
FLAME�lab: A Farewell to Indies�FLAME Working Note #11Paolo BientinesiDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712pauldj�s.utexas.edu Enrique S. Quintana-Ort��Depto. de Ingenier��a y Cienia de ComputadoresUniversidad Jaume I12.071{Castell�on (Spain)quintana�i.uji.esRobert A. van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712rvdg�s.utexas.eduApril 9, 2003AbstratMATLAB-like environments have been essential tools for the development of linear algebra libraries foralmost three deades. The bene�ts inlude ease of implementation and maintenane of ode, funtionality,and interativity. In this paper, we make the seemingly outrageous laim that the sript language usedfor suh environments is unneessarily omplex and stands in the way of the rapid development ofrobust, readable, and maintainable ode. To orret this problem, we propose the introdution of ninealmost trivial funtions, the FLAME�lab API, that hide omplex index manipulation. In isolation, theFLAME�lab interfae illustrates how raising the level of abstration at whih one odes allows one toavoid intriate indexing in the ode, thereby reduing the opportunity for the introdution of errors andraising the on�dene in the orretness of the ode. In ombination with our Formal Linear AlgebraMethods Environment (FLAME) approah to deriving linear algebra algorithms, FLAME�lab beomesan API for implementing proven orret algorithms. Finally, in ombination with a similar API for Cand for distributed memory parallel arhitetures (our PLAPACK environment), FLAME�lab beomesa natural step in the development of high-performane and parallel linear algebra libraries.1 IntrodutionThe Formal Linear Algebra Methods Environment (FLAME) enompasses a methodology for deriving prov-ably orret algorithms for dense linear algebra operations as well as an approah to representing (oding)the resulting algorithms. Central to the philosophy underlying FLAME are the observations that it is ata high level of abstration that one best reasons about the orretness of algorithms, that therefore algo-rithms should themselves be expressed at a high level of abstration, and that odes that implement suhalgorithms should themselves use an API that aptures this high level of abstration. A key observationis that in reasoning about algorithms intriate indexing is typially avoided and it is with the introdution�This work was supported in part by NSF grant ACR-0203685 and the Visiting Researher program of the Institute forComputational Engineering and Sienes (ICES). 1

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT1 is a row and �11 is a salarbT1 := bT1 � lT10B0bT1 := ��111 bT1Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1Aenddo Figure 1: Unbloked algorithm for the trsm example.of omplex indexing that programming errors are often enountered and on�dene in ode is diminished.Thus a arefully designed API should avoid expliit indexing whenever possible.We have illustrated to the high-performane linear algebra library ommunity the bene�ts of the formalderivation of algorithms in a series of previous papers [8, 12, 4℄. While there we alluded at an API thatallows ode to reet algorithms that have been derived to be orret, in this paper we expliitly give thisAPI for the MATLAB [11℄ M-sript programming language. Notie that in [14℄ we present a similar API forthe C programming language.Our FLAME�lab interfae omes to �ll a gap in the development yle of linear algebra algorithms,giving the user the exibility of MATLAB to test the algorithms designed using FLAME before goingto a high-performane sequential implementation using our FLAME/C API, and the subsequent parallelimplementation using, e.g., the Parallel Linear Algebra Pakage (PLAPACK) [15, 3, 1℄.This paper is organized as follows: In Setion 2, we present an example of how we represent a broad lassof linear algebra algorithms in our previous papers. The most important omponents of the FLAME�labAPI are presented in Setion 3. A disussion of how the developed algorithms, oded using the M-sriptlanguage, an be migrated to sequential and parallel ode written in C is disussed in Setion 4. A fewonluding remarks are given in Setion 5.2 A Typial Dense Linear Algebra AlgorithmIn [4℄ we introdued a methodology for the systemati derivation of provably orret algorithms for denselinear algebra algorithms. It is highly reommended that the reader beome familiar with that paper beforeproeeding with the remainder of this paper. This setion gives the minimal bakground in an attempt tomake the present paper self-ontained.The algorithms that result from the derivation proess present themselves in a very rigid format. Weillustrate this format in Fig. 1 whih gives an (unbloked) algorithm for the omputation of B := L�1B,where B is an m�n matrix and L is an m�m lower triangular matrix. This operation is often referred to asa triangular solve with multiple right-hand sides (trsm). Notie that the presented algorithm was derived2

in [4℄.At the top of the loop-body, it is assumed that di�erent regions of the operands L and B have been usedand/or updated in a onsistent fashion. These regions are initialized byPartition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0Here T , B, L, and R stand for Top, Bottom, Left, and Right, respetively.Note 1 Of partiular importane in the algorithm are the single and double lines used to partition andrepartition the matries. Double lines are used to demark regions in the matries that have been used and/orupdated in a onsistent fashion. Another way of interpreting double lines is that they keep trak of how farinto the matries the omputation has progressed.Let B̂ equal the original ontents of B and assume that B̂ is partitioned like B. At the top of the loopit will be assumed that BB ontains the original ontents B̂B while BT has been updated with the ontentsL�1TLB̂T . As part of the loop, the boundaries between these regions are moved one row and/or olumn at atime so that progress towards ompletion is made. This is aomplished byRepartition� BTBB �! 0� B0bT1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere bT1 is a row and �11 is a salar...Continue with� BTBB � 0� B0bT1B2 1A and � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1ANote 2 Single lines are introdued in addition to the double lines to demark regions that are to be updatedand/or used in the next step of the algorithm. Upon ompletion of the update, the regions de�ned by thedouble lines are updated to reet that the omputation has moved forward.Note 3 We adopt the often-used onvention where matries, vetors, and salars are denoted by upper-ase,lower-ase, and Greek letters, respetively [13℄.Note 4 A row vetor is indiated by adding a transpose to a vetor, e.g. bT1 and lT10.The repartitioning exposes submatries that must be updated before the boundaries an be moved. Thatupdate is given bybT1 := bT1 � lT10B0bT1 := ��111 bT1Finally, the desired result has been omputed when LTL enompasses all of L so that the loop ontinuesuntil m(LTL) 6= m(L) beomes false. Here m(X) returns the row dimension of X .Note 5 We would like to laim that the algorithm in Fig. 1 aptures how one might naturally explain apartiular algorithmi variant for omputing the solution of a triangular linear system with multiple right-hand sides. 3

Partition B ! � BTBB � and L! � LTL 0LBL LBR �where BT has 0 rows and LTL is 0� 0while m(LTL) 6= m(L) doDetermine blok size bRepartition� BTBB �! 0� B0B1B2 1A and � LTL 0LBL LBR �! 0� L00 0 0L10 L11 0L20 L21 L22 1Awhere m(B1) = b and m(L11) = n(L11) = bB1 := B1 � L10B0B1 := L�111 B1Continue with� BTBB � 0� B0B1B2 1A and � LTL 0LBL LBR � 0� L00 0 0L10 L11 0L20 L21 L22 1Aenddo Figure 2: Bloked algorithm for the trsm example.[m, n ℄ = size(B);for i=1:mb:mb = min(mb, m-i+1);B(i:i+b-1, :) = B(i:i+b-1, :) - ...L(i:i+b-1, 1:i-1) * B(1:i-1, :);B(i:i+b-1, :) = ...inv(tril(L(i:i+b-1, i:i+b-1))) * B(i:i+b-1, :);end Figure 3: MATLAB implementation of bloked trsm algorithm in Fig. 2Note 6 The presented algorithm only requires one to use indies from the sets fT;Bg, fL;Rg, and f0; 1; 2g.It is Note 6 that is aptured in the title of this paper.For performane reasons, it is often neessary to formulate the algorithm as a bloked algorithm asillustrated in Fig. 2. The performane bene�t omes from the fat that the algorithm is rih in matrixmultipliation whih allows proessors with multi-level memories to ahieve high performane [7, 2, 8, 5℄.Note 7 The algorithm in Fig. 2 is implemented by the more traditional MATLAB ode given in Fig. 3.We laim that the introdution of indies to expliitly indiate the regions involved in the update ompliatesreadability and redues on�dene in the orretness of the MATLAB implementation. Indeed, an explanationof the ode will inherently require the drawing of a piture that aptures the repartitioned matries in Fig. 2.In other words, someone experiened with MATLAB an easily translate the algorithm in Fig. 2 into theimplementation in Fig. 31. The onverse is onsiderably more diÆult.1We realize that the use of inv(tril(L(i:i+mb-1, i:i+mb-1))) an introdue numerial instability and that there-fore one in pratie would ode this as the solution of a triangular system with multiple right-hand sides.4

3 The FLAME�lab Interfae for Linear Algebra AlgorithmsIn this setion we introdue a set of MATLAB M-sript funtions that will allow us to apture in ode thelinear algebra algorithms presented in the format illustrated in the previous setion. The idea is that bymaking the ode look like the algorithms in Figs. 1 and 2 the opportunity for the introdution of odingerrors is redued.3.1 Bidimensional partitioningsAs illustrated in Figs. 1 and 2, in stating a linear algorithm one may wish to partition matries likePartition B ! � BTBB � and A! � ATL ATRABL ABR �where BT has k rows and ATL is k � kWe hide ompliated indexing by using MATLAB matries. Given a MATLAB matrix A, the following allreates one matrix for eah of the four quadrants:[ATL, ATR,...ABL, ABR ℄ = FLA_Part_2x2(A,...mb, nb, quadrant)Purpose: Partition matrix A into four quadrants where the quadrant indiated by quadrant ismb� nb.Here quadrant is a MATLAB string that an take on the values 'FLA TL', 'FLA TR', 'FLA BL', and'FLA BR' to indiate that mb and nb are the dimensions of the Top-Left, Top-Right, Bottom-Left, orBottom-Right quadrant, respetively.Note 8 Note that invoation of the operation[ATL, ATR,...ABL, ABR ℄ = FLA_Part_2x2(A,...mb, nb, 'FLA_TL')in MATLAB reates four new matries, one for eah quadrant. Subsequent modi�ations of the ontents of aquadrant do not a�et therefore the original ontents of the matrix. This is an important di�erene toonsider with respet to other FLAME APIs [14℄ where the quadrants are views (referenes)into the original matrix, not opies of it!As an example of the use of this routine, the translation of the algorithm fragment on the left results inthe ode on the rightPartition A! � ATL ATRABL ABR �where ATL is mb � nb [ATL, ATR,...ABL, ABR ℄ = FLA_Part_2x2(A,...mb, nb, ...'FLA_TL')where the parameters mb and nb have values mb and nb, respetively. Examples of the use of this routinean also be found in Figs. 4 and 5.Note 9 The above example stresses the fat that the formatting of the ode an be used to help apture thealgorithm in ode. Clearly, some of the bene�t of the API would be lost if in the example the ode appearedas [ATL, ATR, ABL, ABR ℄ = FLA_Part_2x2(A, mb, nb, 'FLA_TL')5

1 funtion [X ℄ = Trsm_llnn_unb_var1(L, B)2 %3 [LTL, LTR,...4 LBL, LBR ℄ = FLA_Part_2x2(L,...5 0, 0, 'FLA_TL');6 [BT,...7 BB ℄ = FLA_Part_2x1(B,...8 0, 'FLA_TOP');910 while(size(LTL, 1) ~= size(L, 1))11 [L00, l01, L02,...12 l10t, lambda11, l12t,...13 L20, l21, L22 ℄ = FLA_Repart_2x2_to_3x3(LTL, LTR,...14 LBL, LBR,...15 1, 1, 'FLA_BR');16 [B0,...17 b1t,...18 B2 ℄ = FLA_Repart_2x1_to_3x1(BT,...19 BB,...20 1, 'FLA_BOTTOM');21 %* ** *%22 b1t = b1t - l10t * B0;23 b1t = inv(lambda11) * b1t;24 %* ** *%25 [LTL, LTR,...26 LBL, LBR ℄ = FLA_Cont_with_3x3_to_2x2(L00, l01, L02,...27 l10t, lambda11, l12t,...28 L20, l21, L22,...29 'FLA_TL');30 [BT,...31 BB ℄ = FLA_Cont_with_3x1_to_2x1(B0,...32 b1t,...33 B2,...34 'FLA_TOP');35 end3637 X = BT;38 return;Figure 4: FLAME implementation of unbloked trsm algorithm in Fig. 1 using the FLAME�lab interfae.
6

1 funtion [X ℄ = Trsm_llnn_blk_var1(L, B, mb)2 %3 [LTL, LTR,...4 LBL, LBR ℄ = FLA_Part_2x2(L,...5 0, 0, 'FLA_TL');6 [BT,...7 BB ℄ = FLA_Part_2x1(B,...8 0, 'FLA_TOP');910 while(size(LTL, 1) ~= size(L, 1))11 b = min(mb, size(LBR, 1));1213 [L00, L01, L02,...14 L10, L11, L12,...15 L20, L21, L22 ℄ = FLA_Repart_2x2_to_3x3(LTL, LTR,...16 LBL, LBR,...17 b, b, 'FLA_BR');18 [B0,...19 B1,...20 B2 ℄ = FLA_Repart_2x1_to_3x1(BT,...21 BB,...22 b, 'FLA_BOTTOM');23 %* ** *%24 B1 = B1 - L10 * B0;25 B1 = Trsm_llnn_unb_var1(L11, B1);26 %* ** *%27 [LTL, LTR,...28 LBL, LBR ℄ = FLA_Cont_with_3x3_to_2x2(L00, L01, L02,...29 L10, L11, L12,...30 L20, L21, L22,...31 'FLA_TL');32 [BT,...33 BB ℄ = FLA_Cont_with_3x1_to_2x1(B0,...34 B1,...35 B2,...36 'FLA_TOP');37 end3839 X = BT;40 return;Figure 5: FLAME implementation of bloked trsm algorithm in Fig. 2 using the FLAME�lab interfae.
7

Also from Figs. 1 and 2, we notie that it is useful to be able to take a 2 � 2 partitioning of a givenmatrix A and repartition that into a 3 � 3 partitioning so that the submatries that need to be updatedand/or used for omputation an be identi�ed. To support this, we introdue the all[A00, A01, A02,...A10, A11, A12,...A20, A21, A22 ℄ = FLA_Repart_2x2_to_3x3(ATL, ATR,...ABL, ABR,...mb, nb, quadrant)Purpose: Repartition a 2� 2 partitioning of matrix A into a 3� 3 partitioning where the mb� nbsubmatrix A11 is split from the quadrant indiated by quadrant.Here quadrant an again take on the values 'FLA TL', 'FLA TR', 'FLA BL', and 'FLA BR' to indiate thatthe mb and nb submatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respetively.ThusRepartition� ATL ATRABL ABR �! 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is mb � nbtranslates to the ode[A00, A01, A02,...A10, A11, A12,...A20, A21, A22 ℄ = FLA_Repart_2x2_to_3x3(ATL, ATR,...ABL, ABR,...mb, nb, 'FLA_BR')where the parameters mb and nb have values mb and nb, respetively. Other examples of the use of thisroutine an also be found in Figs. 4 and 5.Note 10 Similarly to what is expressed in note 8, the invoation of the operation[A00, A01, A02,...A10, A11, A12,...A20, A21, A22 ℄ = FLA_Repart_2x2_to_3x3(...)reates nine new matries, and any modi�ation of the ontents of A00, A01, A02, : : :, does not a�et theoriginal matrix A nor the four quadrants ATL, ATR, ABL, ABR.Note 11 Choosing variable names an further relate the ode to the algorithm, as is illustrated by omparing0� L00 0 0lT10 �11 0L20 l21 L22 1A and L00, l01, L02,l10t, lambda11,l12t,L20, l21, L22,in Figs. 1 and 4. Notie here that although in the algorithm ertain regions are identi�ed as ontaining onlyzeroes, variables are needed to identify those regions when partitioning.One the ontents of the so-identi�ed submatries have been updated, the desriptions of ATL, ATR,ABL, and ABR must be updated to reet that progress is being made, in terms of the regions identi�ed bythe double-lines. This moving of the double-lines is aomplished by a all to8

[ATL, ATR,...ABL, ABR ℄ = FLA_Cont_with_3x3_to_2x2(A00, A01, A02,...A10, A11, A12,...A20, A21, A22,...quadrant)Purpose: Update the 2 � 2 partitioning of matrix A by moving the boundaries so that A11 isadded to the quadrant indiated by quadrant.This time the value of quadrant ('FLA TL', 'FLA TR', 'FLA BL', or 'FLA BR') indiates to whih quadrantsubmatrix A11 is to be added.For example,Continue with� ATL ATRABL LBR � 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Atranslates to the ode[ATL, ATR,...ABL, ABR ℄ = FLA_Cont_with_3x3_to_2x2(A00, A01, A02,...A10, A11, A12,...A20, A21, A22,...'FLA_TL')Further examples of the use of this routine an again be found in Figs. 4 and 5.3.2 Horizontal partitioningsSimilarly, a matrix an be partitioned horizontally into two submatries with the all[AT,...AB ℄ = FLA_Part_2x1(A,...mb, side)Purpose: Partition matrix A into a top and a bottom side where the side indiated by side hasmb rows.Here side an take on the values 'FLA TOP' or 'FLA BOTTOM' to indiate that mb indiates the row dimensionof AT or AB , respetively.Given that matrix A is already partitioned horizontally it an be repartitioned into three submatrieswith the all[A0,...A1,...A2 ℄ = FLA_Repart_2x1_to_3x1(AT,...AB,...mb, side)Purpose: Repartition a 2� 1 partitioning of matrix A into a 3 � 1 partitioning where submatrixA1 with mb rows is split from the side indiated by side.Here side an take on the values 'FLA TOP' or 'FLA BOTTOM' to indiate that submatrix A1, with mb rows,is partitioned from AT or AB , respetively.Given a 3� 1 partitioning of a given matrix A, the middle submatrix an be appended to either the �rstor last submatrix with the all 9

[AT,...AB ℄ = FLA_Cont_with_3x1_to_2x1(A0,...A1,...A2,...side)Purpose: Update the 2�1 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indiated by side.Examples of the use of the routine that deals with the horizontal partitioning of matries an be found inFigs. 4 and 5.3.3 Vertial partitioningsFinally, a matrix an be partitioned and repartitioned vertially with the alls[AL, AR ℄ = FLA_Part_1x2(A,...int nb, int side)Purpose: Partition matrix A into a left and a right side where the side indiated by side has nbolumns.and [A0, A1, A2 ℄ = FLA_Repart_1x2_to_1x3(AL, AR,...nb, side)Purpose: Repartition a 1� 2 partitioning of matrix A into a 1 � 3 partitioning where submatrixA1 with nb olumns is split from the side indiated by side.Here side an take on the values 'FLA LEFT' or 'FLA RIGHT'. Adding the middle submatrix to the �rst orlast submatrix is now aomplished by a all to[AL, AR ℄ = FLA_Cont_with_1x3_to_1x2(A0, A1, A2,...side)Purpose: Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is addedto the side indiated by side.4 From FLAME�lab to FLAME/C to PLAPACKThose familiar with our paper on the FLAME/C API [14℄ will have notied the similarity between thatpaper and the present paper. This was, of ourse, a onsious deision sine it emphasizes the fat thatthe FLAME�lab interfae is part of a path for the development of high-performane sequential and parallellinear algebra libraries.In Fig. 6 we further illustrate how the algorithms implemented using FLAME�lab an be subsequentlytranslated into C using the FLAME/C API. It shows an implementation of the unbloked trsm algorithm inFig. 1 using the FLAME/C API. Notie the similarity between the algorithm that employs the FLAME�labAPI in Fig. 4 and the one that uses the FLAME/C API.Sine learly algorithms an be diretly translated to C, the question of the neessity for the FLAME�labAPI arises. As is well known, MATLAB-like environments are extremely powerful interative tools formanipulating matries and investigating algorithms; interativity is probably the key feature, allowing theuser to speed up dramatially the design of proedures suh as input generation and output analysis.The authors have had the hane to exploit the FLAME�lab API in a number of researh topis:10

� In [12℄, the interfae was used to investigate the numerial stability properties of algorithms derivedfor the solution of the triangular Sylvester equation.� In an ongoing study, we are similarly using it for the study of the stability of di�erent algorithms forinverting a triangular matrix. Several algorithms exist for this operation. We derived them by usingthe FLAME methodology and implemented them with FLAME�lab. For eah variant measurementsof di�erent forms of residuals and forward errors had to be made [9℄. As part of the study, the inputmatries needed to be hosen with extreme are and often they are the result from some other operation,like the lu funtion in MATLAB.For these kinds of investigative studies high performane is not required. It is the interative nature of toolslike MATLAB that is espeially useful.One derived algorithms have been implemented and investigated with FLAME�lab, the transition toa high-performane implementation using the FLAME/C API is trivial, requiring only the translation forthe operations in the loop-body to alls to subroutines with the funtionality of the Basi Linear AlgebraSubprograms (BLAS) [10, 6, 5℄. Parallel implementations using PLAPACK an subsequently be reated,sine a similar API has been reated for that environment.The most signi�ant di�erene between the FLAME/C and FLAME�lab APIs is that for theFLAME/C interfae, the partitioning routines return views (i.e., referenes) into the matrix. Thus, anysubsequent modi�ation of the view results in a modi�ation of the original ontents of the matrix. The useof views on the FLAME/C API avoids muh of the unneessary data opying that ours in the FLAME�labAPI, leading to a high-performane implementation.5 ConlusionIn this paper, we have presented a simple API for implementing linear algebra algorithms using MATLAB.In isolation, the FLAME�lab interfae illustrates how raising the level of abstration at whih one odesallows one to avoid intriate indexing in the ode, whih redues the opportunity for the introdution oferrors and raises the on�dene in the orretness of the ode. In ombination with our formal derivationmethodology, the API an be used to implement algorithms derived using that methodology so that theproven orretness of those algorithms translates to a high degree of on�dene in the implementation.We want to emphasize that the presented API is merely a very simple one that illustrates the issues.Similar interfaes for the Fortran, C++, and other languages are easily de�ned, allowing speial features ofthose languages to be used to even further raise the level of abstration at whih one odes.Finally, an inreasing number of linear algebra operations have been aptured with our formal derivationmethodology. This set of operations inludes, to name but a few, the omplete levels 1, 2, and 3 BLAS,fatorization operations suh as the LU and QR (with and without pivoting), redution to ondensed forms,and linear matrix equations arising in ontrol. An ever-growing olletion of linear algebra operations writtenusing the FLAME�lab interfae an be found at the URI given below.Further InformationFor further information, visit http://www.s.utexas.edu/users/flame/FLAME�lab/. At that site, we alsogive a number of examples.AknowledgmentsAn ever-growing number of people have ontributed to date to the methodology that underlies the FormalLinear Algebra Methods Environment. These inlude� UT-Austin: Mark Hinga, Dr. Margaret Myers, Vinod Valsalam, and Thierry Jo�rain.11

1 #inlude "FLAME.h"23 void Trsm_llnn_unb_var1(FLA_Obj L, FLA_Obj B)4 {5 FLA_Obj LTL, LTR, L00, l01, L02, BT, B0,6 LBL, LBR, l10t, lambda11, l12t, BB, b1t,7 L20, l21, L22, B2;89 FLA_Part_2x2(L, <L, /**/ <R,10 /* ************** */11 &LBL, /**/ &LBR, 0, 0, /* submatrix */ FLA_TL);12 FLA_Part_2x1(B, &BT,13 /***/14 &BB, 0, /* length submatrix */ FLA_TOP);1516 while (FLA_Obj_length(LTL) != FLA_Obj_length(L)){17 FLA_Repart_2x2_to_3x3(LTL, /**/ LTR, &L00, /**/ &l01, &L02,18 /* ************* */ /* *************************** */19 /**/ &l10t, /**/ &lambda11, &l12t,20 LBL, /**/ LBR, &L20, /**/ &l21, &L22,21 1, 1, /* lambda11 from */ FLA_BR);22 FLA_Repart_2x1_to_3x1(BT, &B0,23 /**/ /**/24 &b1t,25 BB, &B2,26 1, /* length b1t from */ FLA_BOTTOM);27 /* *** */28 FLA_Gemv(FLA_TRANSPOSE, MINUS_ONE, B0, l10t, ONE, b1t);29 FLA_Inv_sal(lambda11, b1t);30 /* *** */31 FLA_Cont_with_3x3_to_2x2(<L, /**/ <R, L00, l01, /**/ L02,32 /**/ l10t, lambda11, /**/ l12t,33 /* ************** */ /* ************************* */34 &LBL, /**/ &LBR, L20, l21, /**/ L22,35 /* lambda11 added to */ FLA_TL);36 FLA_Cont_with_3x1_to_2x1(&BT, B0,37 b1t,38 /***/ /**/39 &BB, B2,40 /* b1t added to */ FLA_TOP);41 }42 }Figure 6: FLAME implementation of unbloked trsm algorithm in Fig. 1 using the FLAME/C API.
12

� IBM's T.J. Watson Researh Center: Dr. John Gunnels and Dr. Fred Gustavson.� Intel: Dr. Greg Henry.� Mississippi State University: Prof. Anthony Skjellum and Wenhao Wu.In addition, numerous students in undergraduate and graduate ourses on high-performane omputing atUT-Austin have provided valuable feedbak.Referenes[1℄ Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, Robertvan de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra pakage { design overview. InProeedings of SC97, 1997.[2℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. E.MKenney, S. Ostrouhov, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, 1992.[3℄ Greg Baker, John Gunnels, Greg Morrow, Beatrie Riviere, and Robert van de Geijn. PLAPACK: Highperformane through high level abstration. In Proeedings of ICCP98, 1998.[4℄ P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ort�i, and R. A. van de Geijn. The siene ofderiving dense linear algebra algorithms. ACM Trans. Math. Soft. Submitted.[5℄ J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Du�. A set of level 3 basi linear algebrasubprograms. ACM Trans. Math. Soft., 16(1):1{17, Marh 1990.[6℄ J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN basilinear algebra subprograms. ACM Trans. Math. Soft., 14(1):1{17, Marh 1988.[7℄ J. J. Dongarra, I. S. Du�, D. C. Sorensen, and Henk A. van der Vorst. Solving Linear Systems on Vetorand Shared Memory Computers. SIAM, Philadelphia, PA, 1991.[8℄ J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME: Formal linear algebramethods environment. ACM Trans. Math. Soft., 27(4):422{455, Deember 2001.[9℄ Niholas J. Higham. Auray and Stability of Numerial Algorithms. Soiety for Industrial and AppliedMathematis, Philadelphia, PA, USA, seond edition, 2002.[10℄ C. L. Lawson, R. J. Hanson, D. R. Kinaid, and F. T. Krogh. Basi linear algebra subprograms forFortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.[11℄ C. Moler, J. Little, and S. Bangert. Pro-Matlab, User's Guide. The Mathworks, In., 1987.[12℄ E. S. Quintana-Ort�� and R. A. van de Geijn. Formal derivation of algorithms for the triangular Sylvesterequation. ACM Trans. Math. Soft. To appear.[13℄ G. W. Stewart. Introdution to Matrix Computations. Aademi Press, Orlando, Florida, 1973.[14℄ R. A. van de Geijn. Representing Linear Algebra algorithms in ode: The FLAME API. ACM Trans.Math. Soft. Submitted.[15℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pakage. The MIT Press, 1997.
13

