
385

Automatic Derivation of Linear Algebra Algorithms
with Application to Control Theory

Paolo Bientinesi1, Sergey Kolos2, and Robert A. van de Geijn1

1 Department of Computer Sciences, The University of Texas at Austin
{pauldj,rvdg}@cs.utexas.edu

2 The Institute for Computational Engineering and Sciences, The University of Texas at Austin
skolos@mail.utexas.edu

Abstract. It is our belief that the ultimate automatic system for deriving linear
algebra libraries should be able to generate a set of algorithms starting from the
mathematical specification of the target operation only. Indeed, one should be
able to visit a website, fill in a form with information about the operation to be
performed and about the target architectures, click the SUBMIT button, and re-
ceive an optimized library routine for that operation even if the operation has not
previously been implemented. In this paper we relate recent advances towards
what is probably regarded as an unreachable dream. We discuss the steps neces-
sary to automatically obtain an algorithm starting from the mathematical abstract
description of the operation to be solved. We illustrate how these steps have been
incorporated into two prototype systems and we show the application of one the
two systems to a problem from Control Theory: The Sylvester Equation. The
output of this system is a description of an algorithm that can then be directly
translated into code via API’s that we have developed. The description can also
be passed as input to a parallel performance analyzer to obtain optimized parallel
routines [5].

1 Introduction

In a series of journal papers we have demostrated how formal derivation techniques
can be applied to linear algebra to derive provably correct families of high performance
algorithms [3, 6, 9]. In the paper Rapid Development of High-Performance Linear Al-
gebra Libraries, also in this volume [2], we describe the FLAME procedure which
returns algorithms for linear algebra operations. It is beneficial for the reader to review
that paper to better understand the following discussion.

While the procedure ensures the derived algorithm to be correct, it is the application
of the procedure itself that is error prone. It involves tedious algebraic manipulations.
As the complexity of the operation we want to implement increases, it becomes more
cumbersome to perform the procedure by hand.

We want to stress that the procedure does not introduce unnecessary elements of
confusion. Operations once deemed “for experts only” can now be tackled by un-
dergraduates, leaving more ambitious problems for the experts. Let us illustrate this
concept with a concrete example: the solution to the triangular Sylvester equation
AX + XB = C . Algorithms for solving the Sylvester equation have been known for

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 385–394, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.3 Optimize For Fast Web View: Yes Embed Thumbnails: No Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [2400 2400] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 610 dpi Compression: Yes Compression Type: ZIP Bits Per Pixel: 8 BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 1220 dpi Compression: Yes Compression Type: ZIP Bits Per Pixel: 8 BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 2400 dpi Downsampling For Images Above: 3600 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Leave Color Unchanged Intent: DefaultDevice-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: No Transfer Functions: Apply Preserve Halftone Information: NoADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: No Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: Yes ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: Yes Log DSC Warnings: No Resize Page and Center Artwork for EPS Files: Yes Preserve EPS Information From DSC: Yes Preserve OPI Comments: No Preserve Document Information From DSC: YesOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /FlateEncode /Optimize true /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Gray Gamma 2.2) /NeverEmbed [] /GrayImageDownsampleThreshold 2.03333 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages false /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth 8 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Remove /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.01667 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth 8 /ColorImageResolution 600 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages false /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 600 /ColorImageFilter /FlateEncode /PreserveHalftoneInfo false /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams true>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [2400 2400]>> setpagedevice

386 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

Step Annotated Algorithm: [D, E, F, . . .] = op(A, B, C, D, . . .)

1a {Ppre}
4 Partition

where

2 {Pinv}
3 while G do

2,3 {(Pinv) ∧ (G)}
5a Repartition

where

6 {Pbefore}
8 SU

7 {Pafter}
5b Continue with

2 {Pinv}
enddo

2,3 {(Pinv) ∧ ¬ (G)}
1b {Ppost}

Fig. 1. Worksheet for developing linear algebra algorithms

about 30 years [1]. Nonetheless new variants are still discovered with some regularity
and published in journal papers [4, 8]. The methodolody we describe in [3] has been
applied to this operation yielding a family of 16 algorithms, including the algorithms
already known as well as many undiscovered ones [9]. The only complication is that, as
part of the derivation, complex matrix expressions are introduced that require simplifi-
cation, providing an opportunity for algebra mistakes to be made by a human. One of
the variants derived in [9], did not return the correct outcome when implemented and
executed. Mistakes in simplifying expressions in order to determine the update were
only detected when the updates were rederived with the aid of one of the automated
systems described next.

2 Automatic Generation of Algorithms

In Figure 1 we show a generic “worksheet” for deriving linear algebra algorithms. The
blanks in the worksheet are filled in by following an eight step procedure, generating
algorithms for linear algebra operations. A description of the eight steps is given in the
paper Rapid Development of High-Performance Linear Algebra Libraries, also in this
volume [2]. Here we present the steps again, looking at opportunities for automation.
Step 1: Determine Ppre and Ppost. These two predicates are given as part of the spec-
ifications for the operation we want to implement; therefore they are the input to an
automated system.

Automatic Derivation of Linear Algebra Algorithms 387

Step 2: Determine Pinv. Once the operands have been partitioned and substituted into
the postcondition, with the aid of mathematical relations and simplifications, we get the
expression for the operation we want to implement as function of the exposed subma-
trices (partitions) of the input operands. We call this expression the partitioned matrix
expression (PME).

Loop invariants are obtained by selecting a subset of the operations that appear in
the PME.
Step 3: Determine Loop-Guard G. The loop invariant describes the contents of out-
put variables at different points of the program. Upon completion of the loop, the loop
invariant is true and the double lines (representing the boundaries of how far the com-
putation has gotten) can be expected to reside at the edges of the partitioned operands.
These two pieces of information, the loop invariant and the where boundaries are, can
be exploited together to automatically deduce a loop-guard. If a loop-guard cannot be
found, the selected loop invariant is labelled as infeasible and no further steps are exe-
cuted.
Step 4: Determine the Initialization. We require the initialization not to involve any
computation. It can be observed that by placing the double lines on the boundaries, the
precondition implies the loop invariant. This placement can be automated. If such a
placement cannot be found, the selected loop invariant is labelled as infeasible and no
further steps are executed.
Step 5: Determine How to Move Boundaries. How to traverse through the data is
determined by relating the state of the partitioning (after initialization) to the loop-
guard. Also, operands with a particular structure (triangular, symmetric matrices) can
only be partitioned and traversed in a way that preserves the structure, thus limiting
degrees of freedom. This determination can be automated.
Step 6: Determine Pbefore. This predicate is obtained by: 1) applying the substitution
rules dictated by the Repartion statement to the loop invariant and 2) expanding and
simplifying the expressions. Stage 1) is straightforward. Stage 2) requires symbolic
computation tools. Mathematica [11] provides a powerful environment for the required
algebraic manipulations, facilitating automation.
Step 7: Determine Pafter. Computing this predicate is like the computation of the state
Pbefore except with different substitution rules. In this case the rules are dictated by the
Continue ... with statement. Therefore automation is possible.
Step 8: Determine the Update SU . The updates are determined by a comparison of the
states Pbefore and Pafter. Automation of this step is a process that involves a great deal of
pattern matching, symbolic manipulations and requires a library of transformation rules
for matrix expressions. While we believe that automation for this step is at least partially
achievable, we feel that human intervention is desirable to supervise the process. For
this step we envision an interactive system that suggests possible updates and drives
user through the process.

3 Automated Systems

Initially, for a limited set of target operations, a fully automated system was prototyped.
This system took a description of the PME as input and returned all the possible algo-
rithms corresponding to the feasible loop invariants. This system provided the evidence

388 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

that at least for simple operations all the steps in Section 1 can be automated. The
biggest drawback of the system was that there was no easy way for a user to extend its
functionality, to include other classes of input matrices, and to deal with more complex
operations (involving the computation of the inverse, transpose, or the solution to linear
systems).

In a second effort we developed a more interactive tool that guides the user through
the derivation process. The input for this system is a loop invariant for the operation
under consideration and the output is a partially filled worksheet (see Fig. 2). We de-
signed this system aiming at modularity and generality. Strong evidence now exists that
it can be used to semi-automatically generate all algorithms for all operations to which
FLAME has been applied in the past. These include all the BLAS operations, all major
factorization algorithms, matrix inversion, reductions to condensed forms, and a large
number of operations that arise in control theory.

This semi-automated system plays an important role as part of a possible fully au-
tomated system: First, it automatically computes the predicates Pbefore and Pafter. Sec-
ond, it can express the status Pafter as a function of Pbefore, thus pointing out to the user
the updates to be computed. Finally, it can determine dependencies among the updates,
thus avoiding reduntant computations and problems with data being overwritten.

Notice that once the operation we want to implement is expressed in terms of parti-
tioned operands, it is feasible to list possible loop invariants. Not all the loop invariants
are feasible: not every loop invariant leads to an algorithm for the target operation. In or-
der to decide whether a loop invariant is feasible, some computations needs to be done.
The second prototype system can be used as part of a more complete system to test loop
invariants and determine whether they are feasible (thus producing an algorithm) or not
(thus discarding it).

4 An Example from Control Theory

We illustrate here how the semi-automated system can be used to derive, with little
human intervention, a family of algorithms to solve the triangular Sylvester equation.
The solution of such an equation is given by a matrix X that satisfies the equality
AX + XB = C , where A and B are triangular matrices. We use X = Ω(A, B, C)
to indicate that the matrix X is the solution of the Sylvester equation identified by the
matrices A, B and C. Without loss of generality, in the following we assume that both
matrices A and B are upper triangular.

As we mentioned in the previous section, the semi-automated system takes a loop
invariant as input. Loop invariants are obtained from the PME of the operation we are
solving. Partitioning the matrices A, B, C and X ,(

ATL ATR

0 ABR

)
,

(
BTL BTR

0 BBR

)
,

(
CTL CTR

CBL CBR

)
,

(
XTL XTR

XBL XBR

)
,

it is then possible to state the PME for X , solution to the triangular Sylvester equation:

(
XTL XTR

XBL XBR

)
=

Ω(ATL, BTL,

CTL − ATRXBL)

Ω(ATL, BBR,

CTR −ATRXBR −XTLBTR)

Ω(ABR, BTL, CBL)
Ω(ABR, BBR,

CBR −XBLBTR)

 .

Automatic Derivation of Linear Algebra Algorithms 389

From this expression a list of loop invariants are systematically generated by selecting
a subset of the operations to be performed. The simplest loop invariant is:(

XTL XTR

XBL XBR

)
=

(
CTL CTR

Ω(ABR, BTL, CBL) CBR

)
,

which identifies a computation of the solution matrix X in which the bottom left quad-
rant XBL contains the solution of the equation ABRXBL + XBLBTL = CBL; the
algorithm proceeds by expanding the quadrant XBL in the top-right direction, until
XBL includes the whole matrix X and therefore contains the solution (when quadrant
XBR coincides with matrix X , matrices ABR, BTL and CBL coincide with A, B and
C).

In the remainder of the paper we concentrate on a slightly more complicated loop
invariant: (

XTL XTR

XBL XBR

)
=

(
CTL − ATRXBL CTR

Ω(ABR, BTL, CBL) CBR

)
,

which corresponds to an algorithm where the quadrant XBL contains again the solution
of the equation ABRXBR + XBRBTL = CBL, and the quadrant XTL is partially
updated. Figure 2 shows the output algorithm generated by the automated system for
this loop invariant.

The crucial expressions appear in the boxes labeled “Loop invariant before the up-
dates” (LI-B4)

loop invariant before the updates �LI�B4�

��A
�
02 ��� �A

�
22 , B

�
00 , C

�
20��� � C

�
00 C

�
01 C

�
02

��A
�
12 ��� �A

�
22 , B

�
00 , C

�
20��� � C

�
10 C

�
11 C

�
12

� �A
�
22 , B

�
00 , C

�
20� C

�
21 C

�
22

and “Loop invariant after the updates” (LI-Aft).

loop invariant after the update �LI�Aft�

��A
�
01 � AFT1,0� � B40,0 ��A

�
01 � AFT1,1� � A

�
02 � AFT2,1 � B40,1 B40,2

� �A
�
11 , B

�
00 , B41,0� � �A

�
11 , B

�
11 , ��AFT1,0 �B

�
01� � A

�
12 � AFT2,1 � B41,1� B41,2

B42,0 � �A
�
22 , B

�
11 , ��AFT2,0 �B

�
01� � B42,1� B42,2

These two predicates dictate the computations to be performed in the algorithm. LI-
B4 expresses the current contents of the matrix X (i.e. the loop invariant), while LI-Aft
indicates what X needs to contain at the bottom of the loop, i.e. -after- the updates. This
is to ensure that the selected loop invariant holds at each iteration of the loop. For the
sake of readability Fig. 2 presents abbreviated versions of these predicates, and the box
“Updates” is left empty. LI-Aft presents a few visual cues to compress the otherwise
long and unreadable expressions. We provide here a full description of both predicates
and we explicitly state the updates which are encoded in LI-Aft.

390 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

Operation: sylv3(A B C)

�Precondition: ...�

Partition

A �
�

�

				
A
�
TL A

�
TR

0 A
�
BR

�

���� B �
�

�

				
B
�
TL B

�
TR

0 B
�
BR

�

���� C �
�

�

					

C
�
TL C

�
TR

C
�
BL C

�
BR

�

�����

where ...

loop invariant:

�

�

						

��A
�
TR ��� �A

�
BR , B

�
TL , C

�
BL��� � C

�
TL C

�
TR

� �A
�
BR , B

�
TL , C

�
BL� C

�
BR

�

������

While ...

Repartition

�

�

				
A
�
TL A

�
TR

0 A
�
BR

�

���� �

�

�

										

�

�

				
A
�
00 A

�
01

0 A
�
11

�

����
�

�

				
A
�
02

A
�
12

�

����

0 A
�
22

�

����������
,
�

�

				
B
�
TL B

�
TR

0 B
�
BR

�

���� �

�

�

											

B
�
00 B

�
01 , B

�
02�

0
�

�

				
B
�
11 B

�
12

0 B
�
22

�

����

�

�����������

,
�

�

					

C
�
TL C

�
TR

C
�
BL C

�
BR

�

����� �

�

�

												

�

�

					

C
�
00

C
�
10

�

�����

�

�

					

C
�
20

loop invariant before the updates �LI�B4�

��A
�
02 ��� �A

�
22 , B

�
00 , C

�
20��� � C

�
00 C

�
01 C

�
02

��A
�
12 ��� �A

�
22 , B

�
00 , C

�
20��� � C

�
10 C

�
11 C

�
12

� �A
�
22 , B

�
00 , C

�
20� C

�
21 C

�
22

UPDATES...

loop invariant after the update �LI�Aft�

��A
�
01 � AFT1,0� � B40,0 ��A

�
01 � AFT1,1� � A

�
02 � AFT2,1 � B40,1 B40,2

� �A
�
11 , B

�
00 , B41,0� � �A

�
11 , B

�
11 , ��AFT1,0 �B

�
01� � A

�
12 � AFT2,1 � B41,1� B41,2

B42,0 � �A
�
22 , B

�
11 , ��AFT2,0 �B

�
01� � B42,1� B42,2

Continue with

�

�

				
A
�
TL A

�
TR

0 A
�
BR

�

���� �

�

�

											

A
�
00 A

�
01 , A

�
02�

0
�

�

				
A
�
11 A

�
12

0 A
�
22

�

����

�

�����������

,
�

�

				
B
�
TL B

�
TR

0 B
�
BR

�

���� �

�

�

										

�

�

				
B
�
00 B

�
01

0 B
�
11

�

����
�

�

				
B
�
02

B
�
12

�

����

0 B
�
22

�

����������
,
�

�

					

C
�
TL C

�
TR

C
�
BL C

�
BR

�

����� �

�

�

												

C
�
00 , C

�
01

�

�

					

C
�
10 C

�
11

C
�
20 C

�
21

end while

Fig. 2. Algorithm returned by the semi-automatic system

Automatic Derivation of Linear Algebra Algorithms 391

The complete expression for the predicate LI-B4 is:

X00 X01 X02

X10 X11 X12

X20 X21 X22

 =

C00 − A02X20 C01 C02

C10 − A12X20 C11 C12

Ω(A22, B00, C20) C21 C22

 ,

and we refer to the (i, j) quadrant of the right-hand side as B4ij . So for instance B420

corresponds to the expression Ω(A22, B00, C20).
The complete expression for the predicate LI-Aft is daunting:

X00 X01 X02

X10 X11 X12

X20 X21 X22

 =

C00 − A02Ω(A22, B00, C20)−
A01Ω

(
A11, B00,
C10 − A12Ω(A22, B00, C20)

)
C01−
A01Ω

(
A11, B11, C11−

Ω
(
A11, B00, C10 − A12Ω(A22, B00, C20)

)
B01−

A12Ω
(
A22, B11, C21 − Ω(A22, B00, C20)B01

))−
A02Ω

(
A22, B11, C21 − Ω(A22, B00, C20)B01

)
C02

Ω
(
A11, B00,
C10 − A12Ω(A22 , B00, C20)

) Ω
(

A11, B11, C11−
Ω
(
A11, B00, C10 − A12Ω(A22, B00, C20)

)
B01−

A12Ω
(
A22, B11, C21 − Ω(A22, B00, C20)B01

)) C12

Ω(A22, B00, C20) Ω
(
A22, B11, C21 − Ω(A22 , B00, C20)B01

)
C22

 ,

and the quadrants in the right-hand side of LI-Aft are identified by

Aft00 Aft01 Aft02

Aft10 Aft11 Aft12

Aft20 Aft21 Aft22

.

Once the predicates LI-B4 and LI-Aft are known, we are one step away to have a
complete algorithm. The updates SU remain to be computed (Step 8 in Section 2). SU

are statements to be executed in a state in which the predicate LI-B4 holds and they
ensure that upon termination the predicate LI-Aft holds.

In this example, given the complexity of the expressions, such a task can be chal-
lenging even for experts, and is definitely prone to errors. A (semi-)automated system
is useful, if not indispensable. Our system has a number of features to make Step 8
(discovering the updates SU) as simple as possible:

– The expressions in LI-Aft are scanned to detect quantities contained in LI-B4. Such
quantities are currently stored and therefore available to be used as operands; they
are identified by boxed grey highlighting. For example, recognizing that the expres-
sion Ω(A22, B00, C20) is contained in the quadrant B420, the system would always

display it as: Ω(A22, B00, C20)
– A quantity currently available (therefore higlighted) can be replaced by a label

indicating the quadrant that contains it. This feature helps to shorten complicated
expressions. As an example, one instance of Ω(A22, B00, C20) would be replaced
by B420 . Notice that Ω(A22, B00, C20) appears in the quadrant Aft00, as part of

392 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

the expression C00−A02Ω(A22, B00, C20); in this case the instance is not replaced
by B420 because the entire (and more complex) expression is recognized to appear

in B400. Therefore, C00 − A02Ω(A22, B00, C20) is displayed as B400 .
– Dependencies among quadrants are investigated. If the same computation appears

in two or more quadrants, the system imposes an ordering to avoid redundant com-
putations. Example: the quadrant Aft00, after the replacements explained in the
former two items, would look like B400 − A01Ω

(
A11, B00, C10 − A12 B420)

)
,

and recognizing that the quantity Ω
(
A11, B00, C10−A12 B420)

)
is what the quad-

rant Aft10 has to contain at the end of the computation, the system leaves such an
expression unchanged in quadrant Aft10 and instead replaces it in quadrant Aft00,
which would then be displayed as B400 − A01 Aft10 .

The repeated application of all these steps yields a readable expression for LI-Aft, as
shown in Figure 2. The updates are encoded in LI-Aft and can be made explicit by
applying the following simple rules:

– The assignments are given by the componentwise assignment

X00 X01 X02

X10 X11 X12

X20 X21 X22

:=

Aft00 Aft01 Aft02

Aft10 Aft11 Aft12

Aft20 Aft21 Aft22

.

In our example it results:
X00 X01 X02

X10 X11 X12

X20 X21 X22

:=

B400 − A01 Aft10 B401 - A01 Aft11 - A02 Aft21 B402

Ω(A11, B00, B410) Ω(A11, B11, B411 − Aft10 B01 − A12 Aft21) B412

B420 Ω(A22, B11, B421 − Aft20 B01) B422

– Every assignment of the form Xij = B4ij corresponds to a no-operation.
– Every assignment whose right-hand side presents one or more operands of the form

Aftij has to be executed after the quadrant (i, j) has been computed. Once the

expression in quadrant (i, j) has been computed, Aftij has to be rewritten as Xij .
– Assignments with a right-hand side containing only non-highlighted expressions

and/or operands of the form B4ij can be computed immediately.

A valid set of updates for the current example is given by:

X10 := Ω(A11, B00, B410)

X00 := B400 − A01X10

X21 := Ω(A22, B11, B421 − X20B01)

X11 := Ω(A11, B11, B411 − X10B01 − A12X21)

X01 := B401 − A01X11 − A02X21.

Automatic Derivation of Linear Algebra Algorithms 393

The final algorithm is:

Partition A =

(
ATL ATR

0 ABR

)
, B =

(
BTL BTR

0 BBR

)
, C =

(
CTL CTR

CBL CBR

)

where ATL is 0× 0, BBR is 0× 0, CBL is 0× 0

while ¬SameSize(C, CBL) do

Determine block size bm and bn

Repartition(
ATL ATR

0 ABR

)
→

A00 A01 A02

0 A11 A12

0 0 A22

 ,

(
BTL BTR

0 BBR

)
→

B00 B01 B02

0 B11 B12

0 0 B22

(
CTL CTR

CBL CBR

)
→

C00 C01 C02

C10 C11 C12

C20 C21 C22

where A11 is bm × bm, B11 is bn × bn, C11 is bm × bn

C10 := Ω(A11, B00, C10)

C00 := C00 − A01C10

C21 := Ω(A22, B11, C21 − C20B01)

C11 := Ω(A11, B11, C11 − C10B01 − A12C21)

C01 := C01 − A01X11 − A02X21

Continue with(
ATL ATR

0 ABR

)
←

A00 A01 A02

0 A11 A12

0 0 A22

 ,

(
BTL BTR

0 BBR

)
←

B00 B01 B02

0 B11 B12

0 0 B22

(
CTL CTR

CBL CBR

)
←

C00 C01 C02

C10 C11 C12

C20 C21 C22

enddo

which appears in [9] as Algorithm C2 in Table II.

5 Conclusion

In an effort to demonstrate that automatic derivation of linear algebra algorithm is
achievable, we developed two (semi-)automated systems. The first system is fully auto-
mated but with very limited scope. It showed that at least for simple operations all steps
of the FLAME procedure can be automated. The second system is more interactive and
we believe as general as the FLAME approach itself.

The described system has allowed us to automatically generate algorithms for most
of the equations in a recent Ph.D. dissertation [7]. In that disseration, a number of im-
portant and challenging linear algebra problems arising in control theory are studied.

394 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

For most of these problems, one algorithm and implementation is offered. By contrast,
with the aid of our automated systems we were able to derive whole families of algo-
rithms and their implementations (in Matlab Mscript as well as in C) collectively in a
matter of hours. The implementations yielded correct answers for the first and all in-
puts with which they were tested. Moreover, parallel implementations can be just as
easily created with the FLAME-like extension of our Parallel Linear Algebra Package
(PLAPACK) [10].

Additional Information: For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/

Acknowledgments

This research was partially supported by NSF grants ACI-0305163 and CCF-0342369.

References

1. R. H. Bartels and G. W. Stewart. Solution of the matrix equation AX + XB = C. Commun.
ACM, 15(9):820–826, 1972.

2. Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Margaret E. My-
ers, Enrique S. Quintana-Orti, and Robert A. van de Geijn. Rapid development of high-
performance linear algebra libraries. In Proceedings of PARA’04 State-of-the-Art in Scientific
Computing, June 20-23 2004. To appear.

3. Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and
Robert A. van de Geijn. The science of deriving dense linear algebra algorithms. ACM Trans-
actions on Mathematical Software, 31(1), March 2005.

4. Bo Kågström and Peter Poromaa. Lapack-style algorithms and software for solving the gen-
eralized Sylvester equation and estimating the separation between regular matrix pairs. ACM
Transactions on Mathematical Software, 22(1):78–103, 1996.

5. John Gunnels. A Systematic Approach to the Design and Analysis of Parallel Dense Linear
Algebra Algorithms. PhD thesis, The University of Texas at Austin, Department of Computer
Sciences. Technical Report CS-TR-01-44, December 2001.

6. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Transactions on Mathematical Software,
27(4):422–455, December 2001.

7. Isak Jonsson. Recursive Blocked Algorithms, Data Structures, and High-Performance Soft-
ware for Solving Linear Systems and Matrix Equations. PhD thesis, Dept. Computing Sci-
ence, Umeå University, SE-901 87, Sweden., 2003.

8. Isak Jonsson and Bo Kågström. Recursive blocked algorithms for solving triangular
systems—part i: one-sided and coupled Sylvester-type matrix equations. ACM Transactions
on Mathematical Software, 28(4):392–415, 2002.

9. Enrique S. Quintana-Ortı́ and Robert A. van de Geijn. Formal derivation of algorithms: The
triangular Sylvester equation. TOMS, 29(2):218–243, June 2003.

10. Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. MIT Press ’97.
11. Stephen Wolfram. The Mathematica Book: 3rd Edition. Cambridge University Press, 1996.

	Automatic Derivation of Linear Algebra Algorithms with Application to Control Theory
	1 Introduction
	2 Automatic Generation of Algorithms
	3 Automated Systems
	4 An Example from Control Theory
	5 Conclusion
	References

