A Parallel Eigensolver for Dense Symmetric Matrices based on
Multiple Relatively Robust Representations

UT CS Technical Report # TR-03-26

Paolo Bientinesi, Inderjit S. Dhillon and Robert A. van de Geijn
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712
{pauldj,inderjit,rvdg}@cs.utexas.edu

July 29, 2003

Abstract

We present a new parallel solution for the dense symmetric eigenvalue/eigenvector problem
that is based upon the tridiagonal eigensolver, Algorithm MR?, recently developed by Dhillon
& Parlett. Algorithm MR® has a complexity of O(n?) operations for computing all eigenvalues
and eigenvectors of a symmetric tridiagonal problem. Moreover the algorithm only requires
O(n) extra workspace, and can be adapted to compute any subset of k eigenpairs in O(nk)
time. In contrast, all earlier stable parallel algorithms for the tridiagonal eigenproblem require
O(n®) operations in the worst case while some implementations, such as Divide & Conquer,
have an extra O(nz) memory requirement. The proposed parallel algorithm balances the work-
load equally among the processors by traversing a matrix dependent representation tree which
captures the sequence of computations performed by Algorithm MR2. The resulting implemen-
tation allows problems of very large size to be solved efficiently — the largest dense problem
solved in-core on a 256 processor machine with 2 GBytes of memory per processor is a matrix
of size 128,000 x 128,000, which required 8 hours and 24 minutes of CPU time. We present
comparisons with other eigensolvers and results on matrices that arise in the applications of
computational quantum chemistry and finite element modeling of automobile bodies.

1 Introduction

The symmetric eigenvalue problem is ubiquitous in computational sciences; problems of ever grow-
ing size arise in applications as varied as computational quantum chemistry, finite element modeling
and pattern recognition. In many of these applications, both time and space are limiting factors for
solving the problem and hence, efficient parallel algorithms and implementations are needed. The
best approach for computing all the eigenpairs (eigenvalues and eigenvectors) of a dense symmetric
matrix involves three phases: (1) reduction — reduce the given symmetric matrix A to tridiagonal
form T', (2) tridiagonal eigenproblem — compute all the eigenpairs of T, (3) backtransformation —
map T’s eigenvectors into those of A. For an n X n matrix, the reduction and backtransformation
phases require O(n?) arithmetic operations each. Until recently, all algorithms for the tridiago-
nal eigenproblem too had cubic complexity in the worst case; these include the remarkable QR
algorithm [41, 57], inverse iteration [67] and the Divide & Conquer method [18].

Indeed, the tridiagonal problem can be the computational bottleneck for large problems taking
nearly 70-80% of the total time to solve the entire dense problem. For example, on a 2.4 GHz Intel

Pentium 4 processor the tridiagonal reduction and backtransformation of a 2000 x 2000 dense matrix
takes about 32 seconds while LAPACK’s bisection and inverse iteration software takes 106 seconds
to compute all the eigenpairs of the tridiagonal. The timings for a 4000 x 4000 matrix clearly show
the O(n®) behavior: 290 seconds for tridiagonalization and backtransformation, and 821 seconds for
bisection and inverse iteration to solve the tridiagonal eigenproblem. Timings for the tridiagonal
QR algorithm are 86 seconds for n = 2000 and 1099 seconds for n = 4000. More detailed timing
results are given in Section 4.

Recently, Dhillon & Parlett proposed Algorithm MRRR or MR® (Algorithm of Multiple Relatively
Robust Representations) [24, 29, 28], which gives the first stable O(nk) algorithm to compute &
eigenvalues and eigenvectors of a symmetric tridiagonal matrix. In this paper we present a parallel
algorithm based on Algorithm MR® for computing any subset of eigenpairs of a dense symmetric
matrix; this yields the first parallel implementation of Algorithm MR®. We refer to the parallel
algorithm as PMR® (Parallel MR®). As a consequence the time spent by the proposed algorithm on
the tridiagonal eigenproblem is negligible compared to the time spent on reduction and backtrans-
formation. For example, to compute all the eigenpairs of a 15,000 x 15,000 matrix on 16 processors
the new algorithm requires 546 secs for reduction, 22.2 secs for the tridiagonal solution and 160 secs
for backtransformation. In comparison, the corresponding timings for existing implementations for
the tridiagonal eigensolution are: 2054 secs for the QR algorithm and 92.4 secs for the Divide &
Conquer method. For a 32,000 x 32,000 matrix the timings for PMR? on 16 processors are: 4876
secs for the reduction, 118 secs for the tridiagonal solution and 1388 secs for backtransformation.
These timings clearly contrast the O(n?) complexity of Algorithm MR® as opposed to the O(n®)
reduction and backtransformation phases.

Moreover, some of the existing algorithms have extra memory requirements: the ScaLAPACK
Divide & Conquer code (PDSTEVD) requires extra O(n?) storage while the inverse iteration code
(PDSTEIN) can lead to a memory imbalance on the processors depending upon the eigenvalue distri-
bution. Thus neither PDSTEVD nor PDSTEIN can be used to solve the above mentioned 32,000 x 32,000
eigenproblem on 16 processors. In contrast, our parallel algorithm only requires workspace that is
linear in n and the memory needed to store the eigenvectors of the tridiagonal problem is evenly
divided among processors, thus allowing us to efficiently solve problems of very large size. The
largest dense problem we have solved “in-core” on a 256 processor machine with 2 GBytes of mem-
ory per processor is a matrix of size 128,000 x 128,000, which required 8 hours and 24 minutes of
computation time. Detailed timing results are given in Section 4.

The rest of the paper is organized as follows. Section 2 reviews previous work on algorithms for the
dense symmetric eigenvalue problem. In Section 3, we present the proposed parallel Algorithm PMR?
that uses multiple relatively robust representations for the tridiagonal problem. Section 4 presents
detailed timing results comparing Algorithm PMR® with existing software. These include results
on matrices that arise in the real-life applications of computational quantum chemistry and finite
element modeling of automobile bodies. Conclusions are presented in the final section.

A word on the notation used throughout the paper. T indicates a tridiagonal matrix, n represents
the size of a matrix, eigenvalues are denoted by A and eigenvectors by v. Computed quantities will
often be denoted by “hatted” symbols, for example, X and 6. The number of processors in a parallel
computation is p while the :-th processor is denoted by p;.

2 Related Work

As mentioned earlier, most algorithms for the dense symmetric eigenvalue problem proceed in three
phases. The first and third phases, Householder reduction and backtransformation, are fairly stan-
dard and are described in Section 3.2. The second stage, tridiagonal eigensolution, has led to a
variety of interesting algorithms; we now give a quick overview of existing methods, emphasizing
their parallel versions.

The QR algorithm, independently invented by Francis [41] and Kublanovskaja [57], is an iteration
that produces a sequence of similar matrices that converges to diagonal form. When the starting
matrix is symmetric and tridiagonal, each iterate produced by the QR algorithm is also symmetric
and tridiagonal. Convergence to diagonal form is rapid (ultimately cubic) with a suitable choice of
shifts [63]. A fast square-root free version of QR developed by Pal, Walker and Kahan (PWK) is
useful if only eigenvalues are desired [63]. Another attractive alternative, in the latter case, is to
use the differential qd algorithm (dqds) that is based on the related LR iteration [39]. In practice
2-3 iterations, on average, are needed per eigenvalue in the QR algorithm where each iteration is
composed of at most n — 1 Givens rotations. Thus all eigenvalues can be computed at a cost of
O(n?) operations, while the accumulation of Givens rotations required for computing orthogonal
eigenvectors results in O(n®) operations (in practice, 6n® to 9n3 operations are observed).

The inherent sequential nature of the QR algorithm makes the eigenvalue computation hard
to parallelize. However, when eigenvectors are needed, an effective parallel algorithm that yields
good speedups can be obtained as follows. First, the Householder reflections computed during
the reduction are accumulated in approximately %ns operations to form a matrix Z which is then
evenly partitioned among the p processors so that each processor owns approximately n/p rows
of Z. The tridiagonal matrix is duplicated on all processors and the O(n?) eigenvalue computation
is redundantly performed on all processors, while the Givens rotations are directly applied on each
processor to its part of Z. This accumulation achieves perfect speedup since all processors can
simultaneously update their portion of Z without requiring any communication, thus leading to an
overall parallel complexity of O(n3/p) operations. A faster algorithm (up to a factor of 2) can be
obtained by using perfect shifts and inner deflations [27].

A major drawback of the QR. algorithm is that it is hard to adapt to the case when only a subset
of eigenvalues and eigenvectors is desired at a proportionately reduced operation count. Thus a
commonly used parallel solution is to invoke the bisection algorithm followed by inverse iteration
[50]. The bisection algorithm was first proposed by Givens in 1954 and allows the computation of
k eigenvalues of a symmetric tridiagonal T in O(kn) operations [42]. Once accurate eigenvalues are
known, the method of inverse iteration may be used to compute the corresponding eigenvectors [67].
However, inverse iteration can only guarantee small residual norms. It cannot ensure orthogonality
of the computed vectors when eigenvalues are close. A commonly used “remedy” is to orthogo-
nalize each approximate eigenvector, using the modified Gram-Schmidt method, against previously
computed eigenvectors of “nearby” eigenvalues — the LAPACK and EISPACK implementations or-
thogonalize when eigenvalues are closer than 10~3||T'||. Unfortunately even this conservative strategy
can fail to give accurate answers in certain situations [25]. The amount of work required by inverse
iteration to compute all the eigenvectors of a symmetric tridiagonal matrix depends strongly upon
the distribution of eigenvalues (unlike the QR algorithm which always requires O(n®) operations).
If eigenvalues are well-separated (gaps greater than 1073||T'||), then O(n?) operations are sufficient.
However, when eigenvalues are clustered, current implementations of inverse iteration can take up to
10n3 operations due to orthogonalization [54]. Unfortunately the latter situation is the norm rather
than the exception for large matrices since even uniform eigenvalue spacings when n exceeds 1,000
lead to eigenvalue gaps smaller than 102||T|].

When eigenvalues are well separated, both bisection and inverse iteration can be effectively par-
allelized leading to a complexity of O(n?/p) operations. However, as remarked above, the common
situation for large matrices is that inverse iteration requires O(n®) operations; see Section 4.3 for
some timings. Thus, parallel inverse iteration requires O(n®/p) operations in these situations. More-
over, considerable communication is required when Gram-Schmidt orthogonalization is done across
processor boundaries. Indeed, to avoid communication, the current inverse iteration implementation
in ScaLAPACK (PDSTEIN) computes all the eigenvectors corresponding to a cluster of eigenvalues
on a single processor, thus leading to a parallel complexity of O(n3) in the worst case and also an
imbalance in the memory required on each processor [11, p. 48].

The bisection algorithm to find eigenvalues has linear convergence and so, can be quite slow. To

speed up bisection, there have been many attempts to employ faster zero-finders such as the Rayleigh
Quotient Iteration [63], Laguerre’s method [55, 61, 64] and the Zeroin scheme [19, 13]. These zero-
finders can speed up the computation of isolated eigenvalues by a considerable amount but they
seem to stumble when eigenvalues cluster. Homotopy methods for the symmetric eigenproblem were
suggested by Chu in [16, 17]. These methods start from an eigenvalue of a simpler matrix D and
follow a smooth curve to find an eigenvalue of A(t) = D + t(A — D), varying ¢t from 0 to 1. D was
chosen to be the diagonal of the tridiagonal in [60], but greater success was obtained by taking D
to be a direct sum of submatrices of 7' [62]. An alternate divide and conquer method that finds the
eigenvalues by using Laguerre’s iteration instead of homotopy methods is given in [61]. Note that
in all these cases, the corresponding eigenvectors still need to be obtained by inverse iteration.

The Divide & Conquer method proposed by Cuppen in 1981 is a method specially suited for
parallel computation [18, 33]; remarkably this algorithm also yields a faster sequential implementa-
tion than QR. The basic strategy of the Divide & Conquer algorithm is to express the tridiagonal
matrix as a low-rank modification of a direct sum of two smaller tridiagonal matrices. This mod-
ification may be a rank-one update [14], or may be obtained by crossing out a row and column of
the tridiagonal [43, 45]. The entire eigenproblem can then be solved in terms of the eigenproblems
of the smaller tridiagonal matrices, and this process can be repeated recursively. For several years
after its inception, it was not known how to guarantee numerically orthogonality of the eigenvector
approximations obtained by this approach. However Gu and Eisenstat found a solution to this
problem, leading to robust software based on their strategy [46].

The main reason for the unexpected success of divide and conquer methods on serial machines is
deflation, which occurs when an eigenpair of a submatrix of 7" is an acceptable eigenpair of a larger
submatrix. The greater the amount of deflation, which depends on the eigenvalue distribution and on
the structure of the eigenvectors, the lesser is the work required in these methods. For matrices with
clustered eigenvalues deflation can be extensive, however, in general, O(n3) operations are needed.
The Divide & Conquer method is suited for parallelization since smaller sub-problems can be solved
independently on various processors. However, communication costs for combining sub-problems
are substantial, especially when combining the larger sub-problems to get the solution to the full
problem [72]. The biggest drawback of the Divide & Conquer algorithm is the extra O(n?) main
memory required for its computation — as we shall see later, this limits the largest problem that
can be solved using this approach.

2.1 Other solution methods

The oldest method for solving the symmetric eigenproblem dates back to Jacobi in 1846 [53], and
was rediscovered by von Neumann and colleagues in 1946 [4]. Jacobi’s method does not reduce the
dense symmetric matrix to tridiagonal form, as most other methods do, but works on the dense
matrix itself. It performs a sequence of plane rotations each of which annihilates an off-diagonal
element (which is filled in during later steps). There are a variety of Jacobi methods that differ
solely in their strategies for choosing the next element to be annihilated. All good strategies tend to
diminish the off-diagonal elements, and the resulting sequence of matrices converges to the diagonal
matrix of eigenvalues [23].

Jacobi’s method fell out of favor with the discovery of the QR algorithm. The primary reason
is that, in practice, the cost of even the most efficient variants of the Jacobi iteration is an order
of magnitude greater than that of the QR algorithm. Nonetheless, it has periodically enjoyed a
resurrection since it can be efficiently parallelized [12, 74, 7] and theoretical results show it to be
more accurate than the QR algorithm [22].

The Symmetric Invariant Subspace Decomposition Algorithm (SYISDA) formulates the problem
in a dramatically different way [9]. The idea is to scale and shift the spectrum of the given matrix
so that its eigenvalues are mapped to the interval [0, 1], with the mean eigenvalue being mapped

to % Letting B equal the transformed matrix, a polynomial p is applied to B with the property

that lim;_,, p*([0, 1]) = {0,1}. By applying this polynomial to B in the iteration Co = B, C;11 =
p(C;) until convergence, all eigenvalues of C;;1 eventually become arbitrarily close to 0 or 1. The
eigenvectors of C;11 and A are related in such a way that allows the computation of two subspaces
that can then be used to decouple matrix A into two subproblems, each of size roughly half that
of A. The process then continues with each of the subproblems. The benefit of this approach
is that the computation can be cast in terms of matrix-matrix multiplication, which can attain
near-peak performance on modern microprocessors and parallelizes easily [30, 77, 49, 44, 1, 75,
47]. Unfortunately, this approach increases the operation count to the point where SYISDA is not
considered to be competitive.

2.2 Parallel libraries

A great deal of effort has been spent in building efficient parallel symmetric eigensolvers for dis-
tributed systems [21]. Routines for this problem have been developed as part of a number of
numerical libraries. Among these the best known are the Scalable Linear Algebra Package (ScaLA-
PACK) [34, 11], Parallel Eigensolver (PeIGS) [37], the Parallel Research on Invariant Subspace
Methods (PRISM) project [9], and the Parallel Linear Algebra Package (PLAPACK) [73, 2]. All of
these packages attempt to achieve portability by embracing the Message-Passing Interface (MPI) [32]
and the Basic Linear Algebra Subprograms (BLAS) [58, 31, 30].

The ScaLAPACK project is an effort to parallelize the Linear Algebra Package (LAPACK) [3] to
distributed memory architectures. It supports a number of different algorithms, as further discussed
in the experimental section. PelGS supports a large number of chemistry applications that give rise
to large dense eigenvalue problems. It currently includes a parallel tridiagonal eigensolver that is
based on an early version of Algorithm MR?; this preliminary version does limited Gram-Schmidt
orthogonalization and was called the Berkeley algorithm in [26]. The PRISM project implements the
SYISDA approach outlined in Section 2.1. PLAPACK currently supports a parallel implementation
of the QR algorithm as well as the algorithm that is the topic of this paper.

3 The Proposed Algorithm

We now present the proposed parallel algorithm. Section 3.1 describes how the tridiagonal eigenprob-
lem can be solved using the method of multiple relatively robust representations, while Section 3.2
briefly describes the phases of Householder reduction and backtransformation.

3.1 Tridiagonal Eigensolver using Multiple Relatively Robust Represen-
tations

Algorithm MR® was recently introduced by Dhillon & Parlett [24, 29, 28] for the task of computing k
eigenvectors of a symmetric tridiagonal 7', and has a complexity of O(nk) operations. The superior
time complexity of the algorithm is achieved by avoiding Gram-Schmidt orthogonalization, which in
turn is the result of high relative accuracy in intermediate computations.

3.1.1 The Sequential Algorithm

We provide the main ideas behind Algorithm MR3; an in-depth technical description and justification
of the algorithm can be found in [24, 29, 28]. There are three key ingredients that form the backbone
of Algorithm MR?:

1. Relatively Robust Representations(RRRs). A relatively robust representation is a repre-
sentation that determines its eigenvalues and eigenvectors to high relative accuracy, i.e., small
componentwise changes to individual entries of the representation lead to small relative changes

in the eigenvalues and small changes in the eigenvectors (modulo relative gaps between eigen-
values, see (2) below). Unfortunately, the traditional representation of a tridiagonal by its
diagonal and off-diagonal elements does not form an RRR; see [29, Sec. 3] for an example.
However, the bidiagonal factorization T = LDL? of a positive definite tridiagonal is an RRR,
and in many cases an indefinite LDL? also forms an RRR [29]. We now make precise the
conditions needed for LDL! to be an RRR; write I; for L(i + 1,7) and d; for D(i,7). Define

the relative gap of 5\, where) is closer to A than to any other eigenvalue of LDL?, to be
relgap(}) := gap(A)/| A,

where gap(\) = min{|v — A| : v # A, v € spectrum(LDL')}. We say that (\,v) is determined
to high relative accuracy by L and D if small relative changes, l; — [;(1 +n;), di — d;(1 + §;),
] < &, 18:] < &, & < 1, cause changes 6\ and dv that satisfy

[67]
A

IN

King, X#0, (1)

Kznf

|sin Z(v,v + 6v)] relgap(V)’

< (2)
for modest constants K; and Ko, say, smaller than 100. We call such an LDL? factorization
a relatively robust representation (RRR) for (\,v). The advantage of an RRR is that the
eigenvalues and eigenvectors can be computed to high relative accuracy as governed by (1)

and (2). For more details see [29].

2. Computing the eigenvector of an isolated eigenvalue. Once an accurate eigenvalue) is
known, its eigenvector may be computed by solving the equation (LDL? — Vi)z ~ 0. However
it is not straightforward to solve this equation: the trick is to figure out what equation to
ignore in this nearly singular system. Unable to find a solution to this problem, current
implementations of inverse iteration in LAPACK and EISPACK solve (LDL! — S\I)ziﬂ = z;
and take 2z to be a random starting vector (this difficulty was known to Wilkinson [78, p.
318]). This problem was solved recently by using twisted factorizations that are obtained by
gluing a top-down (LDL?) and a bottom-up (UDU?) factorization. The solution is presented
in Algorithm Getvec below, see [29, 65, 40] for more details.

3. Computing orthogonal eigenvectors for clusters using multiple RRRs. By usingan RRR
and Algorithm Getvec for computing eigenvectors, it can be shown that the computed eigen-
vectors are numerically orthogonal when the eigenvalues have large relative gaps [29]. How-
ever, when eigenvalues have small relative gaps, the above approach is not adequate. For the
case of small relative gaps, Algorithm MR? uses multiple RRRs, i.e., multiple factorizations
L.D.L% = LDL! — 7.1, where 7. is close to a cluster. The shifts 7. are chosen to “break”
clusters, i.e., to make relative gaps bigger (note that relative gaps change upon shifting by 7).
After forming the new representation L.D.L¢, the eigenvalues in the cluster are “refined” so
that they have high relative accuracy with respect to L.D.L!. Finally the eigenvectors of eigen-
values that become relatively well separated after shifting are computed by Algorithm Getvec
using L.D.Lt; the process is iterated for eigenvalues that still have small relative gaps. Details
are given in Algorithm MR?® below. The tricky theoretical aspects that address the relative
robustness of intermediate representations and whether the eigenvectors computed using dif-
ferent RRRs are numerically orthogonal may be found in [66] and [28]. It is important to note
that orthogonality of the computed eigenvectors is achieved without Gram-Schmidt being used
in any of the procedures.

We first present Algorithm Getvec in Figure 1. Getvec takes an LDL! factorization and an
approximate eigenvalue A as input and computes the corresponding eigenvector by forming the

Algorithm Getvec(L,D, 5\)

Input: L is unit lower bidiagonal (I; denotes L(i+1,4), 1 <i < n—1), and D is diagonal (d; denotes
D(i,i), 1 <i < n); LDL! is the input tridiagonal matrix assumed to be irreducible.
\is an approximate eigenvalue.

Output: z is the computed eigenvector.

I. Factor LDL! — A\ = LD, L by the dstqds (differential stationary qd with shift) transform.
II. Factor LDL' — \I = U_D_U! by the dqds (differential progressive qd with shift) transform.

III. Compute v for k = 1,...,n by the formula v; = si + %pk+l that involves the interme-

diate quantities s and pg4+1 computed in the dstqds and dqds transforms (for details see [29,
Sec 4.1]). Pick an r such that |vy,| = ming, |yx|. Form the twisted factors with twist index r,
N, and A,, which satisfy N,A.N? = LDL* — Al

IV. Form the approximate eigenvector z by solving Nz = e, (e, is the r-th column of the identity
matrix I) which is equivalent to solving (LDL' — AI)z = N,.A,.N!z = e,v, since N,e, = e,
and A,e, = y,€e,.:

z(r) = 1.
S N —L(i)z(i+ 1), z(i+1) #0,
Fori =r 17 T 17 Z(Z) - { —(d¢+1li+1/d¢l¢)z(i + 2), otherwise.
. _ , _J -U-0)=0), z(4) #0,
For J=Ten 1’ Z(] + 1) - { —(dj_llj_l/djlj)z(j —].), otherwise.

Note that d;l; is the (i,7 + 1) element of LDL?.

V. Set z + z/||z]|

Figure 1: Algorithm Getvec for computing the eigenvector of an isolated eigenvalue.

appropriate twisted factorization N, A, N! = LDL! — M. The twist index r in Step III of Figure 1
is chosen so that |v,| = ming |y| and is followed by solving (LDL* — A\I)z = v,e,; thus r is the
index of the equation that is ignored and provides a solution to Wilkinson’s problem (see above).
The resulting eigenvector is accurate since differential transformations are used to compute the
twisted factorization, and the eigenvector is computed solely by multiplications (no additions or
subtractions) in Step IV of the algorithm. We assume that LDL! is an irreducible tridiagonal,
i.e., all off-diagonals are nonzero. Details on twisted factorizations, differential qd transforms and
Algorithm Getvec may be found in [29].

Algorithm Getvec computes a single eigenvector of an RRR; it was shown in [29] that the com-
puted eigenvector is highly accurate and so, is numerically orthogonal to all other eigenvectors if
the corresponding eigenvalue has a large relative gap. However, if Getvec is invoked when the corre-
sponding eigenvalue is part of a cluster, the computed vector will, in general, not be orthogonal to
other eigenvectors in the cluster. The difficulty is that, as seen by (2), the eigenvectors of eigenvalues
with small relative gaps are highly sensitive to even tiny changes in L and D.

To overcome this problem, Algorithm MR® given in Figure 2 uses multiple LDL? factorizations
— the basic idea is that there will be an LDL? factorization for each cluster of eigenvalues. A new
LDL! factorization is formed per cluster in order to increase relative gaps within the cluster. Once
an eigenvalue has a large relative gap, Algorithm Getvec is invoked to compute the corresponding

Algorithm MR?(T,I'y,tol)
Input: T is the given symmetric tridiagonal,

Iy is the index set of desired eigenpairs,
tol is the input tolerance for relative gaps, usually tol is set to 1073,
Output: (Aj,9;),j € 'y, are the computed eigenpairs.

1. Split T into irreducible sub-blocks 77,75, ..., T}.
For each sub-block T; i =1,...,¢, do:

A. Choose u; such that LoDoL{ = T; + u;I is a factorization that determines the desired
eigenvalues and eigenvectors, A\; and v;, j € L'y, to high relative accuracy. In general,
the shift u; can be in the interior of 7’s spectrum, but a safe choice is to make 7" + ;[
positive or negative definite.

B. Compute the desired eigenvalues of LoDoL{ to high relative accuracy by the dqds algo-
rithm [39] or by bisection using a differential qd transform.
C. Form a work queue @Q, and initialize Q = {(Lo, Dy, o)}. Call MR®_Vec(Q,tol).

end for

Subroutine MR®_Vec(Q,tol)

While Queue @ is not empty:

I. Remove an element (L, D,T) from the queue Q). Partition the computed eigenvalues 5\j, jer,
into clusters I'y,...,I's, according to their relative gaps and the input tolerance tol. The
eigenvalues are thus designated as isolated (cluster size equals 1) or clustered. More precisely, if
rgap(S\j) = min;z; |5\] - 5\1|/|5\]| > tol then S\j is isolated. On the other hand, all consecutive
eigenvalues \; 1,); in a non-trivial cluster T (|T| > 1) satisfy [A; — X;_1|/|)\j| < tol.

II. For each cluster I';, c =1,..., h, perform the following steps.
If |T.| = 1 with eigenvalue 5\]', ie., I': = {j}, then invoke Algorithm Getvec(L,D,j\j) to
obtain the computed eigenvector 4.

else

a. Pick 7. near the cluster and compute LDL? — 7.1 = L.D.L! using the dstqds (differ-
ential form of stationary qd) transform, see [29, Sec 4.1] for details.

b. “Refine” the eigenvalues A — 7. in the cluster so that they have high relative accuracy
with respect to the computed LCDCL’é. Set A < (XA — 7¢)refined, for all eigenvalues in
the cluster.

c. Add (L., D.,T.) to the queue Q.
end if

end for

end while

Figure 2: Algorithm MR? for computing orthogonal eigenvectors without using Gram-Schmidt or-
thogonalization.

eigenvector as seen in Step II of Figure 2. Otherwise we are in the presence of a cluster I'. of
eigenvalues and a new representation L.D.L% = LDL? — 7.I needs to be computed. The shift 7. is
chosen in such a way such that: (a) the new representation is relatively robust for the eigenvalues in

[and (b) at least one of the shifted eigenvalues in T, is relatively well separated from the others.
The process is iterated if other clusters are encountered. The inputs to MR® are an index set Iy
that specifies the desired eigenpairs, the symmetric tridiagonal matrix 7' given by its traditional
representation of diagonal and off-diagonal elements, and a tolerance tol for relative gaps. Note that
the computational path taken by MR® depends on the relative gaps between eigenvalues. We again
emphasize that MR® does not need any Gram-Schmidt orthogonalization of the eigenvectors.

3.1.2 Representation Trees

The sequence of computations in Algorithm MR? can be pictorially expressed by a representation
tree. Such a tree contains information about how the eigenvalues are clustered (nodes of the tree) and
what shifts are used to “break” a cluster (edges of the tree). A precise description of a representation
tree can be found in [28]. Here we present a slightly simplified version of the tree, without specifying
edge labels, which will facilitate the description of the parallel algorithm.

The root node of the representation tree is denoted by (Lo, Do, o), where LoDoL} is the base
representation obtained in step 1A of Algorithm MR3, see Figure 2. An example representation tree
is shown in Figure 3. Let II; be an internal node of the tree and let (Lp, Dp, ;) be its parent node.
If 1. is a non-leaf node, it will be denoted by (L., D¢, ') where the index set I, is a proper subset
of I',. This node captures the fact that L.D.L! is a representation that is computed by shifting,
LprL;, — T, = LchLi, and will be used for computing the eigenvectors indexed by I'.. If II, is a
leaf node instead, it will be denoted only by the singleton {\.}, where ¢ € I';,. The singleton node
{A.} signifies that the eigenvalue A\, has a large relative gap with respect to the parent representation
LprLZ, and its eigenvector will be computed by Algorithm Getvec.

(Ls,Ds,

|{’\2}| {6,7,8})

o] [

(0] 0] [0)] [0} [0}

Figure 3: An example representation tree for a matrix of size 11.

Figure 3 gives an example of a representation tree for a matrix of size 11 for which all the eigen-
vectors are desired: the root contains the representation Ly, Dy and the index set I'y = {1,2,...,11}.
The algorithm begins by classifying the eigenvalues: in this example A1, Ay and A;; are well sepa-
rated, so in the tree they appear as singleton leaves (their eigenvectors can be directly computed by
the calls Getvec(Lyg, Dy, 5\1), i = 1,4 and 11). The second and third eigenvalues violate the condition
|(5\3 — 5\2)/5\3| > tol, therefore they form a cluster; a new representation L; Dy Lt = LoDoL} — 111
has to be computed and the two eigenvalues have to be refined to have high relative accuracy with

respect to L; and D;. This is represented by the node (L1, D1,{2,3}). Similarly the eigenvalues
{Xs,--.,A10} are clustered: a new representation LyDsL} = LoDoLl — 721 is computed as shown
by the node (Lg, D3,{5,...,10}). This illustrates the working of Algorithm MR? for all the nodes
at depth 1 in the representation tree of Figure 3.

The computation proceeds by classifying the eigenvalues of the internal nodes (L, D1,{2,3})
and (Lz, D, {5,...,10}). From the tree it can be deduced that the two eigenvalues {2} and {As}
in the first node are now relatively well separated, while the second node is further fragmented into
a relatively well separated eigenvalue {\s} and two nodes with clusters: nodes (L3, Ds,{6,7,8})
and (L4, D4,{9,10}). Finally these two clusters are further fragmented to yield singletons, and
these eigenvectors are computed by Algorithm Getvec. Note that, as seen by the description of
Algorithm MR? in Figure 2, the representation tree is processed in a breadth first fashion.

In IEEE double precision arithmetic, using the tolerance min(10=3,1/n) for relative gaps, the
depth of a representation tree can be as large as 6, see [28] for an example. In most examples we
have encountered, the depth is much smaller — to give a sense of reality we give here a sketch of the
representation tree for two matrices that arise in the finite element modeling of automobile bodies
(see Section 4.1 for more details). The tree for the matrix auto.13786 (n = 13786) has maximum
depth 2; at depth 1 there are 12937 singleton nodes, 403 clusters of size 2, 10 clusters of size 3 and
one cluster of size 13. The tree for the matrix auto.12387 (n = 12387) also has maximum depth 2
even though it has many more internal nodes: it has 5776 singletons and 1991 nodes corresponding
to clusters with sizes ranging from 2 to 31.

A further note about reducible matrices: the solution is computed by iterating over the sub-blocks
thus the sequence of computations can be captured by a forest of trees (one for each sub-block) rather
than by a single tree.

3.1.3 The Parallel Algorithm

We now describe Algorithm PMR? (Parallel algorithm using Multiple Relatively Robust
Representations). The input to the algorithm is a tridiagonal matrix 7', an index set 'y of desired
eigenpairs, a tolerance parameter to/ and the number of processors p that execute the algorithm.
We target our algorithm to a distributed memory system, in which each processor has its own local
main memory and communication is done by message-passing [32]. We assume that the tridiagonal
is duplicated on every processor before the algorithm is invoked.

We first discuss the parallelization strategy before describing the algorithm in detail. Let the
size of the input index set I'y be k, i.e., k eigenvalues and eigenvectors are to be computed. The
total O(kn) complexity of Algorithm MR® can be broken down into the work required at each node
of the representation tree:

1. Each leaf node {\;} requires the computation of an eigenvector by Algorithm Getvec, which
requires O(n) operations (at most 2n divisions and 10n multiplications and additions),

2. Each internal node (L., D.,[.) requires (a) computation of the representation L.D.L! =
LiDiLﬁ — 7.1, and (b) refinement of the eigenvalues corresponding to the index set I'. so that
they have high relative accuracy with respect to L.D.Lt. Computing the representation by the
differential stationary qd transform requires O(n) operations (n divisions, 4n multiplications
and additions), while refinement of the eigenvalues can be done in O(n|I';|) operations using
a combination of bisection and Rayleigh Quotient Iteration.

We aim for a parallel complexity of O(%’“ + n) operations. Due to communication overheads, we
will not attempt to parallelize O(n) procedures, such as computing a single eigenvector or computing
a new representation. Our strategy for the parallel algorithm will be to divide the leaf nodes equally
among the processors, i.e., each processor will make approximately k/p calls to Algorithm Getvec.
Thus each processor is assigned a set of eigenvectors that are to be computed locally.

10

However, before the leaf nodes can be processed the computation at the internal nodes needs to
be performed. Each internal node (L., D.,T'.) is associated with a subset of ¢ processors that are
responsible for computing the eigenvectors in I'.. Since k eigenvectors are to be computed by a total
of p processors, g approximately equals p(|I'c|/k). Note that since |I'.| is small in most practical
applications (see comments towards the end of Section 3.1.2), g is mostly small; in our examples, ¢
is usually 1, sometimes 2 but rarely greater than 2. If ¢ equals 1, the computation at each internal
node is just done serially. If ¢ is greater than 1, the parallel algorithm will process an internal node
as follows: the representation L.D.L! is computed (redundantly) by each of the g processors. The
eigenvalue refinement using bisection or Rayleigh Quotient Iteration (O(n) per eigenvalue) is then
parallelized over the ¢ processors at a cost of (n|I'c|/q) = O(nk/p) operations. Since many subsets
of processors may be handling internal nodes at the same time, and the depth of the tree is at
most 6, the overall parallel complexity is O(% + n). Note that due to communication overheads
in a practical implementation, we impose a threshold on |I'.| before the refinement is performed
in parallel; if |T';| is below this threshold the computation is carried out redundantly on all the ¢
Processors.

Figure 4 gives a description of Algorithm PMR® according to the strategy outlined above. In
order to show how sub-blocks of T are handled by the parallel algorithm, we do not assume that T'
is irreducible. Each processor will compute k/p eigenvectors, assuming k is divisible by p. Once the
eigenvalues are grouped according to the sub-blocks and sorted (per sub-block), work is assigned
to the processors in a block cyclic manner, i.e. processor p, is assigned eigenvectors 1,2,...,k/p,
processor p, is assigned eigenvectors k/p+1,...,2k/p and so on. Thus the memory requirement to
store the eigenvectors is exactly (n-k/p) floating point numbers per processor. The extra workspace
required is only linear in n, so problems of large size can be tackled. To give an idea of the limits
of the sequential implementation, the size n of the largest problem that can be solved (with &k = n)
on a computer equipped with 1.5 GBytes of memory is about 14,000 when all the eigenvectors are
required while to solve a problem of size 30,000 a computer should be equipped with about 7 GBytes
of main memory.

As seen in Figure 4 the eigenvectors are computed by invoking the sequential algorithms Getvec
or MR®_Vec (which in turn invokes Getvec). In terms of the representation tree, each processor
maintains a local work queue @ of nodes (possibly leaves) which collectively index a superset of
the eigenvectors to be computed locally. Initially all the processors have a single node in the queue
corresponding to the desired index set ['y. The representation tree is traversed in a breadth first
fashion to fragment the clusters until all the eigenvectors of a node are local. To fragment a cluster
is equivalent to descending one level in the representation tree. Nodes that contain eigenvectors all
of which are associated with other processors are removed from the local queue of the processor.
Once a node just contains eigenvectors to be computed locally, the sequential algorithms Getvec
or MR?_Vec are invoked depending on the size of the cluster. Recall that there is a tree for each
sub-block.

A word about the initial eigenvalue computation. The dqds algorithm for computing the eigen-
values is very fast, but like the QR algorithm is inherently sequential. Moreover, the dqds algorithm
cannot be adapted to compute k eigenvalues in O(nk) time, instead always requiring O(n?) com-
putations. On the other hand the bisection algorithm is easily parallelized [6], however, bisection is
rather slow. Thus, in a parallel implementation, it is often preferable to redundantly compute the
eigenvalues on each processor unless p is large, or only a small subset of the n eigenvalues is desired.

We now illustrate the parallel execution of the algorithm on the matrix of Figure 3 assuming
we want to compute all the 11 eigenvectors on 3 processors. In Figure 5 we have annotated the
representation tree of Figure 3 to show how the tree is processed by the 3 processors. Initially the
eigenvalues Ag = {\1,...,A11} are computed. Then based on the relative gaps between eigenvalues
each processor determines whether a cluster is to be computed locally, has to be fragmented or
has to be discarded. The labels p,, p;,p, on the root node denote that each of the 3 processors is
involved in the computation.

11

Algorithm PMR?(T, Iy, tol, p) {executed by processor p, }

Input: T is the given symmetric tridiagonal,
[y is the index set of desired eigenpairs,
tol is the input tolerance for relative gaps, usually set to 103,
p is the number of processors that execute the algorithm.

Output: (;\j,ﬁj),j € Iy are the computed eigenpairs.

1. Split T into irreducible sub-blocks 71,75, ..., T}.
For each sub-block T;, 7 =1,...,¢, do:
A. Choose p; such that LODOLB = T; + p;I is a factorization that determines the desired
eigenvalues and eigenvectors, \; and v;, j € I'g, to high relative accuracy.

B. Compute the desired eigenvalues A; of LoDyLf to high relative accuracy by the dqds
algorithm [39] or by bisection using a differential qd transform. Let I'; be the index set
corresponding to A; that contains the desired eigenvalues (C I'y).

end for

2. Determine the subset 1"%)) s C I'y of eigenvectors to be computed locally. Form a work queue Q,
and initialize it with all the sub-blocks (L;, D;,T';) containing eigenvectors to be computed

locally, i.e., the sub-blocks for which I'; N 1"%))5 #£0,withi=1,...,¢
3. While Queue Q is not empty:

I. Remove an element (L, D,T') from the queue Q. Partition the computed eigenvalues 5\]', jE
I" into clusters I'q,..., I, according to their relative gaps and the input tolerance tol.

II. For each cluster I';, c = 1,..., h, perform the following steps:

IfT. C ng then all eigenvectors in I', have to be computed locally.
The eigenvectors are computed by invoking MR® Vec((L, D, T), tol).

elseif I'. N I‘g ¢ = () then the cluster I, does not contain any eigenvector that needs
to be computed locally. Discard the cluster I'..

elseif I'. N 1"107 ¢ # (then the cluster I, contains some eigenvectors to be computed
locally, and needs to be further fragmented by the following steps.
e Pick 7, near the cluster and compute LDL! — 7.I = L.D.L!,
using the dstqds transform, see [29, Sec 4.1] for details.
e “Refine” the eigenvalues \—7, in the cluster so that they have
high relative accuracy with respect to the computed L.D.Lt.
Set \ «— (5\ — T¢)refined, for all eigenvalues in the cluster.
e Add (L., D.,T.) to the queue Q.
end if
end while

Figure 4: Algorithm PMR? for parallel computation of a subset I'y of eigenvalues and eigenvectors.

Processor p, classifies the eigenvalues A; through A4, but discards all the clusters (possibly
singletons) from A5 to the end of the spectrum as they do not contain eigenvalues to be computed
locally. The clusters {A1}, {2, A3}, {\4} contain eigenvalues local to p,, so the nodes in the tree
are labelled with p,. In classifying the eigenvalues both processors p; and p, find that the cluster

12

{As,...,A10} contains eigenvalues to be computed locally: A5 through Ag for p; and Ag, A1g for p,.
Thus, the new representation is computed redundantly by both p; and p,, and the refinement of
eigenvalues)5 through A;¢ is parallelized over p; and p,. Thus the node is labelled with both p,;
and p, in Figure 5. The singleton {11} is recognized as local by p, and therefore labelled with p,.
The eigenvalue classification for node (Ls, D2, {5, ..., 10}) is independently performed by processors
p, and p,: p; recognizes the clusters {As}, {\s, A7, As} to contain local eigenvalues and discards
the cluster {)g, A10}; vice-versa for processor p,. Nodes {\s} and (L3, D3,{6,7,8}) are therefore
labelled p; while node (L4, D4, {9,10}) is labelled ps.

vaplvPZ

P1 P

p p p
(o] [Ort] [o)] [0o)] [

Figure 5: Representation tree annotated to describe the execution of the parallel algorithm. The
matrix size is 11; the algorithm is executed by 3 processors.

It is important to realize that the parallel algorithm traverses the sequential representation tree
in parallel. This implies that the computed eigenvectors match exactly the ones computed by the
sequential algorithm and therefore satisfy the same accuracy properties.

3.2 Householder Reduction and Backtransformation

To solve the dense, symmetric eigenproblem the solution to the tridiagonal eigenproblem is preceded
by reduction to tridiagonal form, and followed by a backtransformation stage to obtain the eigen-
vectors of the dense matrix. We will see in the performance section that Algorithm PMR?® discussed
in the previous section reduces the cost of the tridiagonal eigenproblem sufficiently that it is the
reduction and backtransformation stages that dominate the computation time. In this section, we
give a brief overview of the major issues behind the parallel implementation of these algorithms. A
more detailed discussion can be found in the appendices.

Reduction to tridiagonal form is accomplished through the application of a sequence of orthogonal
similarity transformations; usually Householder transformations are preferred to Givens rotations.
At the i-step in the reduction, a Householder transformation is computed that annihilates the
elements in the i-th column that lie below the first subdiagonal. This transformation is then applied
to the matrix from the left and the right, after which the computation moves on to the next column
of the updated matrix. Unfortunately, this simple “unblocked” algorithm is rich in matrix-vector
operations (matrix-vector multiplications and symmetric rank-1 updates to be exact) which do not

13

achieve high performance on modern microprocessors. Thus, a blocked version of the algorithm
is derived from the unblocked algorithm by delaying updates to the matrix, accumulating those
updates into a so-called symmetric rank-k update [35]. This casts the computation in terms of
matrix-matrix multiplication which can achieve much better performance. However, it is important
to note that even for the blocked algorithm, approximately half the computation is in symmetric
matrix-vector multiplication. This means that the best one can hope for is that implementations
based on the blocked algorithm improve performance by a factor of two over implementations based
on the unblocked algorithm.

The backtransformation stage applies the Householder transforms encountered during the reduc-
tion to tridiagonal form to the eigenvectors computed for the tridiagonal matrix. It is well-known
how to accumulate such Householder transforms into block Householder transforms so that the
computation is again cast in terms of matrix-matrix multiplication [3, 10]. This time essentially all
computation involves matrix-matrix multiplication, allowing very high performance to be achieved.

Parallel implementation of both these stages now hinges on the fact that the parallel implementa-
tion of the symmetric matrix-vector multiplication, the symmetric rank-k update, and matrix-matrix
multiplication is scalable, and can achieve high performance. Since these issues are well understood,
we omit presenting them here and refer the reader to [50, 51, 59, 15, 73, 1, 75, 15, 47]. Some subtle
differences in the parallel implementations of these stages as supported by ScaLAPACK and PLA-
PACK are given in the appendices. Essentially, the ScaLAPACK and PLAPACK implementations
are tuned for smaller and larger matrices, respectively.

4 Experimental Results

This section presents timing results for the proposed algorithm. First we report results on the dense
problem in Section 4.2: it will be apparent that very large problems can now be tackled and that the
tridiagonal eigenproblem is an order of magnitude faster than the reduction and backtransformation
stages. In Section 4.3 we focus on the tridiagonal eigensolvers showing Algorithm PMR® achieves
the best performance compared to previous algorithms.

4.1 Implementation Details and Test Matrices

All experiments were conducted on a cluster of Linux workstations. Each node in the cluster con-
sisted of a dual Intel (R) Pentium 4 Processor (2.4 GHz) with 2 GBytes of main memory. The nodes
were connected via a high performance network (2 Gigabit/s) from Myricom. In our experiments,
only one processor per node was enabled. The reason for using one processor was primarily related
to the fact that during early experiments it was observed that reliable timings were difficult to obtain
when both processors were enabled. Notice that the qualitative behavior of the different algorithms
and implementations is not affected by this decision, even if the quantitative results are.

We will often refer to our proposed parallel dense eigensolver as Dense PM R3, and use PMR?
to denote the tridiagonal eigensolver outlined in Figure 4; however, sometimes we just use PMR®
when it is clear whether we are referring to the dense or tridiagonal eigensolver. Dense PMR® has
been implemented using the PLAPACK library for Householder reduction and backtransformation,
while PMR® has been implemented in C and Fortran using the MPI library for communications
and LAPACK for numerical routines. As explained later, we use the dqds algorithm for the initial
eigenvalue computation (step B in Figure 4).

We compare Dense PMR® with the ScaLAPACK implementations of (a) Bisection and Inverse
Iteration (routine PDSYEVX) and (b) Divide & Conquer (routine PDSYEVD), and the PLAPACK im-
plementation of (c) the QR algorithm (routine PLA_VDVt). All the routines have been compiled with
the same optimization flags enabled and linked to the same high-performance BLAS library (the so-
called GOTO BLAS which in our experience achieve the highest performance on this machine [44]).

14

All dense eigensolvers have been tested on symmetric matrices of sizes ranging from 8,000 to
128,000 with given eigenvalue distributions. We considered 4 types of eigenvalue distributions:

1. UNIFORM (¢ to 1):
Ai=e+(—-1x7, 1i=1,2,...,n

where 7 = (1 —€)/(n — 1).

2. GEOMETRIC (e to 1):
N =en=0/(n=1) =1 9 .

3. RANDOM (e to 1): the eigenvalues are drawn from a uniform distribution on the interval
[0, 1.

4. CLUSTERED at e:
MR AR~ A_1~¢ and A, =1.

In addition to the above “constructed” matrices, we also report timings for matrices arising
in applications. We considered three matrices from computational quantum chemistry of sizes 966,
1687 and 2053, occurring respectively in: modeling of the biphenyl molecule, study of bulk properties
for the SiOSis molecule and solution of a non-linear Schrédinger problem using the self consistent
Hartree-Fock method. More details on these matrices can be found in [5, 38].

We also considered three matrices (sizes 7923, 12387, 13786) that arise in frequency response
analyses of automobile bodies. These matrices come from a symmetric matrix pencil arising from a
finite element model of order 1 million or so, going through a process of dividing the entire structure
into several thousand “substructures” using nested dissection and finding the “lowest” eigenvectors
for each substructure. Projecting the matrix pencil onto the substructure eigenvector subspace
and then converting to standard form followed by Householder reduction yields the test tridiagonal
matrices. Details on producing these matrices can be found in [56].

Notice that the matrices for which we report results are at least one order of magnitude larger
than the results reported in [72, 50].

4.2 Results for the Dense Problem

We now present performance results for computing all eigenpairs of a dense symmetric matrix
highlighting the difference between the O(n®) reduction and backtransformation stages and the
O(n?) tridiagonal computation of PMR3.

When possible we compare the proposed algorithm against the ScaLAPACK implementation
of Divide & Conquer (PDSYEVD) [72] since the latter routine is the fastest among the tridiagonal
eigensolvers currently available in ScaLAPACK. All matrices considered in the following results have
random distribution of eigenvalues. Note that neither the reduction nor the backtransformation
stage is affected by the distribution of eigenvalues in the input matrix. Comparisons with other
tridiagonal eigensolvers (QR algorithm, bisection and inverse iteration) on matrices with varying
eigenvalue distributions are given in Section 4.3.

In Tables 1 and 2 we report timings for matrices of sizes 8000 and 15000 respectively. The stages
of Dense PMR?® are labelled by PLAPACK or PMR?, while the stages for the routine PDSYEVD are
labelled by ScaLAPACK and PDSTEDC (the tridiagonal divide & conquer routine). As mentioned
in Section 2, a major drawback of the Divide & Conquer algorithm is its extra O(n?) memory
requirement. As a result, there are several instances where Dense PMR® can be run on a particular
matrix, but PDSTEDC cannot be run; the symbol “_” in the tables indicates that the experiment could
not be run because of memory constraints.

Figure 6 gives a pictorial view of the Dense PMR? timings in Table 2. It is easy to see from the
figure that the tridiagonal stage is an order of magnitude faster than the reduction and backtrans-
formation stages. For PMR®, we use the fast dqds algorithm for computing the eigenvalues with

15

