions identified by
the double-lines. This moving of the double-lines is accomplished by a call to

[ATL, ATR,...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, AO1, A02,...
A10, A11, A12,...
A20, A21, A22,...
quadrant)

Purpose: Update the 2 x 2 partitioning of matrix A by moving the boundaries so that Ay is
added to the quadrant indicated by quadrant.

This time the value of quadrant (’FLA_TL’, ’FLA_TR’, ’FLA_BL’, or ’FLA_BR’) indicates to which quadrant
submatrix A11 is to be added.
For example,

Continue with

A A Ap:
Ay || Agn Aoo A01 Aoz
A—”m — 10 11 12
Br Az | Azt || Az
translates to the code
[ATL, ATR,...
ABL, ABR 1 = FLA_Cont_with_3x3_to_2x2(A00, AO1, AO2,...

A10, A11, Al12,...
A20, A21, A22,...
’FLA_TL’)

Further examples of the use of this routine can again be found in Figs. 4 and 5.

3.2 Horizontal partitionings

Similarly, a matrix can be partitioned horizontally into two submatrices with the call

[AT,...
AB] = FLA_Part_2x1(C A, ...
mb, side)

Purpose: Partition matrix A into a top and a bottom side where the side indicated by side has
mb rows.

Here side can take on the values FLA_TOP’ or ’FLA_BOTTOM’ to indicate that mb indicates the row dimension
of Ar or Ap, respectively.

Given that matrix A is already partitioned horizontally it can be repartitioned into three submatrices
with the call

[A0,...
Al, ...
A2] = FLA_Repart_2x1_to_3x1(AT,...
AB, ...
mb, side)

Purpose: Repartition a 2 x 1 partitioning of matrix A into a 3 x 1 partitioning where submatrix
A; with mb rows is split from the side indicated by side.

Here side can take on the values >FLA_TOP’ or ’FLA_BOTTOM’ to indicate that submatrix A;, with mb rows,
is partitioned from Ap or Apg, respectively.

Given a 3 x 1 partitioning of a given matrix A, the middle submatrix can be appended to either the first
or last submatrix with the call

[AT,...
AB] = FLA_Cont_with_3x1_to_2x1(AO,...
Al,...
A2, ...
side)

Purpose: Update the 2 x 1 partitioning of matrix A by moving the boundaries so that A; is added
to the side indicated by side.

Examples of the use of the routine that deals with the horizontal partitioning of matrices can be found in
Figs. 4 and 5.

3.3 Vertical partitionings

Finally, a matrix can be partitioned and repartitioned vertically with the calls

[AL, AR] = FLA_Part_1x2(A,...
int nb, int side)

Purpose: Partition matrix A into a left and a right side where the side indicated by side has nb
columuns.

and

[A0, A1, A2] = FLA_Repart_1x2_to_1x3(AL, AR,...
nb, side)

Purpose: Repartition a 1 x 2 partitioning of matrix A into a 1 x 3 partitioning where submatrix
Ay with nb columns is split from the side indicated by side.

Here side can take on the values *FLA_LEFT’ or >FLA RIGHT’. Adding the middle submatrix to the first or
last submatrix is now accomplished by a call to

[AL, AR] = FLA_Cont_with_1x3_to_1x2(A0, Al, A2,...
side)

Purpose: Update the 1 x 2 partitioning of matrix A by moving the boundaries so that A; is added
to the side indicated by side.

4 From FLAME®Qlab to FLAME/C to PLAPACK

Those familiar with our paper on the FLAME/C API [14] will have noticed the similarity between that
paper and the present paper. This was, of course, a conscious decision since it emphasizes the fact that
the FLAMEQ@QIlab interface is part of a path for the development of high-performance sequential and parallel
linear algebra libraries.

In Fig. 6 we further illustrate how the algorithms implemented using FLAME@lab can be subsequently
translated into C using the FLAME/C API. It shows an implementation of the unblocked TRSM algorithm in
Fig. 1 using the FLAME/C API. Notice the similarity between the algorithm that employs the FLAME®@lab
API in Fig. 4 and the one that uses the FLAME/C API.

Since clearly algorithms can be directly translated to C, the question of the necessity for the FLAME@lab
API arises. As is well known, MATLAB-like environments are extremely powerful interactive tools for
manipulating matrices and investigating algorithms; interactivity is probably the key feature, allowing the
user to speed up dramatically the design of procedures such as input generation and output analysis.

The authors have had the chance to exploit the FLAME@lab API in a number of research topics:

10

e In [12], the interface was used to investigate the numerical stability properties of algorithms derived
for the solution of the triangular Sylvester equation.

e In an ongoing study, we are similarly using it for the study of the stability of different algorithms for
inverting a triangular matrix. Several algorithms exist for this operation. We derived them by using
the FLAME methodology and implemented them with FLAME®@Ilab. For each variant measurements
of different forms of residuals and forward errors had to be made [9]. As part of the study, the input
matrices needed to be chosen with extreme care and often they are the result from some other operation,
like the 1u function in MATLAB.

For these kinds of investigative studies high performance is not required. It is the interactive nature of tools
like MATLAB that is especially useful.

Once derived algorithms have been implemented and investigated with FLAME®@Ilab, the transition to
a high-performance implementation using the FLAME/C API is trivial, requiring only the translation for
the operations in the loop-body to calls to subroutines with the functionality of the Basic Linear Algebra
Subprograms (BLAS) [10, 6, 5]. Parallel implementations using PLAPACK can subsequently be created,
since a similar API has been created for that environment.

The most significant difference between the FLAME/C and FLAME@lab APIs is that for the
FLAME/C interface, the partitioning routines return views (i.e., references) into the matrix. Thus, any
subsequent modification of the view results in a modification of the original contents of the matrix. The use
of views on the FLAME/C APT avoids much of the unnecessary data copying that occurs in the FLAME®@lab
API, leading to a high-performance implementation.

5 Conclusion

In this paper, we have presented a simple API for implementing linear algebra algorithms using MATLAB.
In isolation, the FLAME®@Ilab interface illustrates how raising the level of abstraction at which one codes
allows one to avoid intricate indexing in the code, which reduces the opportunity for the introduction of
errors and raises the confidence in the correctness of the code. In combination with our formal derivation
methodology, the API can be used to implement algorithms derived using that methodology so that the
proven correctness of those algorithms translates to a high degree of confidence in the implementation.

We want to emphasize that the presented API is merely a very simple one that illustrates the issues.
Similar interfaces for the Fortran, C++, and other languages are easily defined, allowing special features of
those languages to be used to even further raise the level of abstraction at which one codes.

Finally, an increasing number of linear algebra operations have been captured with our formal derivation
methodology. This set of operations includes, to name but a few, the complete levels 1, 2, and 3 BLAS,
factorization operations such as the LU and QR (with and without pivoting), reduction to condensed forms,
and linear matrix equations arising in control. An ever-growing collection of linear algebra operations written
using the FLAME@]lab interface can be found at the URI given below.

Further Information

For further information, visit http://www.cs.utexas.edu/users/flame/FLAME@lab/. At that site, we also
give a number of examples.

Acknowledgments

An ever-growing number of people have contributed to date to the methodology that underlies the Formal
Linear Algebra Methods Environment. These include

e UT-Austin: Mark Hinga, Dr. Margaret Myers, Vinod Valsalam, and Thierry Joffrain.

11

—_ =
= O © 00~ O U W N =

B OE B DW W W W W W W W W NNNDN DN DNDNDNDNDN R e e e e e
N R O O© 00~ O Tk WN K O ©WOWSNOOOU = WNEFE O OO O Ww N

#include "FLAME.h"

void Trsm_llnn_unb_varl(FLA_Obj L, FLA_Obj B)

{
FLA_Obj LTL, LTR, L0O, 101, L02, BT, BO,
LBL, LBR, 110t, lambdall, 112t, BB, bit,
L20, 121, 122, B2;

FLA_Part_2x2(L, <L, /**x/ <R,
/% skokckkokskokkkokkokkk k/

&LBL, /**/ &LBR, 0, 0, /* submatrix */ FLA_TL);
FLA_Part_2x1(B, &BT,

/x%%/

&BB, 0, /* length submatrix */ FLA_TOP);

while (FLA_Obj_length(LTL) !'= FLA_Obj_length(L)){

FLA_Repart_2x2_to_3x3(LTL, /*x/ LTR, &L0OO, /*x/ &101, &L02,
/% kokskokkokskokkokok ok ok / /% skokokok ok ok ok ok ok ok ok kkok sk k ok kokk ok %k /
/**/ &110t, /#*x/ &lambdall, &112t,
LBL, /**/ LBR, &L20, /**/ &l21, &L22,
1, 1, /* lambdall from */ FLA_BR);
FLA_Repart_2x1_to_3x1(BT, &BO,
/xx/ /xx/
&blt,
BB, &B2,

1, /* length blt from */ FLA_BOTTOM);
/% ook skokok ok ok skokok sk ke skok ok ks sk s ki sk ok ek sk sk o sk sk o o ks o sk skl kokok ok ok kok ok /
FLA_Gemv(FLA_TRANSPOSE, MINUS_ONE, BO, 110t, ONE, blt);
FLA_Inv_scal(lambdall, blt);
/% sk ok kst ok sk ok kst sk sk sk sk st o e ok sk sk o e s sk sk ks sk s e ks s s o ke s s o ko s sk o sk skl sk ok ok 3k /

FLA_Cont_with_3x3_to_2x2(<L, /**/ <R, LOO, 101, /*x/ L02,
/*x/ 110t, lambdall, /*x/ 112t,
/% koksokskokskokskokokRokk sk /[skokoskokokok ok kokok ok ok skokok ok kkokk ok %k /
&LBL, /*%/ &LBR, L20, 121, /*x%x/ L22,
/* lambdall added to */ FLA_TL);
FLA_Cont_with_3x1_to_2x1(&BT, BO,
blt,
[x%%/ /xx/
&BB, B2,

/* blt added to */ FLA_TOP);

Figure 6: FLAME implementation of unblocked TRSM algorithm in Fig. 1 using the FLAME/C APL

12

e IBM’s T.J. Watson Research Center: Dr. John Gunnels and Dr. Fred Gustavson.
e Intel: Dr. Greg Henry.
e Mississippi State University: Prof. Anthony Skjellum and Wenhao Wu.

In addition, numerous students in undergraduate and graduate courses on high-performance computing at
UT-Austin have provided valuable feedback.

References

[1] Philip Alpatov, Greg Baker, Carter Edwards, John Guunnels, Greg Morrow, James Overfelt, Robert
van de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra package — design overview. In
Proceedings of SC97, 1997.

[2] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. STAM, Philadelphia, 1992.

[3] Greg Baker, John Gunnels, Greg Morrow, Beatrice Riviere, and Robert van de Geijun. PLAPACK: High
performance through high level abstraction. In Proceedings of ICCP98, 1998.

[4] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Orti, and R. A. van de Geijn. The science of
deriving dense linear algebra algorithms. ACM Trans. Math. Soft. Submitted.

[5] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Soft., 16(1):1-17, March 1990.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1-17, March 1988.

[7] J.J. Dongarra, I. S. Duff, D. C. Sorensen, and Henk A. van der Vorst. Solving Linear Systems on Vector
and Shared Memory Computers. STAM, Philadelphia, PA, 1991.

[8] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME: Formal linear algebra
methods environment. ACM Trans. Math. Soft., 27(4):422-455, December 2001.

[9] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2002.

[10] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Soft., 5(3):308-323, Sept. 1979.

[11] C. Moler, J. Little, and S. Bangert. Pro-Matlab, User’s Guide. The Mathworks, Inc., 1987.

[12] E. S. Quintana-Orti and R. A. van de Geijn. Formal derivation of algorithms for the triangular Sylvester
equation. ACM Trans. Math. Soft. To appear.

[13] G. W. Stewart. Introduction to Matriz Computations. Academic Press, Orlando, Florida, 1973.

[14] R. A. van de Geijn. Representing Linear Algebra algorithms in code: The FLAME API. ACM Trans.
Math. Soft. Submitted.

[15] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

13

