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tWe present a new parallel solution for the dense symmetri
 eigenvalue/eigenve
tor problemthat is based upon the tridiagonal eigensolver, Algorithm MR3, re
ently developed by Dhillon& Parlett. Algorithm MR3 has a 
omplexity of O(n2) operations for 
omputing all eigenvaluesand eigenve
tors of a symmetri
 tridiagonal problem. Moreover the algorithm only requiresO(n) extra workspa
e, and 
an be adapted to 
ompute any subset of k eigenpairs in O(nk)time. In 
ontrast, all earlier stable parallel algorithms for the tridiagonal eigenproblem requireO(n3) operations in the worst 
ase while some implementations, su
h as Divide & Conquer,have an extra O(n2) memory requirement. The proposed parallel algorithm balan
es the work-load equally among the pro
essors by traversing a matrix dependent representation tree whi
h
aptures the sequen
e of 
omputations performed by Algorithm MR3. The resulting implemen-tation allows problems of very large size to be solved eÆ
iently | the largest dense problemsolved in-
ore on a 256 pro
essor ma
hine with 2 GBytes of memory per pro
essor is a matrixof size 128; 000 � 128; 000, whi
h required 8 hours and 24 minutes of CPU time. We present
omparisons with other eigensolvers and results on matri
es that arise in the appli
ations of
omputational quantum 
hemistry and �nite element modeling of automobile bodies.1 Introdu
tionThe symmetri
 eigenvalue problem is ubiquitous in 
omputational s
ien
es; problems of ever grow-ing size arise in appli
ations as varied as 
omputational quantum 
hemistry, �nite element modelingand pattern re
ognition. In many of these appli
ations, both time and spa
e are limiting fa
tors forsolving the problem and hen
e, eÆ
ient parallel algorithms and implementations are needed. Thebest approa
h for 
omputing all the eigenpairs (eigenvalues and eigenve
tors) of a dense symmetri
matrix involves three phases: (1) redu
tion | redu
e the given symmetri
 matrix A to tridiagonalform T , (2) tridiagonal eigenproblem | 
ompute all the eigenpairs of T , (3) ba
ktransformation |map T 's eigenve
tors into those of A. For an n � n matrix, the redu
tion and ba
ktransformationphases require O(n3) arithmeti
 operations ea
h. Until re
ently, all algorithms for the tridiago-nal eigenproblem too had 
ubi
 
omplexity in the worst 
ase; these in
lude the remarkable QRalgorithm [41, 57℄, inverse iteration [67℄ and the Divide & Conquer method [18℄.Indeed, the tridiagonal problem 
an be the 
omputational bottlene
k for large problems takingnearly 70-80% of the total time to solve the entire dense problem. For example, on a 2.4 GHz Intel1



Pentium 4 pro
essor the tridiagonal redu
tion and ba
ktransformation of a 2000�2000 dense matrixtakes about 32 se
onds while LAPACK's bise
tion and inverse iteration software takes 106 se
ondsto 
ompute all the eigenpairs of the tridiagonal. The timings for a 4000� 4000 matrix 
learly showthe O(n3) behavior: 290 se
onds for tridiagonalization and ba
ktransformation, and 821 se
onds forbise
tion and inverse iteration to solve the tridiagonal eigenproblem. Timings for the tridiagonalQR algorithm are 86 se
onds for n = 2000 and 1099 se
onds for n = 4000. More detailed timingresults are given in Se
tion 4.Re
ently, Dhillon & Parlett proposed AlgorithmMRRR orMR3 (Algorithm ofMultipleRelativelyRobust Representations) [24, 29, 28℄, whi
h gives the �rst stable O(nk) algorithm to 
ompute keigenvalues and eigenve
tors of a symmetri
 tridiagonal matrix. In this paper we present a parallelalgorithm based on Algorithm MR3 for 
omputing any subset of eigenpairs of a dense symmetri
matrix; this yields the �rst parallel implementation of Algorithm MR3. We refer to the parallelalgorithm as PMR3 (Parallel MR3). As a 
onsequen
e the time spent by the proposed algorithm onthe tridiagonal eigenproblem is negligible 
ompared to the time spent on redu
tion and ba
ktrans-formation. For example, to 
ompute all the eigenpairs of a 15; 000� 15; 000 matrix on 16 pro
essorsthe new algorithm requires 546 se
s for redu
tion, 22.2 se
s for the tridiagonal solution and 160 se
sfor ba
ktransformation. In 
omparison, the 
orresponding timings for existing implementations forthe tridiagonal eigensolution are: 2054 se
s for the QR algorithm and 92.4 se
s for the Divide &Conquer method. For a 32; 000� 32; 000 matrix the timings for PMR3 on 16 pro
essors are: 4876se
s for the redu
tion, 118 se
s for the tridiagonal solution and 1388 se
s for ba
ktransformation.These timings 
learly 
ontrast the O(n2) 
omplexity of Algorithm MR3 as opposed to the O(n3)redu
tion and ba
ktransformation phases.Moreover, some of the existing algorithms have extra memory requirements: the S
aLAPACKDivide & Conquer 
ode (PDSTEVD) requires extra O(n2) storage while the inverse iteration 
ode(PDSTEIN) 
an lead to a memory imbalan
e on the pro
essors depending upon the eigenvalue distri-bution. Thus neither PDSTEVD nor PDSTEIN 
an be used to solve the above mentioned 32; 000�32; 000eigenproblem on 16 pro
essors. In 
ontrast, our parallel algorithm only requires workspa
e that islinear in n and the memory needed to store the eigenve
tors of the tridiagonal problem is evenlydivided among pro
essors, thus allowing us to eÆ
iently solve problems of very large size. Thelargest dense problem we have solved \in-
ore" on a 256 pro
essor ma
hine with 2 GBytes of mem-ory per pro
essor is a matrix of size 128; 000� 128; 000, whi
h required 8 hours and 24 minutes of
omputation time. Detailed timing results are given in Se
tion 4.The rest of the paper is organized as follows. Se
tion 2 reviews previous work on algorithms for thedense symmetri
 eigenvalue problem. In Se
tion 3, we present the proposed parallel Algorithm PMR3that uses multiple relatively robust representations for the tridiagonal problem. Se
tion 4 presentsdetailed timing results 
omparing Algorithm PMR3 with existing software. These in
lude resultson matri
es that arise in the real-life appli
ations of 
omputational quantum 
hemistry and �niteelement modeling of automobile bodies. Con
lusions are presented in the �nal se
tion.A word on the notation used throughout the paper. T indi
ates a tridiagonal matrix, n representsthe size of a matrix, eigenvalues are denoted by � and eigenve
tors by v. Computed quantities willoften be denoted by \hatted" symbols, for example, �̂ and v̂. The number of pro
essors in a parallel
omputation is p while the i-th pro
essor is denoted by pi.2 Related WorkAs mentioned earlier, most algorithms for the dense symmetri
 eigenvalue problem pro
eed in threephases. The �rst and third phases, Householder redu
tion and ba
ktransformation, are fairly stan-dard and are des
ribed in Se
tion 3.2. The se
ond stage, tridiagonal eigensolution, has led to avariety of interesting algorithms; we now give a qui
k overview of existing methods, emphasizingtheir parallel versions. 2



The QR algorithm, independently invented by Fran
is [41℄ and Kublanovskaja [57℄, is an iterationthat produ
es a sequen
e of similar matri
es that 
onverges to diagonal form. When the startingmatrix is symmetri
 and tridiagonal, ea
h iterate produ
ed by the QR algorithm is also symmetri
and tridiagonal. Convergen
e to diagonal form is rapid (ultimately 
ubi
) with a suitable 
hoi
e ofshifts [63℄. A fast square-root free version of QR developed by Pal, Walker and Kahan (PWK) isuseful if only eigenvalues are desired [63℄. Another attra
tive alternative, in the latter 
ase, is touse the di�erential qd algorithm (dqds) that is based on the related LR iteration [39℄. In pra
ti
e2-3 iterations, on average, are needed per eigenvalue in the QR algorithm where ea
h iteration is
omposed of at most n � 1 Givens rotations. Thus all eigenvalues 
an be 
omputed at a 
ost ofO(n2) operations, while the a

umulation of Givens rotations required for 
omputing orthogonaleigenve
tors results in O(n3) operations (in pra
ti
e, 6n3 to 9n3 operations are observed).The inherent sequential nature of the QR algorithm makes the eigenvalue 
omputation hardto parallelize. However, when eigenve
tors are needed, an e�e
tive parallel algorithm that yieldsgood speedups 
an be obtained as follows. First, the Householder re
e
tions 
omputed duringthe redu
tion are a

umulated in approximately 43n3 operations to form a matrix Z whi
h is thenevenly partitioned among the p pro
essors so that ea
h pro
essor owns approximately n=p rowsof Z. The tridiagonal matrix is dupli
ated on all pro
essors and the O(n2) eigenvalue 
omputationis redundantly performed on all pro
essors, while the Givens rotations are dire
tly applied on ea
hpro
essor to its part of Z. This a

umulation a
hieves perfe
t speedup sin
e all pro
essors 
ansimultaneously update their portion of Z without requiring any 
ommuni
ation, thus leading to anoverall parallel 
omplexity of O(n3=p) operations. A faster algorithm (up to a fa
tor of 2) 
an beobtained by using perfe
t shifts and inner de
ations [27℄.A major drawba
k of the QR algorithm is that it is hard to adapt to the 
ase when only a subsetof eigenvalues and eigenve
tors is desired at a proportionately redu
ed operation 
ount. Thus a
ommonly used parallel solution is to invoke the bise
tion algorithm followed by inverse iteration[50℄. The bise
tion algorithm was �rst proposed by Givens in 1954 and allows the 
omputation ofk eigenvalues of a symmetri
 tridiagonal T in O(kn) operations [42℄. On
e a

urate eigenvalues areknown, the method of inverse iteration may be used to 
ompute the 
orresponding eigenve
tors [67℄.However, inverse iteration 
an only guarantee small residual norms. It 
annot ensure orthogonalityof the 
omputed ve
tors when eigenvalues are 
lose. A 
ommonly used \remedy" is to orthogo-nalize ea
h approximate eigenve
tor, using the modi�ed Gram-S
hmidt method, against previously
omputed eigenve
tors of \nearby" eigenvalues | the LAPACK and EISPACK implementations or-thogonalize when eigenvalues are 
loser than 10�3kTk. Unfortunately even this 
onservative strategy
an fail to give a

urate answers in 
ertain situations [25℄. The amount of work required by inverseiteration to 
ompute all the eigenve
tors of a symmetri
 tridiagonal matrix depends strongly uponthe distribution of eigenvalues (unlike the QR algorithm whi
h always requires O(n3) operations).If eigenvalues are well-separated (gaps greater than 10�3kTk), then O(n2) operations are suÆ
ient.However, when eigenvalues are 
lustered, 
urrent implementations of inverse iteration 
an take up to10n3 operations due to orthogonalization [54℄. Unfortunately the latter situation is the norm ratherthan the ex
eption for large matri
es sin
e even uniform eigenvalue spa
ings when n ex
eeds 1,000lead to eigenvalue gaps smaller than 10�3kTk.When eigenvalues are well separated, both bise
tion and inverse iteration 
an be e�e
tively par-allelized leading to a 
omplexity of O(n2=p) operations. However, as remarked above, the 
ommonsituation for large matri
es is that inverse iteration requires O(n3) operations; see Se
tion 4.3 forsome timings. Thus, parallel inverse iteration requires O(n3=p) operations in these situations. More-over, 
onsiderable 
ommuni
ation is required when Gram-S
hmidt orthogonalization is done a
rosspro
essor boundaries. Indeed, to avoid 
ommuni
ation, the 
urrent inverse iteration implementationin S
aLAPACK (PDSTEIN) 
omputes all the eigenve
tors 
orresponding to a 
luster of eigenvalueson a single pro
essor, thus leading to a parallel 
omplexity of O(n3) in the worst 
ase and also animbalan
e in the memory required on ea
h pro
essor [11, p. 48℄.The bise
tion algorithm to �nd eigenvalues has linear 
onvergen
e and so, 
an be quite slow. To3



speed up bise
tion, there have been many attempts to employ faster zero-�nders su
h as the RayleighQuotient Iteration [63℄, Laguerre's method [55, 61, 64℄ and the Zeroin s
heme [19, 13℄. These zero-�nders 
an speed up the 
omputation of isolated eigenvalues by a 
onsiderable amount but theyseem to stumble when eigenvalues 
luster. Homotopy methods for the symmetri
 eigenproblem weresuggested by Chu in [16, 17℄. These methods start from an eigenvalue of a simpler matrix D andfollow a smooth 
urve to �nd an eigenvalue of A(t) � D + t(A �D), varying t from 0 to 1. D was
hosen to be the diagonal of the tridiagonal in [60℄, but greater su

ess was obtained by taking Dto be a dire
t sum of submatri
es of T [62℄. An alternate divide and 
onquer method that �nds theeigenvalues by using Laguerre's iteration instead of homotopy methods is given in [61℄. Note thatin all these 
ases, the 
orresponding eigenve
tors still need to be obtained by inverse iteration.The Divide & Conquer method proposed by Cuppen in 1981 is a method spe
ially suited forparallel 
omputation [18, 33℄; remarkably this algorithm also yields a faster sequential implementa-tion than QR. The basi
 strategy of the Divide & Conquer algorithm is to express the tridiagonalmatrix as a low-rank modi�
ation of a dire
t sum of two smaller tridiagonal matri
es. This mod-i�
ation may be a rank-one update [14℄, or may be obtained by 
rossing out a row and 
olumn ofthe tridiagonal [43, 45℄. The entire eigenproblem 
an then be solved in terms of the eigenproblemsof the smaller tridiagonal matri
es, and this pro
ess 
an be repeated re
ursively. For several yearsafter its in
eption, it was not known how to guarantee numeri
ally orthogonality of the eigenve
torapproximations obtained by this approa
h. However Gu and Eisenstat found a solution to thisproblem, leading to robust software based on their strategy [46℄.The main reason for the unexpe
ted su

ess of divide and 
onquer methods on serial ma
hines isde
ation, whi
h o

urs when an eigenpair of a submatrix of T is an a

eptable eigenpair of a largersubmatrix. The greater the amount of de
ation, whi
h depends on the eigenvalue distribution and onthe stru
ture of the eigenve
tors, the lesser is the work required in these methods. For matri
es with
lustered eigenvalues de
ation 
an be extensive, however, in general, O(n3) operations are needed.The Divide & Conquer method is suited for parallelization sin
e smaller sub-problems 
an be solvedindependently on various pro
essors. However, 
ommuni
ation 
osts for 
ombining sub-problemsare substantial, espe
ially when 
ombining the larger sub-problems to get the solution to the fullproblem [72℄. The biggest drawba
k of the Divide & Conquer algorithm is the extra O(n2) mainmemory required for its 
omputation | as we shall see later, this limits the largest problem that
an be solved using this approa
h.2.1 Other solution methodsThe oldest method for solving the symmetri
 eigenproblem dates ba
k to Ja
obi in 1846 [53℄, andwas redis
overed by von Neumann and 
olleagues in 1946 [4℄. Ja
obi's method does not redu
e thedense symmetri
 matrix to tridiagonal form, as most other methods do, but works on the densematrix itself. It performs a sequen
e of plane rotations ea
h of whi
h annihilates an o�-diagonalelement (whi
h is �lled in during later steps). There are a variety of Ja
obi methods that di�ersolely in their strategies for 
hoosing the next element to be annihilated. All good strategies tend todiminish the o�-diagonal elements, and the resulting sequen
e of matri
es 
onverges to the diagonalmatrix of eigenvalues [23℄.Ja
obi's method fell out of favor with the dis
overy of the QR algorithm. The primary reasonis that, in pra
ti
e, the 
ost of even the most eÆ
ient variants of the Ja
obi iteration is an orderof magnitude greater than that of the QR algorithm. Nonetheless, it has periodi
ally enjoyed aresurre
tion sin
e it 
an be eÆ
iently parallelized [12, 74, 7℄ and theoreti
al results show it to bemore a

urate than the QR algorithm [22℄.The Symmetri
 Invariant Subspa
e De
omposition Algorithm (SYISDA) formulates the problemin a dramati
ally di�erent way [9℄. The idea is to s
ale and shift the spe
trum of the given matrixso that its eigenvalues are mapped to the interval [0; 1℄, with the mean eigenvalue being mappedto 12 . Letting B equal the transformed matrix, a polynomial p is applied to B with the property4



that limi!1 pi([0; 1℄) = f0; 1g. By applying this polynomial to B in the iteration C0 = B, Ci+1 =p(Ci) until 
onvergen
e, all eigenvalues of Ci+1 eventually be
ome arbitrarily 
lose to 0 or 1. Theeigenve
tors of Ci+1 and A are related in su
h a way that allows the 
omputation of two subspa
esthat 
an then be used to de
ouple matrix A into two subproblems, ea
h of size roughly half thatof A. The pro
ess then 
ontinues with ea
h of the subproblems. The bene�t of this approa
his that the 
omputation 
an be 
ast in terms of matrix-matrix multipli
ation, whi
h 
an attainnear-peak performan
e on modern mi
ropro
essors and parallelizes easily [30, 77, 49, 44, 1, 75,47℄. Unfortunately, this approa
h in
reases the operation 
ount to the point where SYISDA is not
onsidered to be 
ompetitive.2.2 Parallel librariesA great deal of e�ort has been spent in building eÆ
ient parallel symmetri
 eigensolvers for dis-tributed systems [21℄. Routines for this problem have been developed as part of a number ofnumeri
al libraries. Among these the best known are the S
alable Linear Algebra Pa
kage (S
aLA-PACK) [34, 11℄, Parallel Eigensolver (PeIGS) [37℄, the Parallel Resear
h on Invariant Subspa
eMethods (PRISM) proje
t [9℄, and the Parallel Linear Algebra Pa
kage (PLAPACK) [73, 2℄. All ofthese pa
kages attempt to a
hieve portability by embra
ing the Message-Passing Interfa
e (MPI) [32℄and the Basi
 Linear Algebra Subprograms (BLAS) [58, 31, 30℄.The S
aLAPACK proje
t is an e�ort to parallelize the Linear Algebra Pa
kage (LAPACK) [3℄ todistributed memory ar
hite
tures. It supports a number of di�erent algorithms, as further dis
ussedin the experimental se
tion. PeIGS supports a large number of 
hemistry appli
ations that give riseto large dense eigenvalue problems. It 
urrently in
ludes a parallel tridiagonal eigensolver that isbased on an early version of Algorithm MR3; this preliminary version does limited Gram-S
hmidtorthogonalization and was 
alled the Berkeley algorithm in [26℄. The PRISM proje
t implements theSYISDA approa
h outlined in Se
tion 2.1. PLAPACK 
urrently supports a parallel implementationof the QR algorithm as well as the algorithm that is the topi
 of this paper.3 The Proposed AlgorithmWe now present the proposed parallel algorithm. Se
tion 3.1 des
ribes how the tridiagonal eigenprob-lem 
an be solved using the method of multiple relatively robust representations, while Se
tion 3.2brie
y des
ribes the phases of Householder redu
tion and ba
ktransformation.3.1 Tridiagonal Eigensolver using Multiple Relatively Robust Represen-tationsAlgorithmMR3 was re
ently introdu
ed by Dhillon & Parlett [24, 29, 28℄ for the task of 
omputing keigenve
tors of a symmetri
 tridiagonal T , and has a 
omplexity of O(nk) operations. The superiortime 
omplexity of the algorithm is a
hieved by avoiding Gram-S
hmidt orthogonalization, whi
h inturn is the result of high relative a

ura
y in intermediate 
omputations.3.1.1 The Sequential AlgorithmWe provide the main ideas behind AlgorithmMR3; an in-depth te
hni
al des
ription and justi�
ationof the algorithm 
an be found in [24, 29, 28℄. There are three key ingredients that form the ba
kboneof Algorithm MR3:1. Relatively Robust Representations(RRRs). A relatively robust representation is a repre-sentation that determines its eigenvalues and eigenve
tors to high relative a

ura
y, i.e., small
omponentwise 
hanges to individual entries of the representation lead to small relative 
hanges5



in the eigenvalues and small 
hanges in the eigenve
tors (modulo relative gaps between eigen-values, see (2) below). Unfortunately, the traditional representation of a tridiagonal by itsdiagonal and o�-diagonal elements does not form an RRR; see [29, Se
. 3℄ for an example.However, the bidiagonal fa
torization T = LDLt of a positive de�nite tridiagonal is an RRR,and in many 
ases an inde�nite LDLt also forms an RRR [29℄. We now make pre
ise the
onditions needed for LDLt to be an RRR; write li for L(i + 1; i) and di for D(i; i). De�nethe relative gap of �̂, where �̂ is 
loser to � than to any other eigenvalue of LDLt, to berelgap(�̂) := gap(�̂)=j�̂j;where gap(�̂) = minfj�� �̂j : � 6= �; � 2 spe
trum(LDLt)g. We say that (�;v) is determinedto high relative a

ura
y by L and D if small relative 
hanges, li ! li(1+ �i), di ! di(1+ Æi),j�ij < �, jÆij < �, � � 1, 
ause 
hanges Æ� and Æv that satisfyjÆ�jj�j � K1n�; � 6= 0; (1)j sin 6 (v;v + Æv)j � K2n�relgap(�) ; (2)for modest 
onstants K1 and K2, say, smaller than 100. We 
all su
h an LDLt fa
torizationa relatively robust representation (RRR) for (�;v). The advantage of an RRR is that theeigenvalues and eigenve
tors 
an be 
omputed to high relative a

ura
y as governed by (1)and (2). For more details see [29℄.2. Computing the eigenve
tor of an isolated eigenvalue. On
e an a

urate eigenvalue �̂ isknown, its eigenve
tor may be 
omputed by solving the equation (LDLt� �̂I)z � 0. Howeverit is not straightforward to solve this equation: the tri
k is to �gure out what equation toignore in this nearly singular system. Unable to �nd a solution to this problem, 
urrentimplementations of inverse iteration in LAPACK and EISPACK solve (LDLt � �̂I)zi+1 = ziand take z0 to be a random starting ve
tor (this diÆ
ulty was known to Wilkinson [78, p.318℄). This problem was solved re
ently by using twisted fa
torizations that are obtained bygluing a top-down (LDLt) and a bottom-up (UDU t) fa
torization. The solution is presentedin Algorithm Getve
 below, see [29, 65, 40℄ for more details.3. Computing orthogonal eigenve
tors for 
lusters using multiple RRRs. By using an RRRand Algorithm Getve
 for 
omputing eigenve
tors, it 
an be shown that the 
omputed eigen-ve
tors are numeri
ally orthogonal when the eigenvalues have large relative gaps [29℄. How-ever, when eigenvalues have small relative gaps, the above approa
h is not adequate. For the
ase of small relative gaps, Algorithm MR3 uses multiple RRRs, i.e., multiple fa
torizationsL
D
Lt
 = LDLt � �
I , where �
 is 
lose to a 
luster. The shifts �
 are 
hosen to \break"
lusters, i.e., to make relative gaps bigger (note that relative gaps 
hange upon shifting by �
).After forming the new representation L
D
Lt
, the eigenvalues in the 
luster are \re�ned" sothat they have high relative a

ura
y with respe
t to L
D
Lt
. Finally the eigenve
tors of eigen-values that be
ome relatively well separated after shifting are 
omputed by Algorithm Getve
using L
D
Lt
; the pro
ess is iterated for eigenvalues that still have small relative gaps. Detailsare given in Algorithm MR3 below. The tri
ky theoreti
al aspe
ts that address the relativerobustness of intermediate representations and whether the eigenve
tors 
omputed using dif-ferent RRRs are numeri
ally orthogonal may be found in [66℄ and [28℄. It is important to notethat orthogonality of the 
omputed eigenve
tors is a
hieved without Gram-S
hmidt being usedin any of the pro
edures.We �rst present Algorithm Getve
 in Figure 1. Getve
 takes an LDLt fa
torization and anapproximate eigenvalue �̂ as input and 
omputes the 
orresponding eigenve
tor by forming the6



Algorithm Getve
(L,D, �̂)Input: L is unit lower bidiagonal (li denotes L(i+1; i), 1 � i � n�1), and D is diagonal (di denotesD(i; i), 1 � i � n); LDLt is the input tridiagonal matrix assumed to be irredu
ible.�̂ is an approximate eigenvalue.Output: z is the 
omputed eigenve
tor.I. Fa
tor LDLt � �̂I = L+D+Lt+ by the dstqds (di�erential stationary qd with shift) transform.II. Fa
tor LDLt � �̂I = U�D�U t� by the dqds (di�erential progressive qd with shift) transform.III. Compute 
k for k = 1; : : : ; n by the formula 
k = sk + dkD�(k+1)pk+1 that involves the interme-diate quantities sk and pk+1 
omputed in the dstqds and dqds transforms (for details see [29,Se
 4.1℄). Pi
k an r su
h that j
rj = mink j
kj. Form the twisted fa
tors with twist index r,Nr and �r, whi
h satisfy Nr�rN tr = LDLt � �̂I .IV. Form the approximate eigenve
tor z by solving N trz = er (er is the r-th 
olumn of the identitymatrix I) whi
h is equivalent to solving (LDLt � �̂I)z = Nr�rN trz = er
r sin
e Nrer = erand �rer = 
rer: z(r) = 1:For i = r � 1; : : : ; 1; z(i) = � �L+(i)z(i+ 1); z(i+ 1) 6= 0;�(di+1li+1=dili)z(i+ 2); otherwise:For j = r; : : : ; n� 1; z(j + 1) = � �U�(j)z(j); z(j) 6= 0;�(dj�1lj�1=dj lj)z(j � 1); otherwise:Note that dili is the (i; i+ 1) element of LDLt.V. Set z  z=kzk.Figure 1: Algorithm Getve
 for 
omputing the eigenve
tor of an isolated eigenvalue.appropriate twisted fa
torization Nr�rN tr = LDLt � �̂I . The twist index r in Step III of Figure 1is 
hosen so that j
rj = mink j
kj and is followed by solving (LDLt � �̂I)z = 
rer; thus r is theindex of the equation that is ignored and provides a solution to Wilkinson's problem (see above).The resulting eigenve
tor is a

urate sin
e di�erential transformations are used to 
ompute thetwisted fa
torization, and the eigenve
tor is 
omputed solely by multipli
ations (no additions orsubtra
tions) in Step IV of the algorithm. We assume that LDLt is an irredu
ible tridiagonal,i.e., all o�-diagonals are nonzero. Details on twisted fa
torizations, di�erential qd transforms andAlgorithm Getve
 may be found in [29℄.Algorithm Getve
 
omputes a single eigenve
tor of an RRR; it was shown in [29℄ that the 
om-puted eigenve
tor is highly a

urate and so, is numeri
ally orthogonal to all other eigenve
tors ifthe 
orresponding eigenvalue has a large relative gap. However, if Getve
 is invoked when the 
orre-sponding eigenvalue is part of a 
luster, the 
omputed ve
tor will, in general, not be orthogonal toother eigenve
tors in the 
luster. The diÆ
ulty is that, as seen by (2), the eigenve
tors of eigenvalueswith small relative gaps are highly sensitive to even tiny 
hanges in L and D.To over
ome this problem, Algorithm MR3 given in Figure 2 uses multiple LDLt fa
torizations| the basi
 idea is that there will be an LDLt fa
torization for ea
h 
luster of eigenvalues. A newLDLt fa
torization is formed per 
luster in order to in
rease relative gaps within the 
luster. On
ean eigenvalue has a large relative gap, Algorithm Getve
 is invoked to 
ompute the 
orresponding7



Algorithm MR3(T ,�0,tol)Input: T is the given symmetri
 tridiagonal,�0 is the index set of desired eigenpairs,tol is the input toleran
e for relative gaps, usually tol is set to 10�3.Output: (�̂j ; v̂j); j 2 �0, are the 
omputed eigenpairs.1. Split T into irredu
ible sub-blo
ks T1; T2; : : : ; T`.For ea
h sub-blo
k Ti i = 1; : : : ; `, do:A. Choose �i su
h that L0D0Lt0 = Ti + �iI is a fa
torization that determines the desiredeigenvalues and eigenve
tors, �j and vj , j 2 �0, to high relative a

ura
y. In general,the shift �i 
an be in the interior of T 's spe
trum, but a safe 
hoi
e is to make T + �iIpositive or negative de�nite.B. Compute the desired eigenvalues of L0D0Lt0 to high relative a

ura
y by the dqds algo-rithm [39℄ or by bise
tion using a di�erential qd transform.C. Form a work queue Q, and initialize Q = f(L0; D0;�0)g. Call MR3 Ve
(Q,tol).end forSubroutine MR3 Ve
(Q,tol)While Queue Q is not empty:I. Remove an element (L;D;�) from the queue Q. Partition the 
omputed eigenvalues �̂j ; j 2 �,into 
lusters �1; : : : ;�h a

ording to their relative gaps and the input toleran
e tol. Theeigenvalues are thus designated as isolated (
luster size equals 1) or 
lustered. More pre
isely, ifrgap(�̂j) := mini 6=j j�̂j � �̂ij=j�̂j j � tol then �̂j is isolated. On the other hand, all 
onse
utiveeigenvalues �̂j�1; �̂j in a non-trivial 
luster �
 (j�
j > 1) satisfy j�̂j � �̂j�1j=j�̂j j < tol.II. For ea
h 
luster �
, 
 = 1; : : : ; h, perform the following steps.If j�
j = 1 with eigenvalue �̂j , i.e., �
 = fjg, then invoke Algorithm Getve
(L,D,�̂j) toobtain the 
omputed eigenve
tor v̂j .elsea. Pi
k �
 near the 
luster and 
ompute LDLt � �
I = L
D
Lt
 using the dstqds (di�er-ential form of stationary qd) transform, see [29, Se
 4.1℄ for details.b. \Re�ne" the eigenvalues �̂� �
 in the 
luster so that they have high relative a

ura
ywith respe
t to the 
omputed L
D
Lt
. Set �̂ (�̂� �
)refined, for all eigenvalues inthe 
luster.
. Add (L
; D
;�
) to the queue Q.end ifend forend whileFigure 2: Algorithm MR3 for 
omputing orthogonal eigenve
tors without using Gram-S
hmidt or-thogonalization.eigenve
tor as seen in Step II of Figure 2. Otherwise we are in the presen
e of a 
luster �
 ofeigenvalues and a new representation L
D
Lt
 = LDLt � �
I needs to be 
omputed. The shift �
 is
hosen in su
h a way su
h that: (a) the new representation is relatively robust for the eigenvalues in8



�
 and (b) at least one of the shifted eigenvalues in �
 is relatively well separated from the others.The pro
ess is iterated if other 
lusters are en
ountered. The inputs to MR3 are an index set �0that spe
i�es the desired eigenpairs, the symmetri
 tridiagonal matrix T given by its traditionalrepresentation of diagonal and o�-diagonal elements, and a toleran
e tol for relative gaps. Note thatthe 
omputational path taken by MR3 depends on the relative gaps between eigenvalues. We againemphasize that MR3 does not need any Gram-S
hmidt orthogonalization of the eigenve
tors.3.1.2 Representation TreesThe sequen
e of 
omputations in Algorithm MR3 
an be pi
torially expressed by a representationtree. Su
h a tree 
ontains information about how the eigenvalues are 
lustered (nodes of the tree) andwhat shifts are used to \break" a 
luster (edges of the tree). A pre
ise des
ription of a representationtree 
an be found in [28℄. Here we present a slightly simpli�ed version of the tree, without spe
ifyingedge labels, whi
h will fa
ilitate the des
ription of the parallel algorithm.The root node of the representation tree is denoted by (L0; D0;�0), where L0D0Lt0 is the baserepresentation obtained in step 1A of AlgorithmMR3, see Figure 2. An example representation treeis shown in Figure 3. Let �
 be an internal node of the tree and let (Lp; Dp;�p) be its parent node.If �
 is a non-leaf node, it will be denoted by (L
; D
;�
) where the index set �
 is a proper subsetof �p. This node 
aptures the fa
t that L
D
Lt
 is a representation that is 
omputed by shifting,LpDpLtp � �
 = L
D
Lt
, and will be used for 
omputing the eigenve
tors indexed by �
. If �
 is aleaf node instead, it will be denoted only by the singleton f�
g, where 
 2 �p. The singleton nodef�
g signi�es that the eigenvalue �
 has a large relative gap with respe
t to the parent representationLpDpLtp, and its eigenve
tor will be 
omputed by Algorithm Getve
.�� ��(L0;D0;f1; : : : ;11g)����������f�1g ������ ��(L1;D1;f2;3g) f�4g ������ ��(L2;D2;f5; : : : ;10g)HHHHHHHHHHf�11g����f�2g AAAAf�3g ����f�5g �� ��(L3;D3;f6;7;8g)������ ��(L4;D4;f9;10g)���f�6g f�7g f�8g ���f�9g BBBf�10gFigure 3: An example representation tree for a matrix of size 11.Figure 3 gives an example of a representation tree for a matrix of size 11 for whi
h all the eigen-ve
tors are desired: the root 
ontains the representation L0; D0 and the index set �0 = f1; 2; : : : ; 11g.The algorithm begins by 
lassifying the eigenvalues: in this example �1; �4 and �11 are well sepa-rated, so in the tree they appear as singleton leaves (their eigenve
tors 
an be dire
tly 
omputed bythe 
alls Getve
(L0; D0; �̂i), i = 1; 4 and 11). The se
ond and third eigenvalues violate the 
onditionj(�̂3 � �̂2)=�̂3j � tol, therefore they form a 
luster; a new representation L1D1Lt1 = L0D0Lt0 � �1Ihas to be 
omputed and the two eigenvalues have to be re�ned to have high relative a

ura
y with9



respe
t to L1 and D1. This is represented by the node (L1; D1; f2; 3g). Similarly the eigenvaluesf�5; : : : ; �10g are 
lustered: a new representation L2D2Lt2 = L0D0Lt0 � �2I is 
omputed as shownby the node (L2; D2; f5; : : : ; 10g). This illustrates the working of Algorithm MR3 for all the nodesat depth 1 in the representation tree of Figure 3.The 
omputation pro
eeds by 
lassifying the eigenvalues of the internal nodes (L1; D1; f2; 3g)and (L2; D2; f5; : : : ; 10g). From the tree it 
an be dedu
ed that the two eigenvalues f�2g and f�3gin the �rst node are now relatively well separated, while the se
ond node is further fragmented intoa relatively well separated eigenvalue f�5g and two nodes with 
lusters: nodes (L3; D3; f6; 7; 8g)and (L4; D4; f9; 10g). Finally these two 
lusters are further fragmented to yield singletons, andthese eigenve
tors are 
omputed by Algorithm Getve
. Note that, as seen by the des
ription ofAlgorithm MR3 in Figure 2, the representation tree is pro
essed in a breadth �rst fashion.In IEEE double pre
ision arithmeti
, using the toleran
e min(10�3; 1=n) for relative gaps, thedepth of a representation tree 
an be as large as 6, see [28℄ for an example. In most examples wehave en
ountered, the depth is mu
h smaller | to give a sense of reality we give here a sket
h of therepresentation tree for two matri
es that arise in the �nite element modeling of automobile bodies(see Se
tion 4.1 for more details). The tree for the matrix auto.13786 (n = 13786) has maximumdepth 2; at depth 1 there are 12937 singleton nodes, 403 
lusters of size 2, 10 
lusters of size 3 andone 
luster of size 13. The tree for the matrix auto.12387 (n = 12387) also has maximum depth 2even though it has many more internal nodes: it has 5776 singletons and 1991 nodes 
orrespondingto 
lusters with sizes ranging from 2 to 31.A further note about redu
ible matri
es: the solution is 
omputed by iterating over the sub-blo
ksthus the sequen
e of 
omputations 
an be 
aptured by a forest of trees (one for ea
h sub-blo
k) ratherthan by a single tree.3.1.3 The Parallel AlgorithmWe now des
ribe Algorithm PMR3 (Parallel algorithm using Multiple Relatively RobustRepresentations). The input to the algorithm is a tridiagonal matrix T , an index set �0 of desiredeigenpairs, a toleran
e parameter tol and the number of pro
essors p that exe
ute the algorithm.We target our algorithm to a distributed memory system, in whi
h ea
h pro
essor has its own lo
almain memory and 
ommuni
ation is done by message-passing [32℄. We assume that the tridiagonalis dupli
ated on every pro
essor before the algorithm is invoked.We �rst dis
uss the parallelization strategy before des
ribing the algorithm in detail. Let thesize of the input index set �0 be k, i.e., k eigenvalues and eigenve
tors are to be 
omputed. Thetotal O(kn) 
omplexity of Algorithm MR3 
an be broken down into the work required at ea
h nodeof the representation tree:1. Ea
h leaf node f�ig requires the 
omputation of an eigenve
tor by Algorithm Getve
, whi
hrequires O(n) operations (at most 2n divisions and 10n multipli
ations and additions),2. Ea
h internal node (L
; D
;�
) requires (a) 
omputation of the representation L
D
Lt
 =LiDiLti � �
I , and (b) re�nement of the eigenvalues 
orresponding to the index set �
 so thatthey have high relative a

ura
y with respe
t to L
D
Lt
. Computing the representation by thedi�erential stationary qd transform requires O(n) operations (n divisions, 4n multipli
ationsand additions), while re�nement of the eigenvalues 
an be done in O(nj�
j) operations usinga 
ombination of bise
tion and Rayleigh Quotient Iteration.We aim for a parallel 
omplexity of O(nkp +n) operations. Due to 
ommuni
ation overheads, wewill not attempt to parallelizeO(n) pro
edures, su
h as 
omputing a single eigenve
tor or 
omputinga new representation. Our strategy for the parallel algorithm will be to divide the leaf nodes equallyamong the pro
essors, i.e., ea
h pro
essor will make approximately k=p 
alls to Algorithm Getve
.Thus ea
h pro
essor is assigned a set of eigenve
tors that are to be 
omputed lo
ally.10



However, before the leaf nodes 
an be pro
essed the 
omputation at the internal nodes needs tobe performed. Ea
h internal node (L
; D
;�
) is asso
iated with a subset of q pro
essors that areresponsible for 
omputing the eigenve
tors in �
. Sin
e k eigenve
tors are to be 
omputed by a totalof p pro
essors, q approximately equals p(j�
j=k). Note that sin
e j�
j is small in most pra
ti
alappli
ations (see 
omments towards the end of Se
tion 3.1.2), q is mostly small; in our examples, qis usually 1, sometimes 2 but rarely greater than 2. If q equals 1, the 
omputation at ea
h internalnode is just done serially. If q is greater than 1, the parallel algorithm will pro
ess an internal nodeas follows: the representation L
D
Lt
 is 
omputed (redundantly) by ea
h of the q pro
essors. Theeigenvalue re�nement using bise
tion or Rayleigh Quotient Iteration (O(n) per eigenvalue) is thenparallelized over the q pro
essors at a 
ost of (nj�
j=q) = O(nk=p) operations. Sin
e many subsetsof pro
essors may be handling internal nodes at the same time, and the depth of the tree is atmost 6, the overall parallel 
omplexity is O(nkp + n). Note that due to 
ommuni
ation overheadsin a pra
ti
al implementation, we impose a threshold on j�
j before the re�nement is performedin parallel; if j�
j is below this threshold the 
omputation is 
arried out redundantly on all the qpro
essors.Figure 4 gives a des
ription of Algorithm PMR3 a

ording to the strategy outlined above. Inorder to show how sub-blo
ks of T are handled by the parallel algorithm, we do not assume that Tis irredu
ible. Ea
h pro
essor will 
ompute k=p eigenve
tors, assuming k is divisible by p. On
e theeigenvalues are grouped a

ording to the sub-blo
ks and sorted (per sub-blo
k), work is assignedto the pro
essors in a blo
k 
y
li
 manner, i.e. pro
essor p0 is assigned eigenve
tors 1; 2; : : : ; k=p,pro
essor p1 is assigned eigenve
tors k=p+1; : : : ; 2k=p and so on. Thus the memory requirement tostore the eigenve
tors is exa
tly (n �k=p) 
oating point numbers per pro
essor. The extra workspa
erequired is only linear in n, so problems of large size 
an be ta
kled. To give an idea of the limitsof the sequential implementation, the size n of the largest problem that 
an be solved (with k = n)on a 
omputer equipped with 1.5 GBytes of memory is about 14,000 when all the eigenve
tors arerequired while to solve a problem of size 30,000 a 
omputer should be equipped with about 7 GBytesof main memory.As seen in Figure 4 the eigenve
tors are 
omputed by invoking the sequential algorithms Getve
or MR3 Ve
 (whi
h in turn invokes Getve
). In terms of the representation tree, ea
h pro
essormaintains a lo
al work queue �Q of nodes (possibly leaves) whi
h 
olle
tively index a superset ofthe eigenve
tors to be 
omputed lo
ally. Initially all the pro
essors have a single node in the queue
orresponding to the desired index set �0. The representation tree is traversed in a breadth �rstfashion to fragment the 
lusters until all the eigenve
tors of a node are lo
al. To fragment a 
lusteris equivalent to des
ending one level in the representation tree. Nodes that 
ontain eigenve
tors allof whi
h are asso
iated with other pro
essors are removed from the lo
al queue of the pro
essor.On
e a node just 
ontains eigenve
tors to be 
omputed lo
ally, the sequential algorithms Getve
or MR3 Ve
 are invoked depending on the size of the 
luster. Re
all that there is a tree for ea
hsub-blo
k.A word about the initial eigenvalue 
omputation. The dqds algorithm for 
omputing the eigen-values is very fast, but like the QR algorithm is inherently sequential. Moreover, the dqds algorithm
annot be adapted to 
ompute k eigenvalues in O(nk) time, instead always requiring O(n2) 
om-putations. On the other hand the bise
tion algorithm is easily parallelized [6℄, however, bise
tion israther slow. Thus, in a parallel implementation, it is often preferable to redundantly 
ompute theeigenvalues on ea
h pro
essor unless p is large, or only a small subset of the n eigenvalues is desired.We now illustrate the parallel exe
ution of the algorithm on the matrix of Figure 3 assumingwe want to 
ompute all the 11 eigenve
tors on 3 pro
essors. In Figure 5 we have annotated therepresentation tree of Figure 3 to show how the tree is pro
essed by the 3 pro
essors. Initially theeigenvalues �0 = f�1; : : : ; �11g are 
omputed. Then based on the relative gaps between eigenvaluesea
h pro
essor determines whether a 
luster is to be 
omputed lo
ally, has to be fragmented orhas to be dis
arded. The labels p0; p1; p2 on the root node denote that ea
h of the 3 pro
essors isinvolved in the 
omputation. 11



Algorithm PMR3(T;�0; tol; p) fexe
uted by pro
essor psgInput: T is the given symmetri
 tridiagonal,�0 is the index set of desired eigenpairs,tol is the input toleran
e for relative gaps, usually set to 10�3,p is the number of pro
essors that exe
ute the algorithm.Output: (�̂j ; v̂j); j 2 �0 are the 
omputed eigenpairs.1. Split T into irredu
ible sub-blo
ks T1; T2; : : : ; T`.For ea
h sub-blo
k Ti, i = 1; : : : ; `, do:A. Choose �i su
h that L0D0Lt0 = Ti + �iI is a fa
torization that determines the desiredeigenvalues and eigenve
tors, �j and vj , j 2 �0, to high relative a

ura
y.B. Compute the desired eigenvalues �i of L0D0Lt0 to high relative a

ura
y by the dqdsalgorithm [39℄ or by bise
tion using a di�erential qd transform. Let �i be the index set
orresponding to �i that 
ontains the desired eigenvalues (� �0).end for2. Determine the subset �ps0 � �0 of eigenve
tors to be 
omputed lo
ally. Form a work queue �Q,and initialize it with all the sub-blo
ks (Li; Di;�i) 
ontaining eigenve
tors to be 
omputedlo
ally, i.e., the sub-blo
ks for whi
h �i \ �ps0 6= ;, with i = 1; : : : ; `.3. While Queue �Q is not empty:I. Remove an element (L;D;�) from the queue �Q. Partition the 
omputed eigenvalues �̂j ; j 2� into 
lusters �1; : : : ;�h a

ording to their relative gaps and the input toleran
e tol.II. For ea
h 
luster �
, 
 = 1; : : : ; h, perform the following steps:If �
 � �ps0 then all eigenve
tors in �
 have to be 
omputed lo
ally.The eigenve
tors are 
omputed by invoking MR3 Ve
((L;D;�
); tol).elseif �
 \ �ps0 = ; then the 
luster �
 does not 
ontain any eigenve
tor that needsto be 
omputed lo
ally. Dis
ard the 
luster �
.elseif �
 \ �ps0 6= ; then the 
luster �
 
ontains some eigenve
tors to be 
omputedlo
ally, and needs to be further fragmented by the following steps.� Pi
k �
 near the 
luster and 
ompute LDLt � �
I = L
D
Lt
using the dstqds transform, see [29, Se
 4.1℄ for details.� \Re�ne" the eigenvalues �̂��
 in the 
luster so that they havehigh relative a

ura
y with respe
t to the 
omputed L
D
Lt
.Set �̂ (�̂� �
)refined, for all eigenvalues in the 
luster.� Add (L
; D
;�
) to the queue �Q.end ifend whileFigure 4: Algorithm PMR3 for parallel 
omputation of a subset �0 of eigenvalues and eigenve
tors.Pro
essor p0 
lassi�es the eigenvalues �1 through �4, but dis
ards all the 
lusters (possiblysingletons) from �5 to the end of the spe
trum as they do not 
ontain eigenvalues to be 
omputedlo
ally. The 
lusters f�1g, f�2; �3g, f�4g 
ontain eigenvalues lo
al to p0, so the nodes in the treeare labelled with p0. In 
lassifying the eigenvalues both pro
essors p1 and p2 �nd that the 
luster12



f�5; : : : ; �10g 
ontains eigenvalues to be 
omputed lo
ally: �5 through �8 for p1 and �9, �10 for p2.Thus, the new representation is 
omputed redundantly by both p1 and p2, and the re�nement ofeigenvalues �5 through �10 is parallelized over p1 and p2. Thus the node is labelled with both p1and p2 in Figure 5. The singleton f�11g is re
ognized as lo
al by p2 and therefore labelled with p2.The eigenvalue 
lassi�
ation for node (L2; D2; f5; : : : ; 10g) is independently performed by pro
essorsp1 and p2: p1 re
ognizes the 
lusters f�5g, f�6; �7; �8g to 
ontain lo
al eigenvalues and dis
ardsthe 
luster f�9; �10g; vi
e-versa for pro
essor p2. Nodes f�5g and (L3; D3; f6; 7; 8g) are thereforelabelled p1 while node (L4; D4; f9; 10g) is labelled p2.�� ��(L0;D0;f1; : : : ;11g)p0; p1; p2����������f�1gp0 ������ ��(L1;D1;f2;3g) p0 f�4gp0������ ��(L2;D2;f5; : : : ;10g)p1; p2HHHHHHHHHHf�11gp2����f�2gp0 AAAAf�3gp0 ����f�5gp1�� ��(L3;D3;f6; : : : ;8g)p1������ ��(L4;D4;f9;10g)p2���f�6gp1 f�7gp1 f�8gp1 ���f�9gp2 BBBf�10gp2Figure 5: Representation tree annotated to des
ribe the exe
ution of the parallel algorithm. Thematrix size is 11; the algorithm is exe
uted by 3 pro
essors.It is important to realize that the parallel algorithm traverses the sequential representation treein parallel. This implies that the 
omputed eigenve
tors mat
h exa
tly the ones 
omputed by thesequential algorithm and therefore satisfy the same a

ura
y properties.3.2 Householder Redu
tion and Ba
ktransformationTo solve the dense, symmetri
 eigenproblem the solution to the tridiagonal eigenproblem is pre
ededby redu
tion to tridiagonal form, and followed by a ba
ktransformation stage to obtain the eigen-ve
tors of the dense matrix. We will see in the performan
e se
tion that Algorithm PMR3 dis
ussedin the previous se
tion redu
es the 
ost of the tridiagonal eigenproblem suÆ
iently that it is theredu
tion and ba
ktransformation stages that dominate the 
omputation time. In this se
tion, wegive a brief overview of the major issues behind the parallel implementation of these algorithms. Amore detailed dis
ussion 
an be found in the appendi
es.Redu
tion to tridiagonal form is a

omplished through the appli
ation of a sequen
e of orthogonalsimilarity transformations; usually Householder transformations are preferred to Givens rotations.At the i-step in the redu
tion, a Householder transformation is 
omputed that annihilates theelements in the i-th 
olumn that lie below the �rst subdiagonal. This transformation is then appliedto the matrix from the left and the right, after whi
h the 
omputation moves on to the next 
olumnof the updated matrix. Unfortunately, this simple \unblo
ked" algorithm is ri
h in matrix-ve
toroperations (matrix-ve
tor multipli
ations and symmetri
 rank-1 updates to be exa
t) whi
h do not13



a
hieve high performan
e on modern mi
ropro
essors. Thus, a blo
ked version of the algorithmis derived from the unblo
ked algorithm by delaying updates to the matrix, a

umulating thoseupdates into a so-
alled symmetri
 rank-k update [35℄. This 
asts the 
omputation in terms ofmatrix-matrix multipli
ation whi
h 
an a
hieve mu
h better performan
e. However, it is importantto note that even for the blo
ked algorithm, approximately half the 
omputation is in symmetri
matrix-ve
tor multipli
ation. This means that the best one 
an hope for is that implementationsbased on the blo
ked algorithm improve performan
e by a fa
tor of two over implementations basedon the unblo
ked algorithm.The ba
ktransformation stage applies the Householder transforms en
ountered during the redu
-tion to tridiagonal form to the eigenve
tors 
omputed for the tridiagonal matrix. It is well-knownhow to a

umulate su
h Householder transforms into blo
k Householder transforms so that the
omputation is again 
ast in terms of matrix-matrix multipli
ation [3, 10℄. This time essentially all
omputation involves matrix-matrix multipli
ation, allowing very high performan
e to be a
hieved.Parallel implementation of both these stages now hinges on the fa
t that the parallel implementa-tion of the symmetri
 matrix-ve
tor multipli
ation, the symmetri
 rank-k update, and matrix-matrixmultipli
ation is s
alable, and 
an a
hieve high performan
e. Sin
e these issues are well understood,we omit presenting them here and refer the reader to [50, 51, 59, 15, 73, 1, 75, 15, 47℄. Some subtledi�eren
es in the parallel implementations of these stages as supported by S
aLAPACK and PLA-PACK are given in the appendi
es. Essentially, the S
aLAPACK and PLAPACK implementationsare tuned for smaller and larger matri
es, respe
tively.4 Experimental ResultsThis se
tion presents timing results for the proposed algorithm. First we report results on the denseproblem in Se
tion 4.2: it will be apparent that very large problems 
an now be ta
kled and that thetridiagonal eigenproblem is an order of magnitude faster than the redu
tion and ba
ktransformationstages. In Se
tion 4.3 we fo
us on the tridiagonal eigensolvers showing Algorithm PMR3 a
hievesthe best performan
e 
ompared to previous algorithms.4.1 Implementation Details and Test Matri
esAll experiments were 
ondu
ted on a 
luster of Linux workstations. Ea
h node in the 
luster 
on-sisted of a dual Intel (R) Pentium 4 Pro
essor (2.4 GHz) with 2 GBytes of main memory. The nodeswere 
onne
ted via a high performan
e network (2 Gigabit/s) from Myri
om. In our experiments,only one pro
essor per node was enabled. The reason for using one pro
essor was primarily relatedto the fa
t that during early experiments it was observed that reliable timings were diÆ
ult to obtainwhen both pro
essors were enabled. Noti
e that the qualitative behavior of the di�erent algorithmsand implementations is not a�e
ted by this de
ision, even if the quantitative results are.We will often refer to our proposed parallel dense eigensolver as Dense PMR3, and use PMR3to denote the tridiagonal eigensolver outlined in Figure 4; however, sometimes we just use PMR3when it is 
lear whether we are referring to the dense or tridiagonal eigensolver. Dense PMR3 hasbeen implemented using the PLAPACK library for Householder redu
tion and ba
ktransformation,while PMR3 has been implemented in C and Fortran using the MPI library for 
ommuni
ationsand LAPACK for numeri
al routines. As explained later, we use the dqds algorithm for the initialeigenvalue 
omputation (step B in Figure 4).We 
ompare Dense PMR3 with the S
aLAPACK implementations of (a) Bise
tion and InverseIteration (routine PDSYEVX) and (b) Divide & Conquer (routine PDSYEVD), and the PLAPACK im-plementation of (
) the QR algorithm (routine PLA VDVt). All the routines have been 
ompiled withthe same optimization 
ags enabled and linked to the same high-performan
e BLAS library (the so-
alled GOTO BLAS whi
h in our experien
e a
hieve the highest performan
e on this ma
hine [44℄).14



All dense eigensolvers have been tested on symmetri
 matri
es of sizes ranging from 8,000 to128,000 with given eigenvalue distributions. We 
onsidered 4 types of eigenvalue distributions:1. UNIFORM (" to 1): �i = "+ (i� 1) � �; i = 1; 2; : : : ; nwhere � = (1� �)=(n� 1).2. GEOMETRIC (" to 1): �i = "(n�i)=(n�1); i = 1; 2; : : : ; n:3. RANDOM (" to 1): the eigenvalues are drawn from a uniform distribution on the interval[0; 1℄.4. CLUSTERED at ": �1 � �2 � � � � � �n�1 � " and �n = 1:In addition to the above \
onstru
ted" matri
es, we also report timings for matri
es arisingin appli
ations. We 
onsidered three matri
es from 
omputational quantum 
hemistry of sizes 966,1687 and 2053, o

urring respe
tively in: modeling of the biphenyl mole
ule, study of bulk propertiesfor the SiOSi6 mole
ule and solution of a non-linear S
hr�odinger problem using the self 
onsistentHartree-Fo
k method. More details on these matri
es 
an be found in [5, 38℄.We also 
onsidered three matri
es (sizes 7923, 12387, 13786) that arise in frequen
y responseanalyses of automobile bodies. These matri
es 
ome from a symmetri
 matrix pen
il arising from a�nite element model of order 1 million or so, going through a pro
ess of dividing the entire stru
tureinto several thousand \substru
tures" using nested disse
tion and �nding the \lowest" eigenve
torsfor ea
h substru
ture. Proje
ting the matrix pen
il onto the substru
ture eigenve
tor subspa
eand then 
onverting to standard form followed by Householder redu
tion yields the test tridiagonalmatri
es. Details on produ
ing these matri
es 
an be found in [56℄.Noti
e that the matri
es for whi
h we report results are at least one order of magnitude largerthan the results reported in [72, 50℄.4.2 Results for the Dense ProblemWe now present performan
e results for 
omputing all eigenpairs of a dense symmetri
 matrixhighlighting the di�eren
e between the O(n3) redu
tion and ba
ktransformation stages and theO(n2) tridiagonal 
omputation of PMR3.When possible we 
ompare the proposed algorithm against the S
aLAPACK implementationof Divide & Conquer (PDSYEVD) [72℄ sin
e the latter routine is the fastest among the tridiagonaleigensolvers 
urrently available in S
aLAPACK. All matri
es 
onsidered in the following results haverandom distribution of eigenvalues. Note that neither the redu
tion nor the ba
ktransformationstage is a�e
ted by the distribution of eigenvalues in the input matrix. Comparisons with othertridiagonal eigensolvers (QR algorithm, bise
tion and inverse iteration) on matri
es with varyingeigenvalue distributions are given in Se
tion 4.3.In Tables 1 and 2 we report timings for matri
es of sizes 8000 and 15000 respe
tively. The stagesof Dense PMR3 are labelled by PLAPACK or PMR3, while the stages for the routine PDSYEVD arelabelled by S
aLAPACK and PDSTEDC (the tridiagonal divide & 
onquer routine). As mentionedin Se
tion 2, a major drawba
k of the Divide & Conquer algorithm is its extra O(n2) memoryrequirement. As a result, there are several instan
es where Dense PMR3 
an be run on a parti
ularmatrix, but PDSTEDC 
annot be run; the symbol \ " in the tables indi
ates that the experiment 
ouldnot be run be
ause of memory 
onstraints.Figure 6 gives a pi
torial view of the Dense PMR3 timings in Table 2. It is easy to see from the�gure that the tridiagonal stage is an order of magnitude faster than the redu
tion and ba
ktrans-formation stages. For PMR3, we use the fast dqds algorithm for 
omputing the eigenvalues with15


