
A Parallel Eigensolver for Dense Symmetri Matries based onMultiple Relatively Robust RepresentationsUT CS Tehnial Report # TR-03-26Paolo Bientinesi, Inderjit S. Dhillon and Robert A. van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712fpauldj,inderjit,rvdgg�s.utexas.eduJuly 29, 2003AbstratWe present a new parallel solution for the dense symmetri eigenvalue/eigenvetor problemthat is based upon the tridiagonal eigensolver, Algorithm MR3, reently developed by Dhillon& Parlett. Algorithm MR3 has a omplexity of O(n2) operations for omputing all eigenvaluesand eigenvetors of a symmetri tridiagonal problem. Moreover the algorithm only requiresO(n) extra workspae, and an be adapted to ompute any subset of k eigenpairs in O(nk)time. In ontrast, all earlier stable parallel algorithms for the tridiagonal eigenproblem requireO(n3) operations in the worst ase while some implementations, suh as Divide & Conquer,have an extra O(n2) memory requirement. The proposed parallel algorithm balanes the work-load equally among the proessors by traversing a matrix dependent representation tree whihaptures the sequene of omputations performed by Algorithm MR3. The resulting implemen-tation allows problems of very large size to be solved eÆiently | the largest dense problemsolved in-ore on a 256 proessor mahine with 2 GBytes of memory per proessor is a matrixof size 128; 000 � 128; 000, whih required 8 hours and 24 minutes of CPU time. We presentomparisons with other eigensolvers and results on matries that arise in the appliations ofomputational quantum hemistry and �nite element modeling of automobile bodies.1 IntrodutionThe symmetri eigenvalue problem is ubiquitous in omputational sienes; problems of ever grow-ing size arise in appliations as varied as omputational quantum hemistry, �nite element modelingand pattern reognition. In many of these appliations, both time and spae are limiting fators forsolving the problem and hene, eÆient parallel algorithms and implementations are needed. Thebest approah for omputing all the eigenpairs (eigenvalues and eigenvetors) of a dense symmetrimatrix involves three phases: (1) redution | redue the given symmetri matrix A to tridiagonalform T , (2) tridiagonal eigenproblem | ompute all the eigenpairs of T , (3) baktransformation |map T 's eigenvetors into those of A. For an n � n matrix, the redution and baktransformationphases require O(n3) arithmeti operations eah. Until reently, all algorithms for the tridiago-nal eigenproblem too had ubi omplexity in the worst ase; these inlude the remarkable QRalgorithm [41, 57℄, inverse iteration [67℄ and the Divide & Conquer method [18℄.Indeed, the tridiagonal problem an be the omputational bottlenek for large problems takingnearly 70-80% of the total time to solve the entire dense problem. For example, on a 2.4 GHz Intel1



Pentium 4 proessor the tridiagonal redution and baktransformation of a 2000�2000 dense matrixtakes about 32 seonds while LAPACK's bisetion and inverse iteration software takes 106 seondsto ompute all the eigenpairs of the tridiagonal. The timings for a 4000� 4000 matrix learly showthe O(n3) behavior: 290 seonds for tridiagonalization and baktransformation, and 821 seonds forbisetion and inverse iteration to solve the tridiagonal eigenproblem. Timings for the tridiagonalQR algorithm are 86 seonds for n = 2000 and 1099 seonds for n = 4000. More detailed timingresults are given in Setion 4.Reently, Dhillon & Parlett proposed AlgorithmMRRR orMR3 (Algorithm ofMultipleRelativelyRobust Representations) [24, 29, 28℄, whih gives the �rst stable O(nk) algorithm to ompute keigenvalues and eigenvetors of a symmetri tridiagonal matrix. In this paper we present a parallelalgorithm based on Algorithm MR3 for omputing any subset of eigenpairs of a dense symmetrimatrix; this yields the �rst parallel implementation of Algorithm MR3. We refer to the parallelalgorithm as PMR3 (Parallel MR3). As a onsequene the time spent by the proposed algorithm onthe tridiagonal eigenproblem is negligible ompared to the time spent on redution and baktrans-formation. For example, to ompute all the eigenpairs of a 15; 000� 15; 000 matrix on 16 proessorsthe new algorithm requires 546 ses for redution, 22.2 ses for the tridiagonal solution and 160 sesfor baktransformation. In omparison, the orresponding timings for existing implementations forthe tridiagonal eigensolution are: 2054 ses for the QR algorithm and 92.4 ses for the Divide &Conquer method. For a 32; 000� 32; 000 matrix the timings for PMR3 on 16 proessors are: 4876ses for the redution, 118 ses for the tridiagonal solution and 1388 ses for baktransformation.These timings learly ontrast the O(n2) omplexity of Algorithm MR3 as opposed to the O(n3)redution and baktransformation phases.Moreover, some of the existing algorithms have extra memory requirements: the SaLAPACKDivide & Conquer ode (PDSTEVD) requires extra O(n2) storage while the inverse iteration ode(PDSTEIN) an lead to a memory imbalane on the proessors depending upon the eigenvalue distri-bution. Thus neither PDSTEVD nor PDSTEIN an be used to solve the above mentioned 32; 000�32; 000eigenproblem on 16 proessors. In ontrast, our parallel algorithm only requires workspae that islinear in n and the memory needed to store the eigenvetors of the tridiagonal problem is evenlydivided among proessors, thus allowing us to eÆiently solve problems of very large size. Thelargest dense problem we have solved \in-ore" on a 256 proessor mahine with 2 GBytes of mem-ory per proessor is a matrix of size 128; 000� 128; 000, whih required 8 hours and 24 minutes ofomputation time. Detailed timing results are given in Setion 4.The rest of the paper is organized as follows. Setion 2 reviews previous work on algorithms for thedense symmetri eigenvalue problem. In Setion 3, we present the proposed parallel Algorithm PMR3that uses multiple relatively robust representations for the tridiagonal problem. Setion 4 presentsdetailed timing results omparing Algorithm PMR3 with existing software. These inlude resultson matries that arise in the real-life appliations of omputational quantum hemistry and �niteelement modeling of automobile bodies. Conlusions are presented in the �nal setion.A word on the notation used throughout the paper. T indiates a tridiagonal matrix, n representsthe size of a matrix, eigenvalues are denoted by � and eigenvetors by v. Computed quantities willoften be denoted by \hatted" symbols, for example, �̂ and v̂. The number of proessors in a parallelomputation is p while the i-th proessor is denoted by pi.2 Related WorkAs mentioned earlier, most algorithms for the dense symmetri eigenvalue problem proeed in threephases. The �rst and third phases, Householder redution and baktransformation, are fairly stan-dard and are desribed in Setion 3.2. The seond stage, tridiagonal eigensolution, has led to avariety of interesting algorithms; we now give a quik overview of existing methods, emphasizingtheir parallel versions. 2



The QR algorithm, independently invented by Franis [41℄ and Kublanovskaja [57℄, is an iterationthat produes a sequene of similar matries that onverges to diagonal form. When the startingmatrix is symmetri and tridiagonal, eah iterate produed by the QR algorithm is also symmetriand tridiagonal. Convergene to diagonal form is rapid (ultimately ubi) with a suitable hoie ofshifts [63℄. A fast square-root free version of QR developed by Pal, Walker and Kahan (PWK) isuseful if only eigenvalues are desired [63℄. Another attrative alternative, in the latter ase, is touse the di�erential qd algorithm (dqds) that is based on the related LR iteration [39℄. In pratie2-3 iterations, on average, are needed per eigenvalue in the QR algorithm where eah iteration isomposed of at most n � 1 Givens rotations. Thus all eigenvalues an be omputed at a ost ofO(n2) operations, while the aumulation of Givens rotations required for omputing orthogonaleigenvetors results in O(n3) operations (in pratie, 6n3 to 9n3 operations are observed).The inherent sequential nature of the QR algorithm makes the eigenvalue omputation hardto parallelize. However, when eigenvetors are needed, an e�etive parallel algorithm that yieldsgood speedups an be obtained as follows. First, the Householder reetions omputed duringthe redution are aumulated in approximately 43n3 operations to form a matrix Z whih is thenevenly partitioned among the p proessors so that eah proessor owns approximately n=p rowsof Z. The tridiagonal matrix is dupliated on all proessors and the O(n2) eigenvalue omputationis redundantly performed on all proessors, while the Givens rotations are diretly applied on eahproessor to its part of Z. This aumulation ahieves perfet speedup sine all proessors ansimultaneously update their portion of Z without requiring any ommuniation, thus leading to anoverall parallel omplexity of O(n3=p) operations. A faster algorithm (up to a fator of 2) an beobtained by using perfet shifts and inner deations [27℄.A major drawbak of the QR algorithm is that it is hard to adapt to the ase when only a subsetof eigenvalues and eigenvetors is desired at a proportionately redued operation ount. Thus aommonly used parallel solution is to invoke the bisetion algorithm followed by inverse iteration[50℄. The bisetion algorithm was �rst proposed by Givens in 1954 and allows the omputation ofk eigenvalues of a symmetri tridiagonal T in O(kn) operations [42℄. One aurate eigenvalues areknown, the method of inverse iteration may be used to ompute the orresponding eigenvetors [67℄.However, inverse iteration an only guarantee small residual norms. It annot ensure orthogonalityof the omputed vetors when eigenvalues are lose. A ommonly used \remedy" is to orthogo-nalize eah approximate eigenvetor, using the modi�ed Gram-Shmidt method, against previouslyomputed eigenvetors of \nearby" eigenvalues | the LAPACK and EISPACK implementations or-thogonalize when eigenvalues are loser than 10�3kTk. Unfortunately even this onservative strategyan fail to give aurate answers in ertain situations [25℄. The amount of work required by inverseiteration to ompute all the eigenvetors of a symmetri tridiagonal matrix depends strongly uponthe distribution of eigenvalues (unlike the QR algorithm whih always requires O(n3) operations).If eigenvalues are well-separated (gaps greater than 10�3kTk), then O(n2) operations are suÆient.However, when eigenvalues are lustered, urrent implementations of inverse iteration an take up to10n3 operations due to orthogonalization [54℄. Unfortunately the latter situation is the norm ratherthan the exeption for large matries sine even uniform eigenvalue spaings when n exeeds 1,000lead to eigenvalue gaps smaller than 10�3kTk.When eigenvalues are well separated, both bisetion and inverse iteration an be e�etively par-allelized leading to a omplexity of O(n2=p) operations. However, as remarked above, the ommonsituation for large matries is that inverse iteration requires O(n3) operations; see Setion 4.3 forsome timings. Thus, parallel inverse iteration requires O(n3=p) operations in these situations. More-over, onsiderable ommuniation is required when Gram-Shmidt orthogonalization is done arossproessor boundaries. Indeed, to avoid ommuniation, the urrent inverse iteration implementationin SaLAPACK (PDSTEIN) omputes all the eigenvetors orresponding to a luster of eigenvalueson a single proessor, thus leading to a parallel omplexity of O(n3) in the worst ase and also animbalane in the memory required on eah proessor [11, p. 48℄.The bisetion algorithm to �nd eigenvalues has linear onvergene and so, an be quite slow. To3



speed up bisetion, there have been many attempts to employ faster zero-�nders suh as the RayleighQuotient Iteration [63℄, Laguerre's method [55, 61, 64℄ and the Zeroin sheme [19, 13℄. These zero-�nders an speed up the omputation of isolated eigenvalues by a onsiderable amount but theyseem to stumble when eigenvalues luster. Homotopy methods for the symmetri eigenproblem weresuggested by Chu in [16, 17℄. These methods start from an eigenvalue of a simpler matrix D andfollow a smooth urve to �nd an eigenvalue of A(t) � D + t(A �D), varying t from 0 to 1. D washosen to be the diagonal of the tridiagonal in [60℄, but greater suess was obtained by taking Dto be a diret sum of submatries of T [62℄. An alternate divide and onquer method that �nds theeigenvalues by using Laguerre's iteration instead of homotopy methods is given in [61℄. Note thatin all these ases, the orresponding eigenvetors still need to be obtained by inverse iteration.The Divide & Conquer method proposed by Cuppen in 1981 is a method speially suited forparallel omputation [18, 33℄; remarkably this algorithm also yields a faster sequential implementa-tion than QR. The basi strategy of the Divide & Conquer algorithm is to express the tridiagonalmatrix as a low-rank modi�ation of a diret sum of two smaller tridiagonal matries. This mod-i�ation may be a rank-one update [14℄, or may be obtained by rossing out a row and olumn ofthe tridiagonal [43, 45℄. The entire eigenproblem an then be solved in terms of the eigenproblemsof the smaller tridiagonal matries, and this proess an be repeated reursively. For several yearsafter its ineption, it was not known how to guarantee numerially orthogonality of the eigenvetorapproximations obtained by this approah. However Gu and Eisenstat found a solution to thisproblem, leading to robust software based on their strategy [46℄.The main reason for the unexpeted suess of divide and onquer methods on serial mahines isdeation, whih ours when an eigenpair of a submatrix of T is an aeptable eigenpair of a largersubmatrix. The greater the amount of deation, whih depends on the eigenvalue distribution and onthe struture of the eigenvetors, the lesser is the work required in these methods. For matries withlustered eigenvalues deation an be extensive, however, in general, O(n3) operations are needed.The Divide & Conquer method is suited for parallelization sine smaller sub-problems an be solvedindependently on various proessors. However, ommuniation osts for ombining sub-problemsare substantial, espeially when ombining the larger sub-problems to get the solution to the fullproblem [72℄. The biggest drawbak of the Divide & Conquer algorithm is the extra O(n2) mainmemory required for its omputation | as we shall see later, this limits the largest problem thatan be solved using this approah.2.1 Other solution methodsThe oldest method for solving the symmetri eigenproblem dates bak to Jaobi in 1846 [53℄, andwas redisovered by von Neumann and olleagues in 1946 [4℄. Jaobi's method does not redue thedense symmetri matrix to tridiagonal form, as most other methods do, but works on the densematrix itself. It performs a sequene of plane rotations eah of whih annihilates an o�-diagonalelement (whih is �lled in during later steps). There are a variety of Jaobi methods that di�ersolely in their strategies for hoosing the next element to be annihilated. All good strategies tend todiminish the o�-diagonal elements, and the resulting sequene of matries onverges to the diagonalmatrix of eigenvalues [23℄.Jaobi's method fell out of favor with the disovery of the QR algorithm. The primary reasonis that, in pratie, the ost of even the most eÆient variants of the Jaobi iteration is an orderof magnitude greater than that of the QR algorithm. Nonetheless, it has periodially enjoyed aresurretion sine it an be eÆiently parallelized [12, 74, 7℄ and theoretial results show it to bemore aurate than the QR algorithm [22℄.The Symmetri Invariant Subspae Deomposition Algorithm (SYISDA) formulates the problemin a dramatially di�erent way [9℄. The idea is to sale and shift the spetrum of the given matrixso that its eigenvalues are mapped to the interval [0; 1℄, with the mean eigenvalue being mappedto 12 . Letting B equal the transformed matrix, a polynomial p is applied to B with the property4



that limi!1 pi([0; 1℄) = f0; 1g. By applying this polynomial to B in the iteration C0 = B, Ci+1 =p(Ci) until onvergene, all eigenvalues of Ci+1 eventually beome arbitrarily lose to 0 or 1. Theeigenvetors of Ci+1 and A are related in suh a way that allows the omputation of two subspaesthat an then be used to deouple matrix A into two subproblems, eah of size roughly half thatof A. The proess then ontinues with eah of the subproblems. The bene�t of this approahis that the omputation an be ast in terms of matrix-matrix multipliation, whih an attainnear-peak performane on modern miroproessors and parallelizes easily [30, 77, 49, 44, 1, 75,47℄. Unfortunately, this approah inreases the operation ount to the point where SYISDA is notonsidered to be ompetitive.2.2 Parallel librariesA great deal of e�ort has been spent in building eÆient parallel symmetri eigensolvers for dis-tributed systems [21℄. Routines for this problem have been developed as part of a number ofnumerial libraries. Among these the best known are the Salable Linear Algebra Pakage (SaLA-PACK) [34, 11℄, Parallel Eigensolver (PeIGS) [37℄, the Parallel Researh on Invariant SubspaeMethods (PRISM) projet [9℄, and the Parallel Linear Algebra Pakage (PLAPACK) [73, 2℄. All ofthese pakages attempt to ahieve portability by embraing the Message-Passing Interfae (MPI) [32℄and the Basi Linear Algebra Subprograms (BLAS) [58, 31, 30℄.The SaLAPACK projet is an e�ort to parallelize the Linear Algebra Pakage (LAPACK) [3℄ todistributed memory arhitetures. It supports a number of di�erent algorithms, as further disussedin the experimental setion. PeIGS supports a large number of hemistry appliations that give riseto large dense eigenvalue problems. It urrently inludes a parallel tridiagonal eigensolver that isbased on an early version of Algorithm MR3; this preliminary version does limited Gram-Shmidtorthogonalization and was alled the Berkeley algorithm in [26℄. The PRISM projet implements theSYISDA approah outlined in Setion 2.1. PLAPACK urrently supports a parallel implementationof the QR algorithm as well as the algorithm that is the topi of this paper.3 The Proposed AlgorithmWe now present the proposed parallel algorithm. Setion 3.1 desribes how the tridiagonal eigenprob-lem an be solved using the method of multiple relatively robust representations, while Setion 3.2briey desribes the phases of Householder redution and baktransformation.3.1 Tridiagonal Eigensolver using Multiple Relatively Robust Represen-tationsAlgorithmMR3 was reently introdued by Dhillon & Parlett [24, 29, 28℄ for the task of omputing keigenvetors of a symmetri tridiagonal T , and has a omplexity of O(nk) operations. The superiortime omplexity of the algorithm is ahieved by avoiding Gram-Shmidt orthogonalization, whih inturn is the result of high relative auray in intermediate omputations.3.1.1 The Sequential AlgorithmWe provide the main ideas behind AlgorithmMR3; an in-depth tehnial desription and justi�ationof the algorithm an be found in [24, 29, 28℄. There are three key ingredients that form the bakboneof Algorithm MR3:1. Relatively Robust Representations(RRRs). A relatively robust representation is a repre-sentation that determines its eigenvalues and eigenvetors to high relative auray, i.e., smallomponentwise hanges to individual entries of the representation lead to small relative hanges5



in the eigenvalues and small hanges in the eigenvetors (modulo relative gaps between eigen-values, see (2) below). Unfortunately, the traditional representation of a tridiagonal by itsdiagonal and o�-diagonal elements does not form an RRR; see [29, Se. 3℄ for an example.However, the bidiagonal fatorization T = LDLt of a positive de�nite tridiagonal is an RRR,and in many ases an inde�nite LDLt also forms an RRR [29℄. We now make preise theonditions needed for LDLt to be an RRR; write li for L(i + 1; i) and di for D(i; i). De�nethe relative gap of �̂, where �̂ is loser to � than to any other eigenvalue of LDLt, to berelgap(�̂) := gap(�̂)=j�̂j;where gap(�̂) = minfj�� �̂j : � 6= �; � 2 spetrum(LDLt)g. We say that (�;v) is determinedto high relative auray by L and D if small relative hanges, li ! li(1+ �i), di ! di(1+ Æi),j�ij < �, jÆij < �, � � 1, ause hanges Æ� and Æv that satisfyjÆ�jj�j � K1n�; � 6= 0; (1)j sin 6 (v;v + Æv)j � K2n�relgap(�) ; (2)for modest onstants K1 and K2, say, smaller than 100. We all suh an LDLt fatorizationa relatively robust representation (RRR) for (�;v). The advantage of an RRR is that theeigenvalues and eigenvetors an be omputed to high relative auray as governed by (1)and (2). For more details see [29℄.2. Computing the eigenvetor of an isolated eigenvalue. One an aurate eigenvalue �̂ isknown, its eigenvetor may be omputed by solving the equation (LDLt� �̂I)z � 0. Howeverit is not straightforward to solve this equation: the trik is to �gure out what equation toignore in this nearly singular system. Unable to �nd a solution to this problem, urrentimplementations of inverse iteration in LAPACK and EISPACK solve (LDLt � �̂I)zi+1 = ziand take z0 to be a random starting vetor (this diÆulty was known to Wilkinson [78, p.318℄). This problem was solved reently by using twisted fatorizations that are obtained bygluing a top-down (LDLt) and a bottom-up (UDU t) fatorization. The solution is presentedin Algorithm Getve below, see [29, 65, 40℄ for more details.3. Computing orthogonal eigenvetors for lusters using multiple RRRs. By using an RRRand Algorithm Getve for omputing eigenvetors, it an be shown that the omputed eigen-vetors are numerially orthogonal when the eigenvalues have large relative gaps [29℄. How-ever, when eigenvalues have small relative gaps, the above approah is not adequate. For thease of small relative gaps, Algorithm MR3 uses multiple RRRs, i.e., multiple fatorizationsLDLt = LDLt � �I , where � is lose to a luster. The shifts � are hosen to \break"lusters, i.e., to make relative gaps bigger (note that relative gaps hange upon shifting by �).After forming the new representation LDLt, the eigenvalues in the luster are \re�ned" sothat they have high relative auray with respet to LDLt. Finally the eigenvetors of eigen-values that beome relatively well separated after shifting are omputed by Algorithm Getveusing LDLt; the proess is iterated for eigenvalues that still have small relative gaps. Detailsare given in Algorithm MR3 below. The triky theoretial aspets that address the relativerobustness of intermediate representations and whether the eigenvetors omputed using dif-ferent RRRs are numerially orthogonal may be found in [66℄ and [28℄. It is important to notethat orthogonality of the omputed eigenvetors is ahieved without Gram-Shmidt being usedin any of the proedures.We �rst present Algorithm Getve in Figure 1. Getve takes an LDLt fatorization and anapproximate eigenvalue �̂ as input and omputes the orresponding eigenvetor by forming the6



Algorithm Getve(L,D, �̂)Input: L is unit lower bidiagonal (li denotes L(i+1; i), 1 � i � n�1), and D is diagonal (di denotesD(i; i), 1 � i � n); LDLt is the input tridiagonal matrix assumed to be irreduible.�̂ is an approximate eigenvalue.Output: z is the omputed eigenvetor.I. Fator LDLt � �̂I = L+D+Lt+ by the dstqds (di�erential stationary qd with shift) transform.II. Fator LDLt � �̂I = U�D�U t� by the dqds (di�erential progressive qd with shift) transform.III. Compute k for k = 1; : : : ; n by the formula k = sk + dkD�(k+1)pk+1 that involves the interme-diate quantities sk and pk+1 omputed in the dstqds and dqds transforms (for details see [29,Se 4.1℄). Pik an r suh that jrj = mink jkj. Form the twisted fators with twist index r,Nr and �r, whih satisfy Nr�rN tr = LDLt � �̂I .IV. Form the approximate eigenvetor z by solving N trz = er (er is the r-th olumn of the identitymatrix I) whih is equivalent to solving (LDLt � �̂I)z = Nr�rN trz = err sine Nrer = erand �rer = rer: z(r) = 1:For i = r � 1; : : : ; 1; z(i) = � �L+(i)z(i+ 1); z(i+ 1) 6= 0;�(di+1li+1=dili)z(i+ 2); otherwise:For j = r; : : : ; n� 1; z(j + 1) = � �U�(j)z(j); z(j) 6= 0;�(dj�1lj�1=dj lj)z(j � 1); otherwise:Note that dili is the (i; i+ 1) element of LDLt.V. Set z  z=kzk.Figure 1: Algorithm Getve for omputing the eigenvetor of an isolated eigenvalue.appropriate twisted fatorization Nr�rN tr = LDLt � �̂I . The twist index r in Step III of Figure 1is hosen so that jrj = mink jkj and is followed by solving (LDLt � �̂I)z = rer; thus r is theindex of the equation that is ignored and provides a solution to Wilkinson's problem (see above).The resulting eigenvetor is aurate sine di�erential transformations are used to ompute thetwisted fatorization, and the eigenvetor is omputed solely by multipliations (no additions orsubtrations) in Step IV of the algorithm. We assume that LDLt is an irreduible tridiagonal,i.e., all o�-diagonals are nonzero. Details on twisted fatorizations, di�erential qd transforms andAlgorithm Getve may be found in [29℄.Algorithm Getve omputes a single eigenvetor of an RRR; it was shown in [29℄ that the om-puted eigenvetor is highly aurate and so, is numerially orthogonal to all other eigenvetors ifthe orresponding eigenvalue has a large relative gap. However, if Getve is invoked when the orre-sponding eigenvalue is part of a luster, the omputed vetor will, in general, not be orthogonal toother eigenvetors in the luster. The diÆulty is that, as seen by (2), the eigenvetors of eigenvalueswith small relative gaps are highly sensitive to even tiny hanges in L and D.To overome this problem, Algorithm MR3 given in Figure 2 uses multiple LDLt fatorizations| the basi idea is that there will be an LDLt fatorization for eah luster of eigenvalues. A newLDLt fatorization is formed per luster in order to inrease relative gaps within the luster. Onean eigenvalue has a large relative gap, Algorithm Getve is invoked to ompute the orresponding7



Algorithm MR3(T ,�0,tol)Input: T is the given symmetri tridiagonal,�0 is the index set of desired eigenpairs,tol is the input tolerane for relative gaps, usually tol is set to 10�3.Output: (�̂j ; v̂j); j 2 �0, are the omputed eigenpairs.1. Split T into irreduible sub-bloks T1; T2; : : : ; T`.For eah sub-blok Ti i = 1; : : : ; `, do:A. Choose �i suh that L0D0Lt0 = Ti + �iI is a fatorization that determines the desiredeigenvalues and eigenvetors, �j and vj , j 2 �0, to high relative auray. In general,the shift �i an be in the interior of T 's spetrum, but a safe hoie is to make T + �iIpositive or negative de�nite.B. Compute the desired eigenvalues of L0D0Lt0 to high relative auray by the dqds algo-rithm [39℄ or by bisetion using a di�erential qd transform.C. Form a work queue Q, and initialize Q = f(L0; D0;�0)g. Call MR3 Ve(Q,tol).end forSubroutine MR3 Ve(Q,tol)While Queue Q is not empty:I. Remove an element (L;D;�) from the queue Q. Partition the omputed eigenvalues �̂j ; j 2 �,into lusters �1; : : : ;�h aording to their relative gaps and the input tolerane tol. Theeigenvalues are thus designated as isolated (luster size equals 1) or lustered. More preisely, ifrgap(�̂j) := mini 6=j j�̂j � �̂ij=j�̂j j � tol then �̂j is isolated. On the other hand, all onseutiveeigenvalues �̂j�1; �̂j in a non-trivial luster � (j�j > 1) satisfy j�̂j � �̂j�1j=j�̂j j < tol.II. For eah luster �,  = 1; : : : ; h, perform the following steps.If j�j = 1 with eigenvalue �̂j , i.e., � = fjg, then invoke Algorithm Getve(L,D,�̂j) toobtain the omputed eigenvetor v̂j .elsea. Pik � near the luster and ompute LDLt � �I = LDLt using the dstqds (di�er-ential form of stationary qd) transform, see [29, Se 4.1℄ for details.b. \Re�ne" the eigenvalues �̂� � in the luster so that they have high relative auraywith respet to the omputed LDLt. Set �̂ (�̂� �)refined, for all eigenvalues inthe luster.. Add (L; D;�) to the queue Q.end ifend forend whileFigure 2: Algorithm MR3 for omputing orthogonal eigenvetors without using Gram-Shmidt or-thogonalization.eigenvetor as seen in Step II of Figure 2. Otherwise we are in the presene of a luster � ofeigenvalues and a new representation LDLt = LDLt � �I needs to be omputed. The shift � ishosen in suh a way suh that: (a) the new representation is relatively robust for the eigenvalues in8



� and (b) at least one of the shifted eigenvalues in � is relatively well separated from the others.The proess is iterated if other lusters are enountered. The inputs to MR3 are an index set �0that spei�es the desired eigenpairs, the symmetri tridiagonal matrix T given by its traditionalrepresentation of diagonal and o�-diagonal elements, and a tolerane tol for relative gaps. Note thatthe omputational path taken by MR3 depends on the relative gaps between eigenvalues. We againemphasize that MR3 does not need any Gram-Shmidt orthogonalization of the eigenvetors.3.1.2 Representation TreesThe sequene of omputations in Algorithm MR3 an be pitorially expressed by a representationtree. Suh a tree ontains information about how the eigenvalues are lustered (nodes of the tree) andwhat shifts are used to \break" a luster (edges of the tree). A preise desription of a representationtree an be found in [28℄. Here we present a slightly simpli�ed version of the tree, without speifyingedge labels, whih will failitate the desription of the parallel algorithm.The root node of the representation tree is denoted by (L0; D0;�0), where L0D0Lt0 is the baserepresentation obtained in step 1A of AlgorithmMR3, see Figure 2. An example representation treeis shown in Figure 3. Let � be an internal node of the tree and let (Lp; Dp;�p) be its parent node.If � is a non-leaf node, it will be denoted by (L; D;�) where the index set � is a proper subsetof �p. This node aptures the fat that LDLt is a representation that is omputed by shifting,LpDpLtp � � = LDLt, and will be used for omputing the eigenvetors indexed by �. If � is aleaf node instead, it will be denoted only by the singleton f�g, where  2 �p. The singleton nodef�g signi�es that the eigenvalue � has a large relative gap with respet to the parent representationLpDpLtp, and its eigenvetor will be omputed by Algorithm Getve.�� ��(L0;D0;f1; : : : ;11g)����������f�1g ������ ��(L1;D1;f2;3g) f�4g ������ ��(L2;D2;f5; : : : ;10g)HHHHHHHHHHf�11g����f�2g AAAAf�3g ����f�5g �� ��(L3;D3;f6;7;8g)������ ��(L4;D4;f9;10g)���f�6g f�7g f�8g ���f�9g BBBf�10gFigure 3: An example representation tree for a matrix of size 11.Figure 3 gives an example of a representation tree for a matrix of size 11 for whih all the eigen-vetors are desired: the root ontains the representation L0; D0 and the index set �0 = f1; 2; : : : ; 11g.The algorithm begins by lassifying the eigenvalues: in this example �1; �4 and �11 are well sepa-rated, so in the tree they appear as singleton leaves (their eigenvetors an be diretly omputed bythe alls Getve(L0; D0; �̂i), i = 1; 4 and 11). The seond and third eigenvalues violate the onditionj(�̂3 � �̂2)=�̂3j � tol, therefore they form a luster; a new representation L1D1Lt1 = L0D0Lt0 � �1Ihas to be omputed and the two eigenvalues have to be re�ned to have high relative auray with9



respet to L1 and D1. This is represented by the node (L1; D1; f2; 3g). Similarly the eigenvaluesf�5; : : : ; �10g are lustered: a new representation L2D2Lt2 = L0D0Lt0 � �2I is omputed as shownby the node (L2; D2; f5; : : : ; 10g). This illustrates the working of Algorithm MR3 for all the nodesat depth 1 in the representation tree of Figure 3.The omputation proeeds by lassifying the eigenvalues of the internal nodes (L1; D1; f2; 3g)and (L2; D2; f5; : : : ; 10g). From the tree it an be dedued that the two eigenvalues f�2g and f�3gin the �rst node are now relatively well separated, while the seond node is further fragmented intoa relatively well separated eigenvalue f�5g and two nodes with lusters: nodes (L3; D3; f6; 7; 8g)and (L4; D4; f9; 10g). Finally these two lusters are further fragmented to yield singletons, andthese eigenvetors are omputed by Algorithm Getve. Note that, as seen by the desription ofAlgorithm MR3 in Figure 2, the representation tree is proessed in a breadth �rst fashion.In IEEE double preision arithmeti, using the tolerane min(10�3; 1=n) for relative gaps, thedepth of a representation tree an be as large as 6, see [28℄ for an example. In most examples wehave enountered, the depth is muh smaller | to give a sense of reality we give here a sketh of therepresentation tree for two matries that arise in the �nite element modeling of automobile bodies(see Setion 4.1 for more details). The tree for the matrix auto.13786 (n = 13786) has maximumdepth 2; at depth 1 there are 12937 singleton nodes, 403 lusters of size 2, 10 lusters of size 3 andone luster of size 13. The tree for the matrix auto.12387 (n = 12387) also has maximum depth 2even though it has many more internal nodes: it has 5776 singletons and 1991 nodes orrespondingto lusters with sizes ranging from 2 to 31.A further note about reduible matries: the solution is omputed by iterating over the sub-bloksthus the sequene of omputations an be aptured by a forest of trees (one for eah sub-blok) ratherthan by a single tree.3.1.3 The Parallel AlgorithmWe now desribe Algorithm PMR3 (Parallel algorithm using Multiple Relatively RobustRepresentations). The input to the algorithm is a tridiagonal matrix T , an index set �0 of desiredeigenpairs, a tolerane parameter tol and the number of proessors p that exeute the algorithm.We target our algorithm to a distributed memory system, in whih eah proessor has its own loalmain memory and ommuniation is done by message-passing [32℄. We assume that the tridiagonalis dupliated on every proessor before the algorithm is invoked.We �rst disuss the parallelization strategy before desribing the algorithm in detail. Let thesize of the input index set �0 be k, i.e., k eigenvalues and eigenvetors are to be omputed. Thetotal O(kn) omplexity of Algorithm MR3 an be broken down into the work required at eah nodeof the representation tree:1. Eah leaf node f�ig requires the omputation of an eigenvetor by Algorithm Getve, whihrequires O(n) operations (at most 2n divisions and 10n multipliations and additions),2. Eah internal node (L; D;�) requires (a) omputation of the representation LDLt =LiDiLti � �I , and (b) re�nement of the eigenvalues orresponding to the index set � so thatthey have high relative auray with respet to LDLt. Computing the representation by thedi�erential stationary qd transform requires O(n) operations (n divisions, 4n multipliationsand additions), while re�nement of the eigenvalues an be done in O(nj�j) operations usinga ombination of bisetion and Rayleigh Quotient Iteration.We aim for a parallel omplexity of O(nkp +n) operations. Due to ommuniation overheads, wewill not attempt to parallelizeO(n) proedures, suh as omputing a single eigenvetor or omputinga new representation. Our strategy for the parallel algorithm will be to divide the leaf nodes equallyamong the proessors, i.e., eah proessor will make approximately k=p alls to Algorithm Getve.Thus eah proessor is assigned a set of eigenvetors that are to be omputed loally.10



However, before the leaf nodes an be proessed the omputation at the internal nodes needs tobe performed. Eah internal node (L; D;�) is assoiated with a subset of q proessors that areresponsible for omputing the eigenvetors in �. Sine k eigenvetors are to be omputed by a totalof p proessors, q approximately equals p(j�j=k). Note that sine j�j is small in most pratialappliations (see omments towards the end of Setion 3.1.2), q is mostly small; in our examples, qis usually 1, sometimes 2 but rarely greater than 2. If q equals 1, the omputation at eah internalnode is just done serially. If q is greater than 1, the parallel algorithm will proess an internal nodeas follows: the representation LDLt is omputed (redundantly) by eah of the q proessors. Theeigenvalue re�nement using bisetion or Rayleigh Quotient Iteration (O(n) per eigenvalue) is thenparallelized over the q proessors at a ost of (nj�j=q) = O(nk=p) operations. Sine many subsetsof proessors may be handling internal nodes at the same time, and the depth of the tree is atmost 6, the overall parallel omplexity is O(nkp + n). Note that due to ommuniation overheadsin a pratial implementation, we impose a threshold on j�j before the re�nement is performedin parallel; if j�j is below this threshold the omputation is arried out redundantly on all the qproessors.Figure 4 gives a desription of Algorithm PMR3 aording to the strategy outlined above. Inorder to show how sub-bloks of T are handled by the parallel algorithm, we do not assume that Tis irreduible. Eah proessor will ompute k=p eigenvetors, assuming k is divisible by p. One theeigenvalues are grouped aording to the sub-bloks and sorted (per sub-blok), work is assignedto the proessors in a blok yli manner, i.e. proessor p0 is assigned eigenvetors 1; 2; : : : ; k=p,proessor p1 is assigned eigenvetors k=p+1; : : : ; 2k=p and so on. Thus the memory requirement tostore the eigenvetors is exatly (n �k=p) oating point numbers per proessor. The extra workspaerequired is only linear in n, so problems of large size an be takled. To give an idea of the limitsof the sequential implementation, the size n of the largest problem that an be solved (with k = n)on a omputer equipped with 1.5 GBytes of memory is about 14,000 when all the eigenvetors arerequired while to solve a problem of size 30,000 a omputer should be equipped with about 7 GBytesof main memory.As seen in Figure 4 the eigenvetors are omputed by invoking the sequential algorithms Getveor MR3 Ve (whih in turn invokes Getve). In terms of the representation tree, eah proessormaintains a loal work queue �Q of nodes (possibly leaves) whih olletively index a superset ofthe eigenvetors to be omputed loally. Initially all the proessors have a single node in the queueorresponding to the desired index set �0. The representation tree is traversed in a breadth �rstfashion to fragment the lusters until all the eigenvetors of a node are loal. To fragment a lusteris equivalent to desending one level in the representation tree. Nodes that ontain eigenvetors allof whih are assoiated with other proessors are removed from the loal queue of the proessor.One a node just ontains eigenvetors to be omputed loally, the sequential algorithms Getveor MR3 Ve are invoked depending on the size of the luster. Reall that there is a tree for eahsub-blok.A word about the initial eigenvalue omputation. The dqds algorithm for omputing the eigen-values is very fast, but like the QR algorithm is inherently sequential. Moreover, the dqds algorithmannot be adapted to ompute k eigenvalues in O(nk) time, instead always requiring O(n2) om-putations. On the other hand the bisetion algorithm is easily parallelized [6℄, however, bisetion israther slow. Thus, in a parallel implementation, it is often preferable to redundantly ompute theeigenvalues on eah proessor unless p is large, or only a small subset of the n eigenvalues is desired.We now illustrate the parallel exeution of the algorithm on the matrix of Figure 3 assumingwe want to ompute all the 11 eigenvetors on 3 proessors. In Figure 5 we have annotated therepresentation tree of Figure 3 to show how the tree is proessed by the 3 proessors. Initially theeigenvalues �0 = f�1; : : : ; �11g are omputed. Then based on the relative gaps between eigenvalueseah proessor determines whether a luster is to be omputed loally, has to be fragmented orhas to be disarded. The labels p0; p1; p2 on the root node denote that eah of the 3 proessors isinvolved in the omputation. 11



Algorithm PMR3(T;�0; tol; p) fexeuted by proessor psgInput: T is the given symmetri tridiagonal,�0 is the index set of desired eigenpairs,tol is the input tolerane for relative gaps, usually set to 10�3,p is the number of proessors that exeute the algorithm.Output: (�̂j ; v̂j); j 2 �0 are the omputed eigenpairs.1. Split T into irreduible sub-bloks T1; T2; : : : ; T`.For eah sub-blok Ti, i = 1; : : : ; `, do:A. Choose �i suh that L0D0Lt0 = Ti + �iI is a fatorization that determines the desiredeigenvalues and eigenvetors, �j and vj , j 2 �0, to high relative auray.B. Compute the desired eigenvalues �i of L0D0Lt0 to high relative auray by the dqdsalgorithm [39℄ or by bisetion using a di�erential qd transform. Let �i be the index setorresponding to �i that ontains the desired eigenvalues (� �0).end for2. Determine the subset �ps0 � �0 of eigenvetors to be omputed loally. Form a work queue �Q,and initialize it with all the sub-bloks (Li; Di;�i) ontaining eigenvetors to be omputedloally, i.e., the sub-bloks for whih �i \ �ps0 6= ;, with i = 1; : : : ; `.3. While Queue �Q is not empty:I. Remove an element (L;D;�) from the queue �Q. Partition the omputed eigenvalues �̂j ; j 2� into lusters �1; : : : ;�h aording to their relative gaps and the input tolerane tol.II. For eah luster �,  = 1; : : : ; h, perform the following steps:If � � �ps0 then all eigenvetors in � have to be omputed loally.The eigenvetors are omputed by invoking MR3 Ve((L;D;�); tol).elseif � \ �ps0 = ; then the luster � does not ontain any eigenvetor that needsto be omputed loally. Disard the luster �.elseif � \ �ps0 6= ; then the luster � ontains some eigenvetors to be omputedloally, and needs to be further fragmented by the following steps.� Pik � near the luster and ompute LDLt � �I = LDLtusing the dstqds transform, see [29, Se 4.1℄ for details.� \Re�ne" the eigenvalues �̂�� in the luster so that they havehigh relative auray with respet to the omputed LDLt.Set �̂ (�̂� �)refined, for all eigenvalues in the luster.� Add (L; D;�) to the queue �Q.end ifend whileFigure 4: Algorithm PMR3 for parallel omputation of a subset �0 of eigenvalues and eigenvetors.Proessor p0 lassi�es the eigenvalues �1 through �4, but disards all the lusters (possiblysingletons) from �5 to the end of the spetrum as they do not ontain eigenvalues to be omputedloally. The lusters f�1g, f�2; �3g, f�4g ontain eigenvalues loal to p0, so the nodes in the treeare labelled with p0. In lassifying the eigenvalues both proessors p1 and p2 �nd that the luster12



f�5; : : : ; �10g ontains eigenvalues to be omputed loally: �5 through �8 for p1 and �9, �10 for p2.Thus, the new representation is omputed redundantly by both p1 and p2, and the re�nement ofeigenvalues �5 through �10 is parallelized over p1 and p2. Thus the node is labelled with both p1and p2 in Figure 5. The singleton f�11g is reognized as loal by p2 and therefore labelled with p2.The eigenvalue lassi�ation for node (L2; D2; f5; : : : ; 10g) is independently performed by proessorsp1 and p2: p1 reognizes the lusters f�5g, f�6; �7; �8g to ontain loal eigenvalues and disardsthe luster f�9; �10g; vie-versa for proessor p2. Nodes f�5g and (L3; D3; f6; 7; 8g) are thereforelabelled p1 while node (L4; D4; f9; 10g) is labelled p2.�� ��(L0;D0;f1; : : : ;11g)p0; p1; p2����������f�1gp0 ������ ��(L1;D1;f2;3g) p0 f�4gp0������ ��(L2;D2;f5; : : : ;10g)p1; p2HHHHHHHHHHf�11gp2����f�2gp0 AAAAf�3gp0 ����f�5gp1�� ��(L3;D3;f6; : : : ;8g)p1������ ��(L4;D4;f9;10g)p2���f�6gp1 f�7gp1 f�8gp1 ���f�9gp2 BBBf�10gp2Figure 5: Representation tree annotated to desribe the exeution of the parallel algorithm. Thematrix size is 11; the algorithm is exeuted by 3 proessors.It is important to realize that the parallel algorithm traverses the sequential representation treein parallel. This implies that the omputed eigenvetors math exatly the ones omputed by thesequential algorithm and therefore satisfy the same auray properties.3.2 Householder Redution and BaktransformationTo solve the dense, symmetri eigenproblem the solution to the tridiagonal eigenproblem is preededby redution to tridiagonal form, and followed by a baktransformation stage to obtain the eigen-vetors of the dense matrix. We will see in the performane setion that Algorithm PMR3 disussedin the previous setion redues the ost of the tridiagonal eigenproblem suÆiently that it is theredution and baktransformation stages that dominate the omputation time. In this setion, wegive a brief overview of the major issues behind the parallel implementation of these algorithms. Amore detailed disussion an be found in the appendies.Redution to tridiagonal form is aomplished through the appliation of a sequene of orthogonalsimilarity transformations; usually Householder transformations are preferred to Givens rotations.At the i-step in the redution, a Householder transformation is omputed that annihilates theelements in the i-th olumn that lie below the �rst subdiagonal. This transformation is then appliedto the matrix from the left and the right, after whih the omputation moves on to the next olumnof the updated matrix. Unfortunately, this simple \unbloked" algorithm is rih in matrix-vetoroperations (matrix-vetor multipliations and symmetri rank-1 updates to be exat) whih do not13



ahieve high performane on modern miroproessors. Thus, a bloked version of the algorithmis derived from the unbloked algorithm by delaying updates to the matrix, aumulating thoseupdates into a so-alled symmetri rank-k update [35℄. This asts the omputation in terms ofmatrix-matrix multipliation whih an ahieve muh better performane. However, it is importantto note that even for the bloked algorithm, approximately half the omputation is in symmetrimatrix-vetor multipliation. This means that the best one an hope for is that implementationsbased on the bloked algorithm improve performane by a fator of two over implementations basedon the unbloked algorithm.The baktransformation stage applies the Householder transforms enountered during the redu-tion to tridiagonal form to the eigenvetors omputed for the tridiagonal matrix. It is well-knownhow to aumulate suh Householder transforms into blok Householder transforms so that theomputation is again ast in terms of matrix-matrix multipliation [3, 10℄. This time essentially allomputation involves matrix-matrix multipliation, allowing very high performane to be ahieved.Parallel implementation of both these stages now hinges on the fat that the parallel implementa-tion of the symmetri matrix-vetor multipliation, the symmetri rank-k update, and matrix-matrixmultipliation is salable, and an ahieve high performane. Sine these issues are well understood,we omit presenting them here and refer the reader to [50, 51, 59, 15, 73, 1, 75, 15, 47℄. Some subtledi�erenes in the parallel implementations of these stages as supported by SaLAPACK and PLA-PACK are given in the appendies. Essentially, the SaLAPACK and PLAPACK implementationsare tuned for smaller and larger matries, respetively.4 Experimental ResultsThis setion presents timing results for the proposed algorithm. First we report results on the denseproblem in Setion 4.2: it will be apparent that very large problems an now be takled and that thetridiagonal eigenproblem is an order of magnitude faster than the redution and baktransformationstages. In Setion 4.3 we fous on the tridiagonal eigensolvers showing Algorithm PMR3 ahievesthe best performane ompared to previous algorithms.4.1 Implementation Details and Test MatriesAll experiments were onduted on a luster of Linux workstations. Eah node in the luster on-sisted of a dual Intel (R) Pentium 4 Proessor (2.4 GHz) with 2 GBytes of main memory. The nodeswere onneted via a high performane network (2 Gigabit/s) from Myriom. In our experiments,only one proessor per node was enabled. The reason for using one proessor was primarily relatedto the fat that during early experiments it was observed that reliable timings were diÆult to obtainwhen both proessors were enabled. Notie that the qualitative behavior of the di�erent algorithmsand implementations is not a�eted by this deision, even if the quantitative results are.We will often refer to our proposed parallel dense eigensolver as Dense PMR3, and use PMR3to denote the tridiagonal eigensolver outlined in Figure 4; however, sometimes we just use PMR3when it is lear whether we are referring to the dense or tridiagonal eigensolver. Dense PMR3 hasbeen implemented using the PLAPACK library for Householder redution and baktransformation,while PMR3 has been implemented in C and Fortran using the MPI library for ommuniationsand LAPACK for numerial routines. As explained later, we use the dqds algorithm for the initialeigenvalue omputation (step B in Figure 4).We ompare Dense PMR3 with the SaLAPACK implementations of (a) Bisetion and InverseIteration (routine PDSYEVX) and (b) Divide & Conquer (routine PDSYEVD), and the PLAPACK im-plementation of () the QR algorithm (routine PLA VDVt). All the routines have been ompiled withthe same optimization ags enabled and linked to the same high-performane BLAS library (the so-alled GOTO BLAS whih in our experiene ahieve the highest performane on this mahine [44℄).14



All dense eigensolvers have been tested on symmetri matries of sizes ranging from 8,000 to128,000 with given eigenvalue distributions. We onsidered 4 types of eigenvalue distributions:1. UNIFORM (" to 1): �i = "+ (i� 1) � �; i = 1; 2; : : : ; nwhere � = (1� �)=(n� 1).2. GEOMETRIC (" to 1): �i = "(n�i)=(n�1); i = 1; 2; : : : ; n:3. RANDOM (" to 1): the eigenvalues are drawn from a uniform distribution on the interval[0; 1℄.4. CLUSTERED at ": �1 � �2 � � � � � �n�1 � " and �n = 1:In addition to the above \onstruted" matries, we also report timings for matries arisingin appliations. We onsidered three matries from omputational quantum hemistry of sizes 966,1687 and 2053, ourring respetively in: modeling of the biphenyl moleule, study of bulk propertiesfor the SiOSi6 moleule and solution of a non-linear Shr�odinger problem using the self onsistentHartree-Fok method. More details on these matries an be found in [5, 38℄.We also onsidered three matries (sizes 7923, 12387, 13786) that arise in frequeny responseanalyses of automobile bodies. These matries ome from a symmetri matrix penil arising from a�nite element model of order 1 million or so, going through a proess of dividing the entire strutureinto several thousand \substrutures" using nested dissetion and �nding the \lowest" eigenvetorsfor eah substruture. Projeting the matrix penil onto the substruture eigenvetor subspaeand then onverting to standard form followed by Householder redution yields the test tridiagonalmatries. Details on produing these matries an be found in [56℄.Notie that the matries for whih we report results are at least one order of magnitude largerthan the results reported in [72, 50℄.4.2 Results for the Dense ProblemWe now present performane results for omputing all eigenpairs of a dense symmetri matrixhighlighting the di�erene between the O(n3) redution and baktransformation stages and theO(n2) tridiagonal omputation of PMR3.When possible we ompare the proposed algorithm against the SaLAPACK implementationof Divide & Conquer (PDSYEVD) [72℄ sine the latter routine is the fastest among the tridiagonaleigensolvers urrently available in SaLAPACK. All matries onsidered in the following results haverandom distribution of eigenvalues. Note that neither the redution nor the baktransformationstage is a�eted by the distribution of eigenvalues in the input matrix. Comparisons with othertridiagonal eigensolvers (QR algorithm, bisetion and inverse iteration) on matries with varyingeigenvalue distributions are given in Setion 4.3.In Tables 1 and 2 we report timings for matries of sizes 8000 and 15000 respetively. The stagesof Dense PMR3 are labelled by PLAPACK or PMR3, while the stages for the routine PDSYEVD arelabelled by SaLAPACK and PDSTEDC (the tridiagonal divide & onquer routine). As mentionedin Setion 2, a major drawbak of the Divide & Conquer algorithm is its extra O(n2) memoryrequirement. As a result, there are several instanes where Dense PMR3 an be run on a partiularmatrix, but PDSTEDC annot be run; the symbol \ " in the tables indiates that the experiment ouldnot be run beause of memory onstraints.Figure 6 gives a pitorial view of the Dense PMR3 timings in Table 2. It is easy to see from the�gure that the tridiagonal stage is an order of magnitude faster than the redution and baktrans-formation stages. For PMR3, we use the fast dqds algorithm for omputing the eigenvalues with15


