
TACC Technical Report TR-07-02

Sparse Direct Factorizations through Unassembled
Hyper-Matrices

Paolo Bientinesi∗, Victor Eijkhout†, Kyungjoo Kim‡, Jason Kurtz‡,
Robert van de Geijn§

November 16, 2007

This technical report is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this preprint is made available
with the understanding that anyone wanting to cite or reproduce it ascertains that no published
version in journal or proceedings exists.

§ This work was supported by NSF grant #DMS-0625917

Permission to copy this report is granted for electronic viewing and single-copy printing. Per-
missible uses are research and browsing. Specifically prohibited are sales of any copy, whether
electronic or hardcopy, for any purpose. Also prohibited is copying, excerpting or extensive
quoting of any report in another work without the written permission of one of the report’s
authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no war-
ranty, express or implied, nor assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed.
∗ Computer Science Dept., Duke University
† Texas Advanced Computer Center, The University of Texas at Austin, corresponding au-
thor
‡ Texas Institute for Computational and Applied Mathematics, The University of Texas at
Austin
§ Computer Science Department, The University of Texas at Austin



Abstract

We present a novel strategy for sparse direct factorizations that is geared towards the
matrices that arise from hp-adaptive Finite Element Methods. In that context, a se-
quence of linear systems derived by successive local refinement of the problem domain
needs to be solved. Thus, there is an opportunity for a factorization strategy that pro-
ceeds by updating (and possibly downdating) the factorization. Our scheme consists of
storing the matrix as unassembled element matrices, hierarchically ordered to mirror
the refinement history of the domain. The factorization of such an ‘unassembled hyper-
matrix’ proceeds in terms of element matrices, only assembling nodes when they need
to be eliminated. The main benefits are efficiency from the fact that only updates to the
factorization are made, high scalar efficiency since the factorization process uses dense
matrices throughout, and a workflow that integrates naturally with the application.

Keywords

Factorizations, Gaussian elimination, sparse matrices, hp-Adaptive Finite Elements,
Numerical software



Bientinesi et al. Unassembled Hyper-Matrices

1 Introduction

Many scientific applications spend a large amount of time in the solution of linear sys-
tems, often performed by sparse direct solvers. We argue that traditional matrix storage
schemes, whether dense or sparse, are a bottleneck, limiting the potential efficiency of
the solvers. We propose a new data structure, the Unassembled Hyper-Matrix (UHM).
This data structure preserves useful information that can be provided by the applica-
tion, and that can make the solver, as well as various other operations on the matrix,
more efficient. In particular, we will use this storage format to implement an efficient
sparse direct solver for hp-adaptive Finite Element Method (FEM) problems.

The improvement in efficiency will come from rethinking the conventional approach
where sparse direct solvers are used as a black-box: a linear system is passed as input
and a solution is returned as output. Much progress has been made on making such a
black-box procedure as efficient as possible. However, traditional solvers are intrinsi-
cally handicapped by ignoring domain information. Furthermore, what is not exploited
by such solvers is the fact that once a solution for a given discretized problem has been
computed, modifications to this existing discretization are made. This means that what
should be the real measure of efficiency is how fast a solution of a somewhat modi-
fied (refined) problem can be computed given a factorization of the current problem
(discretization). We argue that this formulation of the problem leads to dramatically
different data structures and factorization approaches, on which the existing literature
on sparse direct solvers has little bearing.

In this introduction we sketch the demands on a matrix storage scheme in a FEM
application and show how traditional linear algebra software insufficiently addresses
these demands. In the rest of this report we will then show how the UHM scheme
overcomes these limitations. We limit ourselves to symmetric positive-definite (SPD)
problems for the time being.

1.1 The workflow of advanced FEM solvers

Adaptive discretization techniques are recognized to be the key to the efficient and
accurate solution of complicated FEM problems, for instance, problems with singu-
larities around re-entrant corners. (We will give a brief overview of adaptive and in
particular hp-adaptive FEM in Section 2.)

A typical hp-adaptive FE computation proceeds as follows.

1. An initial discretization is generated to represent the given geometry and mate-
rial data.

2. The global stiffness matrix and load vector are computed, stored either in an
assembled sparse format or as unassembled element contributions.

TR-07-02 1



Bientinesi et al. Unassembled Hyper-Matrices

3. The sparse linear system is solved via a standard solver package. Here the choice
of package depends on whether the solution is computed via a direct or iterative
solver. For sparse direct solution, widely used packages include MUMPS [1, 30],
NASTRAN (various commercial versions), SuperLU [14, 15, 27], and UMF-
PACK [10, 37]. For iterative solution current favorites include PETSc [2, 3] and
Trilinos [22].

4. Based on a posteriori error estimates, it is determined whether to break or merge
elements (h-refinement and unrefinement) and/or whether to increase (or de-
crease) the order of approximation p. These decisions are made locally, i.e., on
an element-by-element basis.

5. Steps 2–4 are repeated until a stopping criterion is met.

1.2 Shortcomings of the existing approach

There are two essential problems with the traditional approach to FEM solvers outlined
above.

One obvious problem is in Step 3, where the solver has no way of knowing whether it
was invoked before, and what the relation is between its input data in successive invo-
cations. Since successive linear systems are clearly related, considerable opportunity
for efficiency is left unexplored.

There is a further problem in that, by formulating the linear system as a matrix equa-
tion, much information about the application is lost. This information is then labori-
ously, and imperfectly, reconstructed by the graph partitioners used in sparse solver
packages.

These shortcomings of the matrix-based interface are not purely academic. In Sec-
tion 2.3 we will show anecdotal evidence that fairly simple manual preprocessing of
the linear systems can significantly improve the efficiency of a standard direct solver.
Clearly, certain knowledge of the linear system that is available to a human can only
imperfectly be discovered by a black-box solver. Our improved data structure and
solver preserve and exploit such knowledge.

1.2.1 Inflexibility in an application context

Current linear algebra software has little provision for the reality that often a sequence
of related linear systems is to be solved. Even a slight change to the matrix forces
a solver package to recomputate the factorization from scratch, with no information
preserved. (There are a few exceptions: iterative solver packages, such as Petsc [2,
3], can indicate that the same preconditioner is used for several systems, and include

TR-07-02 2



Bientinesi et al. Unassembled Hyper-Matrices

algorithms for updating a factorization in special cases, such as rank-one updates [9,
5, 31].)

However, in the setting of adaptive FEM solvers, the next linear system is often derived
from the previous one by refining part of the physical domain, either in space, or in
the order of the FEM basis functions. Traditional matrix storage is not flexible enough
to accomodate insertion of matrix rows easily. Instead, a whole new matrix needs to
be allocated, with the old data copied over or even recomputed, at considerable over-
head. Furthermore, solver packages cannot preserve parts of a factorization that are not
affected by such a refinement. Our UHM storage scheme remedies both shortcomings.

While it can be argued that the use of a high-quality graph partitioner favors the current
approach to successive substructuring for a single solution, storing the stiffness matrix
as an UHM conformal to the hierarchy in the domain has the potential for greatly re-
ducing the cost of subsequent solves with refined data. There is some memory overhead
associated with Element-By-Element (EBE) codes (anecdotal evidence suggests 30%
in a 2D case [7, 6]); however, this is outweighed by advantages in performance and
flexibility.

1.2.2 Loss of application information

The representation of a matrix as a two-dimensional array of numbers, whether stored
densely or using a sparse storage format, represents a bottleneck between the applica-
tion and the solver library. Relevant application knowledge is lost, such as geometry
and other properties of the domain, various facts about the nature of the mesh, and any
history of refinement that led to the current system of equations. Much of the develop-
ment of sparse direct solvers goes into reconstructing, algebraically, this information.

1.3 Relation to existing factorizations

Our factorization scheme contains some novel elements, foremost the fact that we re-
tain the refinement history of the Finite Element (FE) grid. Of course, there are various
connections to the existing literature. In this section we highlight a few. (For a recent
overview of the field of sparse direct factorizations, see the book by Davis [11].)

1.3.1 Substructuring

Techniques of bisection and recursive bisection have long been a successful strategy,
although not the only one, for deriving direct solvers. Initial research on solvers on
a regular domain showed considerable savings in storage for two-dimensional prob-
lems [18, 19]. These results have been extented to arbitrary finite element meshes [28,

TR-07-02 3



Bientinesi et al. Unassembled Hyper-Matrices

29], including a proof that in the three-dimensional case no order improvement ex-
ists as in the 2D case: in 2D, the naive space bound of O(N3/2) can be improved
to O(N logN); in 3D, no reduction of the naı̈ve O(N5/3) bound is known.

More recently, spectral bisection techniques have been explored as a way of deriving
multiple partitioning of a set of variables [17, 20, 21, 23, 34]. Another direction in
graph partitioning is that of Partitioning methods based on space-filling [32, 33]. These
methods have been used primarily for partitioning elements in work related to iterative
solvers. Again, such techniques are based on algebraic properties of the matrix graph,
and can only imperfectly reconstruct any division that is natural to the problem.

1.3.2 Supernodes

With the realization that Level 3 Basic Linear Algebra Subprograms (BLAS [25, 8])
operations are the path to high performance in linear algebra codes (see for instance [16,
4]), researchers of sparse direct solvers have devoted considerable effort to finding ‘su-
pernodes’: blocks of rows or columns that have similar sparsity patterns, and can thus
be tackled with dense block algorithms [36, 26]. However, this block structure derives
from the elements in a Finite Element mesh, so we conclude that the linear algebra
software aims at reconstructing information that was present in the application and
was lost in the traditional solver interface.

It is clear that a matrix representation that preserves information about the operator
and the discretization has a potential advantage over traditional storage formats.

1.4 Outline

In the remainder of this report, we briefly introduce the hp-adaptive FEM, which gives
us our application context. We then present the UHM factorization and outline certain
practical issues and future research directions.

2 Finite Element background

In this section we give a brief introduction to the hp-adaptive FEM, its practical im-
portance, and the demands it puts on solvers. For a full treatment of the hp-adaptive
FEM, see the book by Demkowicz [13].

TR-07-02 4



Bientinesi et al. Unassembled Hyper-Matrices

2.1 hp-Adaptive FEM

The FEM is a method for discretizing and obtaining an approximate solution to par-
tial differential equations (PDE) arising from a broad spectrum of physical and engi-
neering applications. In FEMs, the approximate solution is represented as a piecewise
polynomial function. Of obvious importance is the estimation and reduction of the
corresponding discretization error.

The most classical method for reducing the error in a discretization is the h-method,
where elements are broken, either uniformly or in an adaptive way, to decrease the
element size h. The polynomial order of approximation p is uniform and fixed (usually
quite low: p = 2,3 at most). In the p-method, convergence is achieved by increasing
the order of approximation p, either uniformly or in an adaptive way, while the ele-
ment size h is fixed. hp-methods combine these two approaches, allowing for local
combinations of h-refinement and p-enrichment [35].

In many interesting physical applications, adaptive methods are preferred because the
solution is smooth throughout most of the computational domain. Singularities arise
only at a few localized features such as re-entrant (non-convex) edges and vertices,
or material interfaces. For such problems, the separate h or p-methods only converge
algebraically with respect to the total number of degrees of freedom N (whereas the
p-method converges exponentially for a globally smooth solution). The combined hp-
method essentially isolates the effect of singularities through local h-refinement and
uses p-enrichment where the solution is smooth. With an appropriate combination, the
hp-method can deliver exponential convergence even for problems with singularities.

2.2 Use of sparse direct solvers in hp-adaptive FEM

Nothing comes without a price. While hp-methods are capable of delivering a given
accuracy with a minimal number of degrees of freedom, they suffer a considerable set-
back in terms of the complexity of the implementation. Over the past 20 years research
has mainly focused, not on the efficiency of the implementations, but on controlling
this complexity. A significant advance in this direction was the introduction of a node-
based, hierarchical data structure in the code 3Dhp90 [12]. In this data structure, suc-
cessive h-refinements are supported by growing so-called “refinement trees” out of a
given initial mesh. When a (parent) node is broken, connectivities from parent to son
(and vice versa) are maintained. The current mesh consists of the leaves of this data
structure and element-to-node connectivities are reconstructed using the refinement
history. Traditional sparse direct solvers make no explicit use of this hierarchy.

TR-07-02 5



Bientinesi et al. Unassembled Hyper-Matrices

2.3 Evidence for our case

In tests performed in [24], Mumps was used as a solver, both by itself, and preceded
by a stage of manually executed Static Condensation, which essentially corresponds
to the manual elimination of supernodes. In Figure 1 we compare the time and space
complexity of a code exclusively using Mumps to one that explicitly performs static
elimination, and only uses Mumps for the quotient graph obtained.

The graphs show that using static condensation leads to a 50% reduction in memory
and 20–40% reduction in runtime, demonstrating the limitations of a general purpose
sparse solver. Our UHM library would execute this process recursively, leading to even
greater savings.

2.4 A dual grid hierarchy

Our approach consists in determining an optimal refinement strategy for a given coarse
grid by examining the solution on a corresponding fine grid obtained by a global hp-
refinement. From the fine grid we then conclude the proper locations for doing local
refinement on the coarse grid. This process is illustrated in Figure 2.

At first, this seems to imply multiple applications of global refinement, which would
invalidate our approach of local updates. However, a more detailed consideration of
the grid hierarchy shows that we are dealing with two sequences, one of coarse grids
and one of fine grids, and in each sequence the grids are derived by local refinement of
their predecessors. This process is illustrated in a simplified manner in figure 3.

3 The factorization scheme

Above, we have sketched how the hp-adaptive FEM gives a refinement tree of ele-
ments, where the actual elements making up the FE matrix are the leaves of the tree.
In most factorizations schemes, the key to space and time efficiency consists in finding
the proper elimination ordering. The underlying observation for our method is that a
(partial) ordering, induced by the refinement tree, is directly available.

In its most stark statement, the whole factorization is based on the recursion where
children of one parent are to be eliminated, forming a Schur complement matrix on the
parent element.

Intuitively, the reader will see that refinement leads to new subtrees, and the factoriza-
tion only needs to be updated by the factorization of that subtree and its parents. We
will argue this point in detail below. We will briefly touch on the matter of the space
and time complexity in Section 5.1.

TR-07-02 6



Bientinesi et al. Unassembled Hyper-Matrices

103 104 105
100

101

102

103

Number of degrees of freedom (N)

M
em

or
y 

(M
B

)

 

 
MUMPS with static condensation
MUMPS

103 104 105
10−1

100

101

102

103

Number of degrees of freedom (N)

T
im

e 
(s

)

 

 
MUMPS with static condensation
MUMPS

Figure 1: Memory and time savings from Static Condensation before the application
of the Mumps solver.

TR-07-02 7



Bientinesi et al. Unassembled Hyper-Matrices

Coarse grid 0

Coarse grid 1

Coarse grid 2

Coarse grid 3

Global hp-refinement

Error estimate and

optimal hp-refinement

Fine grid 0

Fine grid 1

Fine grid 2

Fine grid 3

p = 8

p = 1

Figure 2: Sequence of coarse and fine grids.

TR-07-02 8



Bientinesi et al. Unassembled Hyper-Matrices

Coarse 0

Coarse 1

Coarse 2

Fine 0

Fine 1

Fine 2

Figure 3: Derivation of coarse and fine grids through local refinement.

We will now explain our factorization by showing in detail the mechanism in a one-
dimensional example. We will then address how the mechanism extends to higher
dimensions.

3.1 One-dimensional example

We can convey the essence of our factorization scheme by considering a one-dimensional
example. This will give a slightly simplified situation from the general two or three-
dimensional case: we will address the differences in the next section.

Consider a domain that consists of two elements obtained by refining a single top level
element. Each element has three (groups of) unknowns: vertex functions on its left and
right vertex, and edge functions on its interior. For the whole domain this gives five
(blocks of) unknowns, since one vertex is shared by the two elements.

TR-07-02 9



Bientinesi et al. Unassembled Hyper-Matrices

×2 =
Algebraically this manifests itself as the FE matrix being a sum of two 3×3 element
matrices:

a11 a12 a13
a21 a22 a23
a31 a32 a33 a34 a35

a43 a44 a45
a53 a54 a55

=

a11 a12 a13
a21 a22 a23

a31 a32 a(`)
33

⊕
a(r)

33 a34 a35
a43 a44 a45
a53 a54 a55



where the (`) and (r) superscripts indicate contributions from the left and right ele-
ment respectively.

We now observe that eliminating the interiors of the elements can be done within each
element independently of the other element:

ã11 ã13
ã31 ã33 ã35

ã53 ã55

 =

(
a11 a13

a31 a(`)
33

)
−
(

a12
a32

)
a−1

22

(
a21 a23

)
⊕

(
a(r)

33 a35
a53 a55

)
−
(

a34
a54

)
a−1

44

(
a43 a45

)
After eliminating the interiors this way, we wind up with a 3×3 (block) matrix, that is,
a matrix with the same structure as a matrix on the original unrefined top element. We
now recursively eliminate its interior, giving again a 2×2 matrix; if this element itself
was obtained through refinement, we can now continue the recursive factorization.

If we make this argument recursive, it becomes clear that updates to one element (in
our case further refinement) do not influence the factorization of the other element.
In particular, the factorization of whole subtrees can be preserved if other subtrees
(that are not contained in it) are altered. When an updated factorization of one element
is combined with the preserved factorization of its sibling (or siblings, in the more
general case), their non-interior nodes are combined, and have to be re-eliminated. We
note that in hp-adaptive FE the interior typically has the highest polynomial degree,
making the re-elimination of vertices (and edges or faces in the general case) relatively
inexpensive.

TR-07-02 10



Bientinesi et al. Unassembled Hyper-Matrices

3.2 Extension to higher dimensions

The above discussion showed how in one space dimension the hyper-matrix order-
ing leads to a particularly simple factorization scheme. In particular, if an element on
level ` gets divided into level `+ 1 elements, the factorization of one sibling is unaf-
fected by changes (such as further refinement) in other siblings.

In higher dimensions certain complications arise which we will briefly sketch in this
section. In spite of this, the basic conclusion still holds that large amounts of work can
be saved over a full factorization of the updated matrix.

To explain the problem in higher dimensions, consider two steps of uniform refine-
ment:

Applying the factorization scheme of the one-dimensional example, we would now
start by eliminating all level 2 nodes that are not on level 1. However, this is not as
simple in higher dimensions as in 1D. In one space dimension, nodes that need to be
assembled (such as node 3 in the example) have a common parent one level up. As
seen in figure 4, in higher dimensional problems certain nodes (the middle node in
this example) will have a parent two levels up, and it can be seen that nodes can have a
‘least common parent’ an arbitrary number of levels up. This means that their assembly
on the current level would violate the recursive formulation of the factorization, so
instead we carry some unassembled nodes up to the higher level. As a result, after one
elimination step, at level 1 we end up with slightly more nodes than we would have
had without the refinement step.

Figure 4: Node assembly process in two space dimensions

TR-07-02 11



Bientinesi et al. Unassembled Hyper-Matrices

In eliminating the level 1 refinement, we now assemble and eliminate the level 1 nodes
that do not exist on level 0, but also the partially assembled level 2 nodes that were
carried upward.

By contrast, in one space dimension, we could have eliminated the level 2 nodes en-
tirely by operations on level 1, leaving us with an element matrix on level 1 with
exactly the same structure as if the refinement to level 2 had never happened.

4 Library design
The UHM library offers two APIs: one for the end user, and one for the FE library
writer.
• The FE library writer would use the UHM library to define a collection of ele-

ments and refinement schemes.
• The end-user would instantiate elements, indicating their connectivity, and would

specify which elements get refined using which refinement scheme.
In both cases, this interface gives its users a simple way to handle very complicated
data structures. (Note that at present we have only a prototype library implemented;
any details below are solely to illustrate the design principles.)

4.1 Implementation

We first show the FE library API, which is used to define refinement schemes. To this
purpose, the library writer has lower level tools that relate the constituent vertices,
edges, etc. of a parent element to those of its children under refinement.

For instance, to indicate that an edge is broken into edges of the children with a joining
node, we define dividers:
ierr = CreateDivider(&edge);
ierr = DividerSetName("break_edge", edge);
ierr = DividerSetScheme("edge_0,vertex_1,edge_0", edge);

Such dividers are then taken together to form a refinement scheme:
ierr = CreateRefinement(&hor);
ierr = RefinementSetName("horizontal", hor);
ierr = RefinementAddBreaknode(6, edge, hor);
ierr = RefinementAddBreaknode(8, edge, hor);
ierr = RefinementAddBreaknode(9, interior_oneway, hor);

The end-user only has access to nodes and to refinement schemes to apply to them:
ierr = ElementGetChildByChildnum(top, 1, &elt);
ierr = ElementRefineElement(hor, elt);

TR-07-02 12



Bientinesi et al. Unassembled Hyper-Matrices

4.2 Initial mesh

Our code progresses fully recursively if the domain is derived through the refinement of
a single element. In practice this will not be the case: there will be an initial mesh that
fits the geometry of the object being modeled. We handle this initial mesh by describing
it as the result of refinement of a single virtual top element. This refinement will be
somewhat laborious to specify, but the instructions can be generated automatically
from the FE specification of the initial mesh.

5 Discussion

Above, we have outlined the basic ideas of our novel factorization scheme for linear
systems arising in hp-adaptive FEM problems. In that context, our scheme offers the
following advantages over existing factorizations.

Workflow integration. We use the structure of the application directly in determining
the flow of the factorization. This should lead to a more natural integration of
the solver in the physics code; see Section 5.4. Moreover, this integration has
great advantages for the solver itself.

Elimination ordering. Unlike in classical factorizations, our scheme does not require
us to find an elimination ordering, since we inherit it from the refinement history.
This ordering leads to extreme efficiency in the adaptive context, but there are
indications that even on a single system it can be efficient; see Section 5.1 below.

Cliques and superblocks. Traditional factorizations expend considerable energy in
identifying cliques in the matrix graph or equivalently finding superblocks in
the matrix. We obtain this information for free: the superblocks derive from the
element matrices which are dense. Thus, high scalar efficiency of our scheme
will be guaranteed.

Integration in an adaptive context. As we have indicated above, our method will
lead to reuse of large parts of the factorization in the context of adaptively con-
structed domains. This is yet another outcome of our use of the refinement his-
tory as elimination ordering.

In the remainder of this section we will sketch a number of practical issues that will be
the topic of future research.

5.1 Complexity

Our factorization, especially when applied to the uniform refinement of a Cartesian do-
main, has certain elements in common with nested dissection. The question of whether

TR-07-02 13



Bientinesi et al. Unassembled Hyper-Matrices

the time and space complexity of an UHM method are similar (for an analysis of nested
dissection complexity, see [19, 28]) thus naturally raises itself.

Early indications are, however, that our method will be more efficient than nested dis-
section. (We are considering here the factorization of a single matrix; obviously, our
argument about reusing parts of a factorization already makes it intrinsically more ef-
ficient than existing methods.) The reason for this is twofold. First of all, supernodes
are trivially identified since we preserve our element matrices. Connected to this, our
elimination ordering, coming from the refinement history, constructs only further dense
blocks. The anecdotal evidence in Section 2.3 shows that we indeed get considerable
space and time savings.

There is a more complicated argument regarding UHM space and time complexity.
After elimination of an element’s children, we aim for the Schur complement matrix to
have the same structure as the element matrix on the parent element. This would imply
that the space needed for a factorization is the sum total of all the element matrices
on all levels. Unfortunately, the phenomenon noted in section 3.2 negates this, and
indeed, for a uniform refinement we will wind up with a structure much like that in
nested dissection. A more rigorous analysis of this phenomenon will appear in a later
report.

5.2 Pivoting

Our discussion so far has exclusively dealt with a factorization without pivoting, which
makes it suitable only for the symmetric positive definite case. We will research and
implement an extension, first to the symmetric indefinite case, which can be handled
with symmetric permutations, and later to the general case, where partial pivoting by
rows is necessary.

While pivoting adds considerable complexity to the data structures and algorithms,
we note that the need for pivoting does not invalidate our basic approach. The reason
for this is that because of the tree structuring, all connections of an edge variable are
contained within a leaf element, and the connections of a vertex variable that is shared
between elements are contained in the subtree of the least common ancestor. Thus,
pivoting is a local operation in a subtree, and we preserve the essential cleanliness of
our model, and all advantages such as easy extension of a matrix, or preserving parts
of the factorization under refinement.

5.3 Load balancing

Achieving a well-balanced parallel application is difficult in an hp-adaptive context,
since local refinement by definition affects any balance of the work load. For this rea-

TR-07-02 14



Bientinesi et al. Unassembled Hyper-Matrices

son we will initially only target shared memory parallelism.

However, we note that our tree structured algorithm makes it easy to redistribute work-
loads: if we move a subtree to a different processor, this will not induce new commu-
nications during factorization of the subtree. Communication is to be performed only
when the Schur complement of the subtree is combined with those of its sibling sub-
trees.

5.4 Application integration

Our matrix storage scheme allows for tighter integration of the linear algebra and the
physics parts of the application. Since we never need a global ordering of the variables,
matrix formation does not need to be postponed until after the whole domain has been
discretized, nor does it have to be redone after changes to the domain. Since we only
use local parent-child and sibling relations between elements, an element matrix be-
comes part of the matrix data structure immediately upon formation.

The precise Application Programmer Interface (API) that our library will offer to ap-
plications is still under development.

6 Conclusion

In this report we have presented a direct factorization scheme that is aimed at the
kind of problems that arise in hp-adaptive finite elements. The basis idea is the use
of the refinement history for deriving the factorization ordering. The matrix is thus
represented as a tree structure, and element matrices, rather than fully formed matrix
elements, are stored.

The immediate consequence of these decisions is that after refinement (or de-refinement)
of the domain, large parts of the factorization can be reused, making our scheme prefer-
able over the traditional workflow where after each change to the matrix a full factor-
ization needs to be performed. However, even applied to a single linear system, our
scheme is of low space and time complexity. This will be analyzed in detail in a fol-
lowup report.

Acknowledgement The authors are grateful to Abani Patra and Carter Edwards for
enlightening discussions.

TR-07-02 15



Bientinesi et al. Unassembled Hyper-Matrices

References

[1] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal.,
23:15–41, 2001. also ENSEEIHT-IRIT Technical Report RT/APO/99/2.

[2] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Ef-
ficient management of parallelism in object oriented numerical software libraries.
In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing, pages 163–202. Birkhauser Press, 1997.

[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.
PETSc home page. http://www.mcs.anl.gov/petsc, 1999.

[4] E. Barragy and R. van de Geijn. Blas performance for selected segments of a
high p EBE finite element code. Inter. J. on Nume. Meth. in Eng., 38:1327–
1340, 1995.

[5] R.H. Bartels and G.H. Golub. The simplex method of linear programming using
the LU decomposition. Comm. ACM, 12:266–268, 1969.

[6] William Barth, Graham F. Carey, Benjamin Kirk, and Robert McLay. Parallel
distributed solution of viscous flow with heat transfer on workstation clusters. In
High Performance Computing ’00 Proceedings, Washington, D.C., April 2000.

[7] William L. Barth. Simulation of Non-Newtonian Fluids on Workstation Clusters.
PhD thesis, The University of Texas at Austin, May 2004.

[8] http://www.netlib.org/blas.
[9] J.W. Daniel, W.B. Gragg, L. Kaufman, and G.W. Steward. Reorthogonaliation

and stable algorithms for updating the Gram-Schmidt QR factorization. Mathe-
matics of Computation, 30:772–795, 1976.

[10] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for un-
symmetric sparse matrices. ACM Trans. Math. Software, 25:1–19, 1999.

[11] Timothy A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadel-
phi, PA, 2006.

[12] L. Demkowicz, D. Pardo, and W. Rachowicz. 3D hp-adaptive finite element pack-
age (3dhp90). version 2.0. the ultimate (?) data structure for three-dimensional,
anisotropic hp refinements. Technical Report TICAM Report 02-24, 2002.

[13] Leszek Demkowicz. Computer with hp-Adaptive Finite Elements, vol 1, One
and Two Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC,
2007.

[14] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM
J. Matrix Analysis and Applications, 20(3):720–755, 1999.

[15] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel

TR-07-02 16



Bientinesi et al. Unassembled Hyper-Matrices

supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Analysis
and Applications, 20(4):915–952, 1999.

[16] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of
level 3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17,
March 1990.

[17] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovakian Mathemat-
ics Journal, 23:298–305, 1973.

[18] A. George. Computer Implementation of the Finite Element Method. PhD thesis,
Stanford University, 1971.

[19] Alan George and Joseph H-W. Liu. Computer Solution of Large Sparse Posi-
tive Definite Systems. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632,
1981.

[20] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning
graphs. In Proc. Supercomputing ’95. ACM.

[21] Bruce Hendrickson and Robert Leland. An improved spectral graph partitioning
algorithm for mapping parallel computations. SIAM J. Sci. Comput., 16:452–
469, 1995.

[22] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra,
Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P.
Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S.
Tuminaro, James M. Willenbring, Alan WILLIAMS, and Kendall S. Stanley. An
overview of the trilinos project. ACM Trans. Math. Soft., pages 1–27, 2004.

[23] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. Technical Report TR 95-035, Department of
Computer Science, University of Minnesota, 1995. A short version appears in
Intl. Conf. on Parallel Processing 1995.

[24] Jason Kurtz. Fully Automatic hp-Adaptivity for Acoustic and Electromagnetic
Scattering in Three Dimensions. PhD thesis, Institute for Computational Engi-
neering and Sciences, The University of Texas at Austin, 2006.

[25] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subpro-
grams for FORTRAN usage. Transactions on Mathematical Software, 5:308–
323, 1979.

[26] Xiaoye S. Li. Sparse Gaussian Eliminiation on High Performance Computers.
PhD thesis, University of California at Berkeley, 1996.

[27] Xiaoye S. Li and James W. Demmel. SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math-
ematical Software, 29(2):110–140, June 2003.

[28] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized nested
dissection. SIAM J. Numer. Anal., 16:346–358, 1979.

TR-07-02 17



Bientinesi et al. Unassembled Hyper-Matrices

[29] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM J. Appl. Math., 36:177–189, 1979.

[30] http://graal.ens-lyon.fr/MUMPS/.
[31] J.L. Nazareth. Updating the triangular factorization of a matrix. SIAM J. Matrix

Anal. Appl., 10:424–428, 1989.
[32] J. Oden and A. Patra. A parallel adaptive strategy for hp finite element computa-

tions, 1994.
[33] Abani K. Patra, Jingping Long, and Andras Laszloffy. Efficient parallel adaptive

finite element methods using self-scheduling data and computations. In HiPC,
pages 359–363, 1999.

[34] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications,
11(3):430–452, July 1990.

[35] Ch. Schwab. p- and hp-Finite Element Methods: Theory and Applications in
Solid and Fluid Mechanics. Oxford University Press, 1998.

[36] http://www.nersc.gov/∼xiaoye/SuperLU/.
[37] http://www.cise.ufl.edu/research/sparse/umfpack/.

TR-07-02 18

http://www.nersc.gov/~xiaoye/SuperLU/

	Introduction
	The workflow of advanced FEM solvers
	Shortcomings of the existing approach
	Inflexibility in an application context
	Loss of application information

	Relation to existing factorizations
	Substructuring
	Supernodes

	Outline

	Finite Element background
	hp-Adaptive FEM
	Use of sparse direct solvers in hp-adaptive FEM
	Evidence for our case
	A dual grid hierarchy

	The factorization scheme
	One-dimensional example
	Extension to higher dimensions

	Library design
	Implementation
	Initial mesh

	Discussion
	Complexity
	Pivoting
	Load balancing
	Application integration

	Conclusion

