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Abstract

We present a novel strategy for sparse direct factorizations that is geared towards the matrices
that arise from hp-adaptive Finite Element Methods. In that context, a sequence of linear
systems derived by successive local refinement of the problem domain needs to be solved.
Thus, there is an opportunity for a factorization strategy that proceeds by updating (and
possibly downdating) the factorization. Our scheme stores the matrix as unassembled element
matrices, hierarchically ordered to mirror the refinement history of the domain. The
factorization of such an ‘unassembled hyper-matrix’ proceeds in terms of element matrices,
only assembling nodes when they need to be eliminated. The main benefits are efficiency
from the fact that only updates to the factorization are made, high scalar efficiency since the
factorization process uses dense matrices throughout, and a workflow that integrates naturally
with the application. We present tests on 2D problems that bear out the large savings possible
with hyper-matrix factorizations.
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1 Introduction
Many scientific applications spend a large amount of time in the solution of linear systems,
often performed by sparse direct solvers. We argue that traditional matrix storage schemes,
whether dense or sparse, are a bottleneck, limiting the potential efficiency of the solvers. We
propose a new data structure, the Unassembled Hyper-Matrix (UHM). This data structure
preserves useful information that can be provided by the application, and that can make the
solver, as well as various other operations on the matrix, more efficient. In particular, we will
use this storage format to implement an efficient sparse direct solver for hp-adaptive1 Finite
Element Method (FEM) problems.

The improvement in efficiency will come from rethinking the conventional approach where
sparse direct solvers are used as a black-box, where a linear system is passed as input and a
solution is returned as output. Much progress has been made on making such a black-box
procedure as efficient as possible. However, traditional solvers are intrinsically handicapped
by ignoring domain information. Furthermore, what is not exploited by such solvers is the fact
that once a solution for a given discretized problem has been computed, modifications to this
existing discretization are made. This means that what should be the real measure of
efficiency is how fast a solution of a somewhat modified (refined) problem can be computed
given a factorization of the current problem (discretization). We argue that this formulation of
the problem leads to dramatically different data structures and factorization approaches, on
which the existing literature on sparse direct solvers has little bearing.

In this introduction we sketch the demands on a matrix storage scheme in a FEM application,
and show how traditional linear algebra software insufficiently addresses these demands. In
the rest of this paper we will then show how the UHM scheme overcomes these limitations.
We limit ourselves to symmetric positive-definite (SPD) problems.

1.1 The workflow of advanced FEM solvers

Adaptive discretization techniques are recognized to be the key to the efficient and accurate
solution of complicated FEM problems, for instance, problems with singularities around
re-entrant corners. (We will give a brief overview of adaptive and in particular hp-adaptive
FEM in Section 2.)

A typical hp-adaptive FE computation proceeds as follows.
1. An initial discretization is generated to represent the given geometry and material data.
2. The global stiffness matrix and load vector are computed, stored either in an assembled

sparse format or as unassembled element contributions.

1. The designation ‘hp’ refers to the simultaneous refinement of the space discretization h, and the polynomial
degree p.
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3. The sparse linear system is solved via a standard solver package. Here the choice of
package depends on whether the solution is computed via a direct or iterative solver.
For sparse direct solution, widely used packages include MUMPS [1, 30], NASTRAN
(various commercial versions), SuperLU [12, 13, 26], and UMFPACK [8, 37]. For
iterative solution current favorites include PETSc [2, 3] and Trilinos [20].

4. Based on a posteriori error estimates, it is determined whether to break or merge
elements (h-refinement or unrefinement) and/or whether to increase (or decrease) the
order of approximation p. These decisions are made locally, i.e., on an
element-by-element basis, though refinement of one element may induce surrounding
elements to be refined too, in some circumstances.

5. Steps 2–4 are repeated until a stopping criterion is met.

1.2 Shortcomings of the existing approach

There are two essential limitations with the traditional approach to FEM solvers outlined
above.

One obvious problem is in Step 3, where the solver has no way of knowing whether it was
invoked before, and what the relation is between its input data in successive invocations. Since
successive linear systems are clearly related, considerable opportunity for efficiency is left
unexplored.

There is a further problem in that, by formulating the linear system as a matrix equation,
much information about the application is lost. This information is then laboriously, and
imperfectly, reconstructed by the graph partitioners used in sparse solver packages.

These shortcomings of the matrix-based interface are not purely academic. In Section 2.3 we
will show anecdotal evidence that fairly simple manual preprocessing of the linear systems
can significantly improve the efficiency of a standard direct solver. Clearly, certain knowledge
of the linear system that is available to a human can only imperfectly be discovered by a
black-box solver. Our improved data structure and solver preserve and exploit such
knowledge.

1.2.1 Inflexibility in an application context

Current linear algebra software has little provision for the reality that often a sequence of
related linear systems is to be solved. Even a slight change to the matrix forces a solver
package to recomputate the factorization from scratch, with no information preserved.

However, in the setting of adaptive FEM solvers, the next linear system is often derived from
the previous one by refining part of the physical domain, either in space, or in the order of the
FEM basis functions. Traditional matrix storage is not flexible enough to accomodate
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insertion of matrix rows easily. Instead, a whole new matrix needs to be allocated, with the old
data copied over or even recomputed, at considerable overhead. Furthermore, solver packages
cannot preserve parts of a factorization that are not affected by such a refinement. Our UHM
storage scheme remedies both shortcomings.

While it can be argued that the use of a high-quality graph partitioner favors the current
approach to successive substructuring for a single solution, storing the stiffness matrix as an
UHM conformal to the hierarchy in the domain has the potential for greatly reducing the cost
of subsequent solves with refined data. There is some memory overhead associated with
Element-By-Element (EBE) codes: anecdotal evidence suggests 30% for matrix storage in a
2D case with low polynomial degree [6, 5], and possibly more with higher degrees, see table 1
in [32]. However, this is outweighed by advantages in performance and flexibility. Also, the
overhead from EBE storage for the factorization is considerably less.

1.2.2 Loss of application information

The representation of a matrix as a two-dimensional array of numbers, whether stored densely
or using a sparse storage format, represents a bottleneck between the application and the
solver library. Relevant application knowledge is lost, such as geometry and other properties
of the domain, various facts about the nature of the mesh, and any history of refinement that
led to the current system of equations. Much of the development of sparse direct solvers goes
into reconstructing, algebraically, this information.

1.3 Relation to existing factorizations

Our factorization scheme contains some novel elements, foremost the fact that we retain the
refinement history of the Finite Element (FE) grid. Of course, there are various connections to
the existing literature. In this section we highlight a few. (For a recent overview of the field of
sparse direct factorizations, see the book by Davis [9].)

1.3.1 Substructuring

Techniques of bisection and recursive bisection have long been a successful strategy, although
not the only one, for deriving direct solvers. Initial research on solvers on a regular domain
showed considerable savings in storage for two-dimensional problems [16, 17]. These results
have been extented to arbitrary finite element meshes [27, 28], including a proof that in the
three-dimensional case no order improvement exists as in the 2D case: in 2D, the naı̈ve space
bound of O(N3/2) can be improved to O(N logN); in 3D, no reduction of the naı̈ve O(N5/3)
bound is known.

More recently, spectral bisection techniques have been explored as a way of deriving multiple
partitioning of a set of variables [15, 18, 19, 22, 34]. Another direction in graph partitioning is
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that of partitioning methods based on space-filling curves [31, 33]. These methods have been
used primarily for partitioning elements in work related to iterative solvers. Again, such
techniques are based on algebraic properties of the matrix graph, and can only imperfectly
reconstruct any division that is natural to the problem.

1.3.2 Supernodes

With the realization that Level 3 Basic Linear Algebra Subprograms (BLAS [24, 7])
operations are the path to high performance in linear algebra codes (see for instance [14, 4]),
researchers of sparse direct solvers have devoted considerable effort to finding ‘supernodes’:
blocks of rows or columns that have similar sparsity patterns, and can thus be tackled with
dense block algorithms [36, 25] when combined. However, this block structure derives from
the elements in a Finite Element mesh, so we conclude that the linear algebra software aims at
reconstructing information that was present in the application and was lost in the traditional
solver interface.

It is clear that a matrix representation that preserves information about the operator and the
discretization has a potential advantage over traditional storage formats.

1.3.3 Hierarchical methods

The idea of using a tree structure in the factorization of a matrix has occurred to several
authors and in several contexts. However, this is typically done in an a posteriori fashion,
where the matrix or the domain is recursively partitioned, giving both parallelism and
favourable fill-in properties. We mention the nested dissection method of George and
Liu [17], which recursively partitions a domain to reduce fill-in, and the hypermatrix method
of Herrero and Navarro [21], which partitions a matrix for increased performance. Our
method differs from these in that we do not take a completed matrix as our starting point, but
rather derive the tree structure from the originating process of the matrix.

1.4 Outline

In the remainder of this paper we briefly introduce the hp-adaptive FEM, which gives us our
application context. We then present the UHM factorization and outline certain practical
issues and future research directions.

2 Finite Element background
In this section we give a brief introduction to the hp-adaptive FEM, its practical importance,
and the demands it puts on solvers. For a full treatment of the hp-adaptive FEM, see the book
by Demkowicz [11].
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2.1 hp-Adaptive FEM

The FEM is a method for discretizing and obtaining an approximate solution to partial
differential equations (PDE) arising from a broad spectrum of physical and engineering
applications. In FEMs, the approximate solution is represented as a piecewise polynomial
function. Of obvious importance is the estimation and reduction of the corresponding
discretization error.

The most classical method for reducing the error in a discretization is the h-method, where
elements are broken, either uniformly or in an adaptive way, to decrease the element size h.
The polynomial order of approximation p is uniform and fixed (usually quite low: p = 2,3 at
most). In the p-method, convergence is achieved by increasing the order of approximation p,
either uniformly or in an adaptive way, while the element size h is fixed. hp-methods combine
these two approaches, allowing for local combinations of h-refinement and p-enrichment [35].

In many interesting physical applications, adaptive methods are preferred because the solution
is smooth throughout most of the computational domain. Singularities arise only at a few
localized features such as re-entrant (non-convex) edges and vertices, or material interfaces.
For such problems, the separate h or p-methods only converge algebraically with respect to
the total number of degrees of freedom N (whereas the p-method converges exponentially for
a globally smooth solution). The combined hp-method essentially isolates the effect of
singularities through local h-refinement and uses p-enrichment where the solution is smooth.
With an appropriate combination, the hp-method can deliver exponential convergence even
for problems with singularities.

2.2 Use of sparse direct solvers in hp-adaptive FEM

While hp-methods are capable of delivering a given accuracy with a minimal number of
degrees of freedom, they suffer a considerable setback in terms of the complexity of the
implementation. Over the past 20 years research has mainly focused, not on the efficiency of
the implementations, but on controlling this complexity. A significant advance in this
direction was the introduction of a node-based, hierarchical data structure in the code
3Dhp90 [10]. In this data structure, successive h-refinements are supported by growing
so-called “refinement trees” out of a given initial mesh. When a (parent) node is broken,
connectivities from parent to child (and vice versa) are maintained. The current mesh consists
of the leaves of this data structure and element-to-node connectivities are reconstructed using
the refinement history. Traditional sparse direct solvers make no explicit use of this hierarchy.

2.3 Evidence for our case

In tests performed in [23], MUMPS was used as a solver, both by itself, and preceded by a
stage of manually executed Static Condensation, which essentially corresponds to the manual
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elimination of supernodes. In Figure 1 we compare the time and space complexity of a code
exclusively using MUMPS to one that explicitly performs static elimination, and only uses
MUMPS for the quotient graph that is so obtained.

The graphs show that using static condensation leads to a 50% reduction in memory and
20–40% reduction in runtime, demonstrating the limitations of a general purpose sparse
solver, and in particular the limitations of METIS in finding the optimal ordering. In our
UHM library, this static condensation step would be executed in the process of eliminating
interior variables. We note that these are automatically identified, without the need for any
graph analysis.

2.4 A dual grid hierarchy

Our approach consists in determining an optimal refinement strategy for a given coarse grid
by examining the solution on a corresponding fine grid obtained by a global hp-refinement.
From the fine grid we then conclude the proper locations for doing local refinement on the
coarse grid. This process is illustrated in Figure 2.

At first, this seems to imply multiple applications of global refinement, which would
invalidate our approach of local updates. However, a more detailed consideration of the grid
hierarchy shows that we are dealing with two sequences, one of coarse grids and one of fine
grids, and in each sequence the grids are derived by local refinement of their predecessors.
This process is illustrated in a simplified manner in Figure 3.

3 The factorization scheme
Above, we have sketched how the hp-adaptive FEM gives a refinement tree of elements,
where the actual elements making up the FE matrix are the leaves of the tree. In most
factorizations schemes, the key to space and time efficiency consists in finding the proper
elimination ordering. The underlying observation for our method is that a (partial) ordering,
induced by the refinement tree, is directly available.

In its most stark statement, the whole factorization is based on the recursion where children of
one parent are to be eliminated, forming a Schur complement matrix on the parent element.

Intuitively, the reader will see that refinement leads to new subtrees, and the factorization only
needs to be updated by the factorization of that subtree and its parents. We will argue this
point in detail below. We will briefly touch on the matter of the space and time complexity in
Section 6.1.

We will now explain our factorization by showing in detail the mechanism in a
one-dimensional example. We will then address how the mechanism extends to higher
dimensions.
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Figure 1: Memory and time savings from Static Condensation before the application of the
MUMPS solver.
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Figure 2: Sequence of coarse and fine grids.
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Coarse 0

Coarse 1

Coarse 2

Fine 0

Fine 1

Fine 2

Figure 3: Derivation of coarse and fine grids through local refinement.
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3.1 One-dimensional example

We can convey the essence of our factorization scheme by considering a one-dimensional
example. This will give a slightly simplified situation from the general two or
three-dimensional case: we will address the differences in the next section.

Consider a domain that consists of two elements obtained by refining a single top level
element. Each element has three (groups of) unknowns: vertex functions on its left and right
vertex, and edge functions on its interior. For the whole domain this gives five (blocks of)
unknowns, since one vertex is shared by the two elements.

×2 =
Algebraically this manifests itself as the FE matrix being a sum of two 3×3 element
matrices:
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a21 a22 a23
a31 a32 a33 a34 a35
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respectively.
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After eliminating the interiors this way, we wind up with a 3×3 (block) matrix, that is, a
matrix with the same structure as a matrix on the original unrefined top element. We now
recursively eliminate its interior, giving again a 2×2 matrix; if this element itself was
obtained through refinement, we can now continue the recursive factorization.

If we make this argument recursive, it becomes clear that updates to one element (in our case
further refinement) do not influence the factorization of the other element. In particular, the
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factorization of whole subtrees can be preserved if other subtrees (that are not contained in it)
are altered. When an updated factorization of one element is combined with the preserved
factorization of its sibling (or siblings, in the more general case), their non-interior nodes are
combined, and have to be re-eliminated. We note that in hp-adaptive FE the interior typically
has the highest polynomial degree, making the re-elimination of vertices (and edges or faces
in the general case) relatively inexpensive.

3.2 Extension to higher dimensions

The above discussion showed how in one space dimension the hyper-matrix ordering leads to
a particularly simple factorization scheme. In particular, if an element on level � gets divided
into elements on level �+1, the factorization of one sibling is unaffected by changes (such as
further refinement) in other siblings.

In higher dimensions certain complications arise which we will briefly sketch in this section.
In spite of this, the basic conclusion still holds that large amounts of work can be saved over a
full factorization of the updated matrix.

To explain the problem in higher dimensions, consider two steps of uniform refinement:

Applying the factorization scheme of the one-dimensional example, we would now start by
eliminating all level 2 nodes that are not on level 1. However, this is not as simple in higher
dimensions as in 1D. In one space dimension, nodes that need to be assembled (such as the
middle node in the example) have a common parent one level up. As seen in Figure 4, in
higher dimensional problems certain nodes (the middle node in this example) will have a
parent two levels up, and it can be seen that nodes can have a ‘least common parent’ an
arbitrary number of levels up. This means that their assembly on the current level would
violate the recursive formulation of the factorization, so instead we carry some unassembled
nodes up to the higher level. As a result, after one elimination step, at level 1 we end up with
slightly more nodes than we would have had without the refinement step.

In eliminating the level 1 refinement, we now assemble and eliminate the level 1 nodes that do
not exist on level 0, but also the partially assembled level 2 nodes that were carried upward.

By contrast, in one space dimension, we could have eliminated the level 2 nodes entirely by
operations on level 1, leaving us with an element matrix on level 1 with exactly the same
structure as if the refinement to level 2 had never happened.
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Figure 4: Node assembly process in two space dimensions
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4 Library design
The UHM library offers two Application Programmer Interface (API)s: one for the end user,
and one for the FE library writer.
• The FE library writer would use the UHM library to define a collection of elements and

refinement schemes.
• The end-user would instantiate elements, indicating their connectivity, and would

specify which elements get refined using which refinement scheme.
In both cases, this interface gives its users a simple way to handle very complicated data
structures. (Note that at present we have only a prototype library implemented; any details
below are solely to illustrate the design principles.)

4.1 APIs

We first show the FE library API, which is used to define refinement schemes. To this
purpose, the library writer has lower level tools that relate the constituent vertices, edges, etc.
of a parent element to those of its children under refinement.

For instance, to indicate that an edge is broken into edges of the children with a joining node,
we define dividers:
ierr = CreateDivider(&edge);
ierr = DividerSetName("break_edge", edge);
ierr = DividerSetScheme("edge_0,vertex_1,edge_0", edge);

Such dividers are then taken together to form a refinement scheme:
ierr = CreateRefinement(&hor);
ierr = RefinementSetName("horizontal", hor);
ierr = RefinementAddBreaknode(6, edge, hor);
ierr = RefinementAddBreaknode(8, edge, hor);
ierr = RefinementAddBreaknode(9, interior_oneway, hor);

The end-user only has access to nodes and to refinement schemes to apply to them:
ierr = ElementGetChildByChildnum(top, 1, &elt);
ierr = ElementRefineElement(hor, elt);

4.2 Initial mesh

Our code progresses fully recursively if the domain is derived through the refinement of a
single element. In practice this will not be the case: there will be an initial mesh that fits the
geometry of the object being modeled. We handle this initial mesh by describing it as the
result of refinement of a single virtual top element. This refinement will be somewhat
laborious to specify, but the instructions can be generated automatically from the FE
specification of the initial mesh.
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4.3 Implementation

The main design decision in the UHM library concerns where the mesh connectivity and
relations (both hierarchical and horizontal) between nodes and elements are stored. It would,
for instance, be possible to derive and store the information regarding node connectivity from
the refinement scheme. This has a few disadvantages.

Firstly, it leads to a complicated solver code, with overlapping functionality with the FE code.
Secondly, it prevents the solver from working with FE codes that use different refinement
scheme. Third is that UHM should provide the objects which correspond to all kinds of
existing FE’s and their refinement schemes. Furthermore, a refinement scheme is a user
defined object, and no library can support all the different needs from the FE world.

For this reason, in its current incarnation, the UHM library maintains only the element
hierarchy and a global node numbering. This is sufficient information to determine which
nodes can be eliminated on a level, and which need to be carried up to higher levels. The
global numbering also allows finding neighbouring elements in order to merge nodes, without
having this connectivity information stored explicitly.

5 Numerical Experiments

We have implemented an UHM solver, and interfaced it to the hp-adaptive FEM code 3Dhp90

written by Dr Demkowicz’s group [11]. In this section we present comparisons against
MUMPS 4.8.4 [30] running in sequential mode. METIS 4.0 [29] was used for the internal
ordering of the MUMPS solver.

5.1 Laplace problem in 2D L-shape domain

Our first example is the Laplace equation on the L-shaped domain [11]. A manufactured
solution, which has a singularity at the reentrant corner, was used in order to impose
Neumann boundary condition. Performance was measured on the grids generated by two
different strategies. One is a regular mesh created by uniform refinements. The other is an
irregular mesh adaptively refined from the initial mesh.

5.1.1 Performance comparison on regular mesh generated by uniform refinements

Figure 6 shows the solution of a regularly refined grid on an L-shaped domain. Since all finite
elements were created by subdividing of parent element into 4 children elements, the
elimination ordering of the UHM factorization is very similar to one of the nested dissection
method.
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−∆u = 0 in Ω
u = 0 on ΓD

∂u

∂n
= ∂u

exact

∂n
on ΓN

u
exact = r

2/3 sin((2θ+π)/3)

Figure 5: The Laplace equation on the L-shaped domain
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The graphs in Figure 7 compare the solution time (measured by wall clock time) and memory
usage relative to MUMPS, as a function of the polynomial order p. We observe that UHM
performance improves as the order p increases, since it is fully based on dense matrix
operations. Also, UHM has approximately half the memory demands of MUMPS. This can
probably be attributed to the fact that, storing dense element matrices, we need far less
indexing stored than MUMPS.

5.1.2 Performance comparison on irregular mesh generated by h-adaptive refinements

In the next example, it is assumed that problem domain is initially discretized with a moderate
number of finite elements. Since the problem has a singularity at the reentrant corner, the
hp-adaptive algorithm will refine the finite elements around the corner. (For this example, we
only consider h-refinement, and use a constant p-order.) Now a large part of the UHM
factorization can be reused when a next refinement level is introduced.

The graphs in Figure 9 show how the updating process of the UHM factorization leads to
substantial savings in run time. After UHM and MUMPS solve the problem on a initial mesh,
UHM reuses parts of the factorization on the previous grid when it solves new system
obtained by the local refinements. This feature of UHM save about 75 percents in runtime,
while MUMPS solves the new system from scratch. There is some memory overhead in UHM
from storing all Schur complements at the intermediate steps. If necessary, this overhead
could be removed by storing the Schur complements on the external memory (out-of-core).

If we compare the slopes of the lines in Figure 9, we see that UHM at some point may become
more expensive than MUMPS. The reason for this is that the elimination ordering is statically
determined by the refinement history, which is the feature that allows us to reuse parts of the
factorization. However, this elimination ordering may not be optimal, and in fact in the case of
refinement to a re-entrant corner it is not: the UHM ordering gives a similar complexity to
nested dissection, but an ordering based on level sets (corresponding to refinement levels) has
a lower complexity.

As a consequence, the UHM ordering, in certain cases, produces more fill-in than MUMPS in
a mesh obtained through adaptive refinements. The performance of an updating factorization
is then dependent on the problem, according to how much of the factorization is being reused,
and how much local refinements on finite elements affect the complexity of UHM. We are
researching a strategy for maintaining at least parity with MUMPS, even in these cases.

6 Discussion
Above, we have outlined the basic ideas of our novel factorization scheme for linear systems
arising in hp-adaptive FEM problems. In that context, our scheme offers the following
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advantages over existing factorizations.
Workflow integration. We use the structure of the application directly in determining the

flow of the factorization. This should lead to a more natural integration of the solver in
the physics code; see Section 6.4. Moreover, this integration has great advantages for
the solver itself.

Elimination ordering. Unlike in classical factorizations, our scheme does not require us to
find an elimination ordering, since we inherit it from the refinement history. This
ordering leads to great savings in the adaptive context, and there are indications that
even on a single system it can be efficient; see Section 6.1 below. In other
circumstances (such as refinement around a reentrant corner) it is not optimal, and we
are devising a general graph reordering mechanism both to achieve competitiveness in
the single-system case, and to maintain our savings in the adaptive case.

Cliques and superblocks. Traditional factorizations expend considerable energy in
identifying cliques in the matrix graph or equivalently finding superblocks in the matrix.
We obtain this information for free: the superblocks derive from the element matrices
which are dense. Thus, high scalar efficiency of our scheme will be guaranteed.

Integration in an adaptive context. As we have indicated above, our method will lead to
reuse of large parts of the factorization in the context of adaptively constructed
domains. This is yet another outcome of our use of the refinement history as
elimination ordering.

In the remainder of this section we will sketch a number of practical issues that will be the
topic of future research.

6.1 Complexity

Our factorization, especially when applied to the uniform refinement of a Cartesian domain,
has certain elements in common with nested dissection [17, 27].

Consider a uniform refinement of Ω = (0,1)2 by � levels, that is, there will be n = 2� points
per side, giving a matrix of size N = n

2. We observe that a node can only be eliminated if it
can be fully assembled on the current level. This means that nodes that are part of an edge that
was introduce at an earlier level, have to be carried up to that level before they can be
eliminated. This means that at each level, the element edges carry an ‘imprint’ of all lower
levels. In particular, at level �−k (where k ≤ �) we have 2�−k grid lines with 2� nodes each. At
the highest level k = � this leaves us with a total of 2� nodes, which are most likely fully
connected. In summary, as in the case of nested dissection, we are left with a dense matrix of
size

√
N.

In the case of irregular refinement, we wind up with a system of the size of the number of
nodes introduced along it.
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6.2 Pivoting

Our discussion so far has exclusively dealt with a factorization without pivoting, which makes
it suitable only for the symmetric positive definite case. We will research and implement an
extension, first to the symmetric indefinite case, which can be handled with symmetric
permutations, and later to the general case, where partial pivoting by rows is necessary.

While pivoting adds considerable complexity to the data structures and algorithms, we note
that the need for pivoting does not invalidate our basic approach. The reason for this is that
because of the tree structuring, all connections of an edge variable are contained within a leaf
element, and the connections of a vertex variable that is shared between elements are
contained in the subtree of the least common ancestor. Thus, pivoting is a local operation in a
subtree, and we preserve the essential cleanliness of our model, and all advantages such as
easy extension of a matrix, or preserving parts of the factorization under refinement.

6.3 Load balancing

Achieving a well-balanced parallel application is difficult in an hp-adaptive context, since
local refinement by definition affects any balance of the work load. For this reason we will
initially only target shared memory parallelism.

However, we note that our tree structured algorithm makes it easy to redistribute workloads: if
we move a subtree to a different processor, this will not induce new communications during
factorization of the subtree. Communication is to be performed only when the Schur
complement of the subtree is combined with those of its sibling subtrees.

6.4 Application integration

Our matrix storage scheme allows for tighter integration of the linear algebra and the physics
parts of the application. Since we never need a global ordering of the variables, matrix
formation does not need to be postponed until the entire domain has been discretized, nor
does it have to be redone after changes to the domain. Since we only use local parent-child
and sibling relations between elements, an element matrix becomes part of the matrix data
structure immediately upon formation.

The precise API that our library will offer to applications is still under development.

7 Conclusion

In this paper we have presented a direct factorization scheme that is aimed at the kind of
problems that arise in hp-adaptive finite elements. The basic idea is the use of the refinement
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history for deriving the factorization ordering. The matrix is thus represented as a tree
structure, and element matrices, rather than fully formed matrix elements, are stored.

The immediate consequence of these decisions is that after refinement (or de-refinement) of
the domain, large parts of the factorization can be reused, making our scheme preferable over
the traditional workflow where after each change to the matrix a full factorization needs to be
performed. However, even when applied to a single linear system, our scheme is of low space
and time complexity. This will be analyzed in detail in a followup paper.
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[21] José R. Herrero and Juan J. Navarro. Sparse hypermatrix cholesky: Customization for
high performance. IAENG International Journal of Applied Mathematics, 36:1:6–12,
2007.

[22] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. Technical Report TR 95-035, Department of Computer
Science, University of Minnesota, 1995. A short version appears in Intl. Conf. on
Parallel Processing 1995.

[23] Jason Kurtz. Fully Automatic hp-Adaptivity for Acoustic and Electromagnetic
Scattering in Three Dimensions. PhD thesis, Institute for Computational Engineering
and Sciences, The University of Texas at Austin, 2006.

[24] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for
FORTRAN usage. Transactions on Mathematical Software, 5:308–323, 1979.

[25] Xiaoye S. Li. Sparse Gaussian Eliminiation on High Performance Computers. PhD
thesis, 1996.

TR-07-02 20



Bientinesi et al. Unassembled Hyper-Matrices

[26] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Trans. Mathematical
Software, 29(2):110–140, June 2003.

[27] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized nested
dissection. SIAM J. Numer. Anal., 16:346–358, 1979.

[28] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.
SIAM J. Appl. Math., 36:177–189, 1979.

[29] http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.
[30] http://graal.ens-lyon.fr/MUMPS/.
[31] J. Oden and A. Patra. A parallel adaptive strategy for hp finite element computations,

1994.
[32] D. Pardo and L. Demkowicz. Integration of hp-adaptivity and a two grid solver for

elliptic problems. Computer Methods in Applied Mechanics and Engineering,
195:674–710, 2006.

[33] Abani K. Patra, Jingping Long, and Andras Laszloffy. Efficient parallel adaptive finite
element methods using self-scheduling data and computations. In HiPC, pages 359–363,
1999.

[34] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications,
11(3):430–452, July 1990.

[35] Ch. Schwab. p- and hp-Finite Element Methods: Theory and Applications in Solid and
Fluid Mechanics. Oxford University Press, 1998.

[36] http://www.nersc.gov/˜xiaoye/SuperLU/.
[37] http://www.cise.ufl.edu/research/sparse/umfpack/.

TR-07-02 21

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.nersc.gov/~xiaoye/SuperLU/


Bientinesi et al. Unassembled Hyper-Matrices

Figure 6: Solution on a regularly refined L-shaped domain

Figure 7: Speed up and memory savings over MUMPS on the regularly refined L-shaped do-
main

Figure 8: An L-shaped domain with adaptive refinement

TR-07-02 22



Bientinesi et al. Unassembled Hyper-Matrices

Figure 9: Time and memory measurements on an adaptively refined L-shaped domain
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