LAMMPS' PPPM Long-Range Solver for the Second Generation Xeon Phi

William McDoniel

Ahmed E. Ismail

Paolo Bientinesi

ISC '17 Frankfurt

Thanks to: Klaus-Dieter Oertel, Georg Zitzlsberger, and Mike Brown Funded as part of an Intel Parallel Computing Center

Molecular Dynamics

Image from wikimedia

- Simulations the motion of individual molecules
- Widely used in fields from materials science to biology
- Computes the interaction forces between and within molecules according to potential functions

LAMMPS

Large-scale Atomic-Molecular Massively Parallel Simulator

Sandia National Labs http://lammps.sandia.gov

Wide collection of potentials

Open source, support for OpenMP, Xeon Phi, and GPU (CUDA and OpenCL)

Intermolecular Forces

The forces on atoms are commonly taken to be the result of independent pairwise interactions.

Lennard-Jones potential:

$$\Phi_{LJ} = \sum_{r_{ij} < r_c} 4 \epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

Where the force on an atom is given by:

$$\vec{F} = -\nabla \Phi$$

But long-range forces can be important!

The electrical potential only decreases as 1/r and doesn't perfectly cancel for polar molecules.

Interfaces can also create asymmetries that inhibit cancellation.

Particle-Particle Particle-Mesh

 PPPM¹ approximates long-range forces without requiring pair-wise calculations.

Four Steps:

- 1. Determine the charge distribution ρ by mapping particle charges to a grid.
- 2. Take the Fourier transform of the charge distribution to find the potential:

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon_0}$$

3. Obtain forces due to *all* interactions as the gradient of Φ by inverse Fourier transform:

$$\vec{F} = -\nabla \Phi$$

4. Map forces back to the particles.

Profiling LAMMPS

We use the USER-OMP implementation of LAMMPS as a baseline. Typically: r_c is 6 angstroms, relative error is 0.0001, and stencil size is 5.

The work in FFTs increases rapidly at low cutoffs. The non-FFT work in PPPM is insensitive to grid size. Sometimes the FFTs take surprisingly long.

Water benchmark: 40.5k atoms 884k FFT grid points

Problem: Users

- Runtime and accuracy depend on user inputs and problem specifics in very unintuitive ways
- Even expert users make systematic errors in determining good inputs.
- Many users do not really try to search for good inputs for their problem.
- We need LAMMPS to work for everyone!

```
for (int i = 0; i < nlocal; i++) {
  int nx = part2grid[i][0];
 int ny = part2grid[i][1];
 int nz = part2grid[i][2];
  FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
 FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
 FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi;
 if( (nz+nlower-nzlo out)*niy*nix >= jto || (nz-nzlo out + nupper + 1)*niy*nix <= jfrom )
    continue:
 flt t rho[3][INTEL P3M MAXORDER];
 for (int k = nlower; k <= nupper; k++) {
   FFT SCALAR r1, r2, r3;
    r1 = r2 = r3 = ZEROF;
   for (int l = order-1; l >= 0; l--) {
      r1 = rho\_coeff[l][k] + r1*dx;
      r2 = rho coeff[l][k] + r2*dy;
      r3 = rho coeff[l][k] + r3*dz;
    rho[0][k-nlower] = r1;
    rho[1][k-nlower] = r2;
    rho[2][k-nlower] = r3;
 FFT SCALAR z0 = fdelvolinv * q[i];
 for (int n = nlower; n <= nupper; n++) {
    int mz = (n + nz - nzlo_out)*nix*niy;
   FFT_SCALAR y0 = z0*rho[2][n-nlower];
   for (int m = nlower; m <= nupper; m++) {
      int mzy = mz + (m + ny - nylo_out)*nix;
      FFT_SCALAR \times 0 = y0 \times rho[1][m-nlower];
      for (int l = nlower; l <= nupper; l++) {</pre>
        int mzyx = mzy + l + nx - nxlo_out;
        if (mzyx >= jto) break;
        if (mzyx < ifrom) continue;
        densityThr[mzyx] += x0*rho[0][l-nlower];
   }
```

Loop over atoms in MPI rank

Stencil coefficients are polynomials of order stencil size. 3x[stencil size] of them are computed.

Loop over cubic stencil and contribute to grid points

```
for (int i = 0; i < nlocal; i++) {
                                          for (int i = 0; i < nlocal; i++) {</pre>
 int nx = part2grid[i][0];
 int ny = part2grid[i][1];
 int nz = part2grid[i][2];
 FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
                                                                          Loop over atoms in MPI rank
 FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
 FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi;
 if( (nz+nlower-nzlo out)*niy*nix >= jto || (nz-nzlo out + nupper + 1)*niy*nix <= jfrom )
   continue:
 flt t rho[3][INTEL P3M MAXORDER];
 for (int k = nlower; k <= nupper; k++) {
   FFT SCALAR r1, r2, r3;
   r1 = r2 = r3 = ZEROF;
   for (int l = order-1; l >= 0; l--) {
     r1 = rho\_coeff[l][k] + r1*dx;
     r2 = rho coeff[l][k] + r2*dy;
     r3 = rho coeff[l][k] + r3*dz;
   rho[0][k-nlower] = r1;
   rho[1][k-nlower] = r2;
   rho[2][k-nlower] = r3;
 FFT SCALAR z0 = fdelvolinv * q[i];
 for (int n = nlower; n <= nupper; n++) {
   int mz = (n + nz - nzlo_out)*nix*niy;
   FFT_SCALAR y0 = z0*rho[2][n-nlower];
   for (int m = nlower; m <= nupper; m++) {
     int mzy = mz + (m + ny - nylo_out)*nix;
     FFT_SCALAR x0 = y0*rho[1][m-nlower];
     for (int l = nlower; l <= nupper; l++) {</pre>
       int mzyx = mzy + l + nx - nxlo_out;
       if (mzyx >= jto) break;
       if (mzyx < ifrom) continue;
       densityThr[mzyx] += x0*rho[0][l-nlower];
   }
    USER-OMP Implementation
```

```
for (int i = 0; i < nlocal; i++) {
  int nx = part2grid[i][0];
 int ny = part2grid[i][1];
  int nz = part2grid[i][2];
 FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
 FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
 FFT SCALAR dz = nz + fshiftone - (x[i].z-lo2)*zi;
 if( (nz+nlower-nzlo_out)*niy*nix >= jto || (nz-nzlo_
    continue:
 flt t rho[3][INTEL P3M MAXORDER];
 for (int k = nlower; k <= nupper; k++) {</pre>
   FFT SCALAR r1, r2, r3;
    r1 = r2 = r3 = ZEROF;
   for (int l = order-1; l >= 0; l--) {
      r1 = rho_coeff[l][k] + r1*dx;
      r2 = rho coeff[l][k] + r2*dy;
      r3 = rho coeff[l][k] + r3*dz;
    rho[0][k-nlower] = r1;
    rho[1][k-nlower] = r2:
   rho[2][k-nlower] = r3;
 FFT SCALAR z0 = fdelvolinv * q[i];
 for (int n = nlower; n <= nupper; n++) {
    int mz = (n + nz - nzlo_out)*nix*niy;
   FFT SCALAR y0 = z0*rho[2][n-nlower];
   for (int m = nlower; m <= nupper; m++) {
      int mzy = mz + (m + ny - nylo_out)*nix;
     FFT_SCALAR x0 = y0*rho[1][m-nlower];
     for (int l = nlower; l <= nupper; l++) {
       int mzyx = mzy + l + nx - nxlo_out;
       if (mzyx >= jto) break;
       if (mzyx < ifrom) continue;
       densityThr[mzyx] += x0*rho[0][l-nlower];
   }
```

Stencil coefficients are polynomials of order stencil size. 3x[stencil size] are computed.

```
for (int k = nlower; k <= nupper; k++) {
   FFT_SCALAR r1,r2,r3;
   r1 = r2 = r3 = ZEROF;

  for (int l = order-1; l >= 0; l--) {
     r1 = rho_coeff[l][k] + r1*dx;
     r2 = rho_coeff[l][k] + r2*dy;
     r3 = rho_coeff[l][k] + r3*dz;
   }
  rho[0][k-nlower] = r1;
  rho[1][k-nlower] = r2;
  rho[2][k-nlower] = r3;
}
```

```
for (int i = 0; i < nlocal; i++) {
  int nx = part2grid[i][0];
 int ny = part2grid[i][1];
 int nz = part2grid[i][2];
 FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
 FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
 FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi:
 if( (nz+nlower-nzlo out)*niy*nix >= jto || (nz-nzlo out + nupper + 1)*niy*nix <= jfrom )
    continue:
 flt_t rho[3][INTEL_P3M_MAXORDER];
 for (int k = nlower; k <= nupper; k++) {
   FFT_SCALAR r1, r2, r3;
    r1 = r2 = r3 = ZEROF;
   for (int l = order-1; l >= 0; l--) {
      r1 = rho_coeff[l][k] + r1*dx;
      r2 = rho\_coeff[l][k] + r2*dy;
      r3 = rho coeff[l][k] + r3*dz;
    rho[0][k-nlower] = r1;
    rho[1][k-nlower] = r2:
   rho[2][k-nlower] = r3;
 FFT_SCALAR z0 = fdelvolinv * q[i];
 for (int n = nlower; n <= nupper; n++) {
    int mz = (n + nz - nzlo_out)*nix*niy;
   FFT_SCALAR y0 = z0*rho[2][n-nlower];
   for (int m = nlower; m <= nupper; m++)</pre>
      int mzy = mz + (m + ny - nylo_out)*n
      FFT_SCALAR x0 = y0*rho[1][m-nlower];
     for (int l = nlower; l <= nupper; l+</pre>
        int mzyx = mzy + l + nx - nxlo_out
        if (mzyx >= jto) break;
        if (mzyx < jfrom) continue;</pre>
       densityThr[mzyx] += x0*rho[0][l-nl
   }
```

Loop over cubic stencil and contribute to grid points

```
for (int n = nlower; n <= nupper; n++) {</pre>
  int mz = (n + nz - nzlo_out)*nix*niy;
  FFT_SCALAR y0 = z0*rho[2][n-nlower];
  for (int m = nlower; m <= nupper; m++) {</pre>
    int mzy = mz + (m + ny - nylo_out)*nix;
    FFT_SCALAR \times 0 = y0 \times rho[1][m-nlower];
    for (int l = nlower; l <= nupper; l++) {</pre>
      int mzyx = mzy + l + nx - nxlo_out;
      if (mzyx >= jto) break;
      if (mzyx < jfrom) continue;</pre>
      densityThr[mzyx] += x0*rho[0][l-nlower];
```

```
for (int i = 0: i < nlocal: i++) {
 int nx = part2grid[i][0];
  int nv = part2grid[i][1];
 int nz = part2grid[i][2];
 FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
 FFT SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
 FFT_SCALAR dz = nz + fshiftone - (x[i].z-lo2)*zi;
 if( (nz+nlower-nzlo_out)*niy*nix >= jto || (nz-nzlo_out
    continue;
 flt_t rho[3][INTEL_P3M_MAXORDER];
  for (int k = nlower; k <= nupper; k++) {
   FFT_SCALAR r1, r2, r3;
   r1 = r2 = r3 = ZEROF;
   for (int l = order-1; l >= 0; l--) {
      r1 = rho\_coeff[l][k] + r1*dx;
      r2 = rho\_coeff[l][k] + r2*dy;
     r3 = rho\_coeff[l][k] + r3*dz;
   rho[0][k-nlower] = r1;
    rho[1][k-nlower] = r2;
    rho[2][k-nlower] = r3;
 FFT_SCALAR z0 = fdelvolinv * q[i];
  for (int n = nlower; n <= nupper; n++) {
   int mz = (n + nz - nzlo_out)*nix*niy;
   FFT_SCALAR y0 = z0*rho[2][n-nlower];
   for (int m = nlower; m <= nupper; m++) {</pre>
     int mzy = mz + (m + ny - nylo_out)*nix;
     FFT_SCALAR x0 = y0*rho[1][m-nlower];
     for (int l = nlower; l <= nupper; l++) {
        int mzyx = mzy + l + nx - nxlo_out;
        if (mzyx >= jto) break;
        if (mzyx < jfrom) continue;</pre>
        densityThr[mzyx] += x0*rho[0][l-nlower];
   USER-OMP Implementation
```

```
for (int i = ifrom; i < ito; i++) {
                                        Thread over atoms
    int nx = part2grid[i][0];
    int ny = part2grid[i][1];
    int nz = part2grid[i][2];
    int nysum = nlower + ny - nylo out;
    int nxsum = nlower + nx - nxlo_out + ngrid*tid;
    int nzsum = (nlower + nz - nzlo_out)*nix*niy + nysum*nix + nxsum;
    FFT SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
    FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
    FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi;
#pragma simd
    for (int k = nlower; k <= nupper; k++) {
      FFT SCALAR r1, r2, r3;
      r1 = r2 = r3 = ZER0F:
      for (int l = order-1; l >= 0; l--) {
        r1 = rho\_coeff[l][k] + r1*dx;
        r2 = rho\_coeff[l][k] + r2*dy;
                                        #pragma simd
        r3 = rho\_coeff[l][k] + r3*dz;
                                        for coefficients
      rho[0][k-nlower] = r1;
      rho[1][k-nlower] = r2;
      rho[2][k-nlower] = r3;
    FFT SCALAR z0 = fdelvolinv * q[i];
#pragma loop_count=7
    for (int n = 0; n < tripcount; n++) {
      int mz = n*nix*niy + nzsum;
      FFT_SCALAR y0 = z0*rho[2][n];
#pragma loop_count=7
      for (int m = 0; m < tripcount; m++) {</pre>
        int mzy = mz + m*nix;
        FFT SCALAR \times 0 = y0 \times rho[1][m];
#pragma simd
        for (int l = 0; l < 8; l++) {
          int mzyx = mzy + l;
          localDensity[mzyx] += x0*rho[0][l];
      }
    }
        Our Implementation
```

```
for (int i = ifrom; i < ito; i++) {
    int nx = part2grid[i][0];
    int ny = part2grid[i][1];
    int nz = part2grid[i][2];
    int nysum = nlower + ny - nylo_out;
    int nxsum = nlower + nx - nxlo_out + ngrid*tid;
    int nzsum = (nlower + nz - nzlo_out)*nix*niy + nysum*nix + nxsum;
    FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
    FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
    FFT_SCALAR dz = nz+fshiftone - (x[i].z-lo2)*zi;
#pragma simd
    for (int k = nlower; k <= nupper; k++) {</pre>
      FFT_SCALAR r1, r2, r3;
      r1 = r2 = r3 = ZEROF;
      for (int l = order-1; l >= 0; l--) {
        r1 = rho\_coeff[l][k] + r1*dx;
        r2 = rho\_coeff[l][k] + r2*dy;
             rho_coeff[l][k] + r3*dz;
            [k-nlower] = r1;
            [k-nlower] = r2;
            [k-nlower] = r3;
            AR z0 = fdelvolinv * q[i];
             count=7
             n = 0; n < tripcount; n++) {
             = n*nix*niy + nzsum;
            ALAR y0 = z0*rho[2][n];
             count=7
            nt m = 0; m < tripcount; m++) {
            mzy = mz + m*nix;
            SCALAR \times 0 = y0*rho[1][m];
            (int l = 0; l < 8; l++) {
            t mzyx = mzy + l;
```

Innermost loop vectorized with bigger stencil. Private grids prevent race conditions.

```
#pragma loop_count=7
    for (int n = 0; n < tripcount; n++) {
      int mz = n*nix*niy + nzsum;
      FFT_SCALAR y0 = z0*rho[2][n];
#pragma loop_count=7
      for (int m = 0; m < tripcount; m++) {</pre>
        int mzy = mz + m*nix;
        FFT_SCALAR \times 0 = y0 \times rho[1][m];
#pragma simd
        for (int l = 0; l < 8; l++) {
           int mzvx = mzv + l;
           localDensity[mzyx] += x0*rho[0][1]; calDensity[mzyx] += x0*rho[0][1];
```

Our Implementation

Very similar to charge mapping: Computes stencil coefficients Loops over stencil points.

More work and accesses more memory

Water benchmark: 40.5k atoms 884k FFT grid points

```
#if defined(LMP SIMD COMPILER)
#pragma vector aligned nontemporal
#pragma simd
#endif
for (int i = iifrom; i < iito; i++) {
  int nx = part2grid[i][0];
  int ny = part2grid[i][1];
  int nz = part2grid[i][2];
  FFT_SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
  FFT SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
  FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi;
  flt_t rho[3][INTEL_P3M_MAXORDER];
  for (int k = nlower; k <= nupper; k++) {
    FFT_SCALAR r1 = rho_coeff[order-1][k];
    FFT SCALAR r2 = rho coeff[order-1][k];
    FFT_SCALAR r3 = rho_coeff[order-1][k];
    for (int l = order-2; l >= 0; l--) {
      r1 = rho\_coeff[l][k] + r1*dx;
      r2 = rho\_coeff[l][k] + r2*dy;
      r3 = rho_coeff[l][k] + r3*dz;
    rho[0][k-nlower] = r1;
    rho[1][k-nlower] = r2;
    rho[2][k-nlower] = r3;
  FFT SCALAR ekx, eky, ekz;
  ekx = eky = ekz = ZEROF;
  for (int n = nlower; n <= nupper; n++) {</pre>
    int mz = n+nz:
    FFT_SCALAR z0 = rho[2][n-nlower];
    for (int m = nlower; m <= nupper; m++) {
      int my = m+ny;
      FFT_SCALAR y0 = z0*rho[1][m-nlower];
      for (int l = nlower; l <= nupper; l++) {
        int mx = l+nx;
        FFT_SCALAR x0 = y0*rho[0][l-nlower];
        ekx = x0*vdx brick[mz][my][mx];
        eky -= x0*vdy_brick[mz][my][mx];
        ekz -= x0*vdz_brick[mz][my][mx];
   }
```

#pragma simd around atom loop

Update 3 force components

Update 3 force components

```
FFT_SCALAR ekx, eky, ekz;
ekx = eky = ekz = ZER0F;
for (int n = nlower; n <= nupper; n++) {</pre>
  int mz = n+nz;
  FFT_SCALAR z0 = rho[2][n-nlower];
  for (int m = nlower; m <= nupper; m++) {</pre>
    int my = m + ny;
    FFT_SCALAR y0 = z0*rho[1][m-nlower];
    for (int l = nlower; l <= nupper; l++) {</pre>
      int mx = l+nx:
      FFT_SCALAR \times 0 = y0 \times rho[0][l-nlower];
      ekx -= x0*vdx brick[mz][my][mx];
      eky -= x0*vdy_brick[mz][my][mx];
      ekz -= x0*vdz_brick[mz][my][mx];
```

```
#if defined(LMP_SIMD_COMPILER)
#pragma vector aligned nontemporal
#pragma simd
#endif
for (int i = iifrom; i < iito; i++) {
  int nx = part2grid[i][0];
  int ny = part2grid[i][1];
  int nz = part2grid[i][2];
  FFT SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
  FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
  FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi;
  flt_t rho[3][INTEL_P3M_MAXORDER];
  for (int k = nlower; k <= nupper; k++) {
    FFT SCALAR r1 = rho coeff[order-1][k];
    FFT SCALAR r2 = rho coeff[order-1][k];
    FFT_SCALAR r3 = rho_coeff[order-1][k];
    for (int l = order-2; l >= 0; l--) {
      r1 = rho\_coeff[l][k] + r1*dx;
      r2 = rho coeff[l][k] + r2*dy;
      r3 = rho\_coeff[l][k] + r3*dz;
    rho[0][k-nlower] = r1;
    rho[1][k-nlower] = r2;
    rho[2][k-nlower] = r3;
  FFT_SCALAR ekx, eky, ekz;
  ekx = eky = ekz = ZEROF;
  for (int n = nlower; n <= nupper; n++) {</pre>
    int mz = n+nz;
    FFT_SCALAR z0 = rho[2][n-nlower];
    for (int m = nlower; m <= nupper; m++) {</pre>
      int my = m + ny;
      FFT_SCALAR y0 = z0*rho[1][m-nlower];
      for (int l = nlower; l <= nupper; l++) {
        int mx = l+nx;
        FFT_SCALAR x0 = y0*rho[0][l-nlower];
        ekx -= x0*vdx brick[mz][my][mx];
        eky -= x0*vdy brick[mz][my][mx];
        ekz -= x0*vdz brick[mz][my][mx];
```

```
for (int i = iifrom; i < iito; i++) {
   int nx = part2grid[i][0];
   int ny = part2grid[i][1];
   int nz = part2grid[i][2];
   int nxsum = nx + nlower;
   int nysum = ny + nlower;
   int nzsum = nz + nlower;
   FFT SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
   FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
   FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi;
   #pragma simd
   for (int k = nlower; k <= nupper; k++) {
     FFT_SCALAR r1, r2, r3;
     r1 = r2 = r3 = ZEROF;
     for (int l = order-1; l >= 0; l--) {
       r1 = rho\_coeff[l][k] + r1*dx;
       r2 = rho\_coeff[l][k] + r2*dy;
        r3 = rho coeff[l][k] + r3*dz;
     rho[0][k-nlower] = r1;
     rho[1][k-nlower] = r2;
     rho[2][k-nlower] = r3;
   FFT_SCALAR ekx[8]={ZEROF}, eky[8]={ZEROF}, ekz[8]={ZEROF};
   FFT_SCALAR ekxsum, ekysum, ekzsum;
   ekxsum = ekysum = ekzsum = ZEROF;
   for (int n = 0; n < tripcount; n++) {
     int mz = n+nzsum;
     FFT_SCALAR z0 = rho[2][n];
     for (int m = 0; m < tripcount; m++) {
        int my = m+nysum;
       FFT_SCALAR y0 = z0*rho[1][m];
#pragma simd
       for (int l = 0; l < 8; l++) {
          int mx = l+nxsum;
         FFT_SCALAR \times 0 = y0*rho[0][1];
         ekx[l] -= x0*vdx_brick[mz][my][mx];
         eky[l] -= x0*vdy_brick[mz][my][mx];
          ekz[l] = x0*vdz_brick[mz][my][mx];
   for (int l = 0; l < tripcount; l++){}
       ekxsum += ekx[l];
        ekysum += eky[l];
       ekzsum += ekz[l];
```

Inner SIMD

```
for (int i = iifrom; i < iito; i++) {
   int nx = part2grid[i][0];
   int ny = part2grid[i][1];
   int nz = part2grid[i][2];
   int nxsum = nx + nlower:
   int nysum = ny + nlower;
   int nzsum = nz + nlower:
   FFT SCALAR dx = nx+fshiftone - (x[i].x-lo0)*xi;
   FFT_SCALAR dy = ny+fshiftone - (x[i].y-lo1)*yi;
   FFT SCALAR dz = nz + fshiftone - (x[i].z - lo2)*zi;
            for (int n = 0; n < tripcount; n++) {
   #pragi
   for (
               int mz = n+nzsum;
    FFT
    r1
               FFT_SCALAR z0 = rho[2][n];
    for
               for (int m = 0; m < tripcount; m++) {</pre>
                 int my = m+nysum;
    rho
    rho
                 FFT_SCALAR y0 = z0*rho[1][m];
    rho
       #pragma simd
                 for (int l = 0; l < 8; l++) {
   FFT S
  FFT_S
                    int mx = l + nxsum;
   ekxsu
                    FFT_SCALAR \times 0 = y0*rho[0][1];
   for (
                    ekx[l] = x0*vdx_brick[mz][my][mx];
    int
    FFT
                    eky[l] -= x0*vdy_brick[mz][my][mx];
    for
                    ekz[l] = x0*vdz_brick[mz][my][mx];
#pragma s
            for (int l = 0; l < tripcount; l++){
                 ekxsum += ekx[l];
                 ekysum += eky[l];
   for
                 ekzsum += ekz[l];
```

Inner SIMD

10% faster with tripcount instead of 7

50% faster with 8 instead of 7

Reduction of force component arrays

```
for (int iz = 0; iz < niz; iz++) {
   for (int iy = 0; iy < niy; iy++) {
     for ( int ix = 0; ix < nix; ix++) {
      int iter = 2*(iz*niy*nix + iy*nix + ix);
       vdxy_brick[iter] = vdx_brick[nzlo_out + iz][nylo_out + iy][nxlo_out + ix];
      vdxy_brick[iter+1] = vdy_brick[nzlo_out + iz][nylo_out + iy][nxlo_out + ix];
      vdz0_brick[iter] = vdz_brick[nzlo_out + iz][nylo_out + iy][nxlo_out + ix];
      vdz0_brick[iter+1] = 0.;
   }
}</pre>
```

```
for (int n = 0; n < tripcount; n++) {
      int mz = 2*n*nix*niy+nzsum;
      FFT SCALAR z0 = rho2[n];
      for (int m = 0; m < tripcount; m++) {</pre>
        int mzy = mz + 2*m*nix;
        FFT SCALAR v0 = z0*rho1[m];
#pragma simd
        for (int l = 0; l < 16; l++) {
          FFT SCALAR x0 = y0*rho0[1];
          ekxy[l] -= x0*vdxy_brick[mzy+l];
          ekz0[l] = x0*vdz0 brick[mzy+l];
        }
    for (int l = 0; l < 16; l=l+2){
        ekxsum += ekxy[l];
        ekysum += ekxy[l+1];
        ekzsum += ekz0[l];
    }
```

3 vector operations instead of 4: 60% faster

16-iteration loops are faster on KNL, even with extra 0s

Different "flavors" of PPPM have the same overall structure

```
for (int k = nlower; k <= nupper; k++) {
 FFT SCALAR r1, r2, r3, dr1, dr2, dr3;
 dr1 = dr2 = dr3 = ZER0F:
  r1 = rho coeff[order-1][k];
  r2 = rho coeff[order-1][k];
  r3 = rho coeff[order-1][k];
  for (int l = order-2; l >= 0; l--) {
    r1 = rho coeff[l][k] + r1 * dx;
    r2 = rho_coeff[l][k] + r2 * dy;
    r3 = rho\_coeff[l][k] + r3 * dz;
   dr1 = drho_coeff[l][k] + dr1 * dx;
   dr2 = drho_coeff[l][k] + dr2 * dy;
    dr3 = drho_coeff[l][k] + dr3 * dz;
  rho[0][k-nlower] = r1;
  rho[1][k-nlower] = r2;
  rho[2][k-nlower] = r3;
  drho[0][k-nlower] = dr1;
  drho[1][k-nlower] = dr2;
 drho[2][k-nlower] = dr3;
```

6 coefficients are computed for each stencil point

Different "flavors" of PPPM have the same overall structure

```
for (int n = nlower; n <= nupper; n++) {
   int mz = n+nz;
   for (int m = nlower; m <= nupper; m++) {
      int my = m+ny;
      FFT_SCALAR ekx_p = rho[1][m-nlower] * rho[2][n-nlower];
      FFT_SCALAR eky_p = drho[1][m-nlower] * rho[2][n-nlower];
      FFT_SCALAR ekz_p = rho[1][m-nlower] * drho[2][n-nlower];
      for (int l = nlower; l <= nupper; l++) {
        int mx = l+nx;
        ekx += drho[0][l-nlower] * ekx_p * u_brick[mz][my][mx];
        eky += rho[0][l-nlower] * eky_p * u_brick[mz][my][mx];
        ekz += rho[0][l-nlower] * ekz_p * u_brick[mz][my][mx];
    }
}</pre>
```

Only one set of grid values is used to compute every component of the potential by choosing different combinations of coefficients

Different "flavors" of PPPM have the same overall structure

```
ekx *= hx inv;
eky *= hy_inv;
ekz *= hz inv;
// convert E-field to force
const flt t gfactor = fggrd2es * g[i];
const flt_t twoqsq = (flt_t)2.0 * q[i] * q[i];
const flt_t s1 = x[i].x * hx_inv;
const flt_t s2 = x[i].y * hy_inv;
const flt t s3 = x[i].z * hz inv;
flt t sf = fsf coeff0 * sin(ftwo pi * s1);
sf += fsf_coeff1 * sin(ffour_pi * s1);
sf *= twoqsq;
f[i].x += qfactor * ekx - fqqrd2es * sf;
sf = fsf coeff2 * sin(ftwo pi * s2);
sf += fsf coeff3 * sin(ffour pi * s2);
sf *= twoqsq;
f[i].y += qfactor * eky - fqqrd2es * sf;
sf = fsf coeff4 * sin(ftwo pi * s3);
sf += fsf coeff5 * sin(ffour pi * s3);
sf *= twoqsq;
if (slabflag != 2) f[i].z += qfactor * ekz - fqqrd2es * sf;
```

Work is done after the stencil loop to convert potential for each atom into force

Subroutine Speedup

Accuracy vs Ewald Summation

Version	mode	r_c	S	precompute	RMS error	Version	mode	r_c	S	RMS error
	IK				0.0186					
opt	IK	$7 { m \AA}$	7	-	0.0186	ref	IK	3\AA	7	0.5853
opt	IK	$7 { m \AA}$	7	500 points	0.0313	ref	IK	$5 \rm \AA$	7	0.0124
opt	IK	$7 { m \AA}$	7	5000 points	0.0188	ref	IK	$7 { m \AA}$	3	0.0197
opt	AD	$7 \rm{\AA}$	7	5000 points	0.0188	ref	IK	$7 \rm{\AA}$	5	0.0194

Accuracy is insensitive to inputs until cutoff drops to 3Å.

Vector and threading optimizations have no impact on accuracy.

Stencil coefficient precomputation preserves accuracy if enough points are used.

Overall Speedup (1 core / 1 thread)

Together with optimization of the pair interactions (by Mike Brown of Intel), we achieve overall speedsups of 2-3x.

PPPM speedup shifts the optimal cutoff lower, while pair interaction speedup shifts it higher.

Overall Speedup (parallel)

In parallel, the FFTs become more expensive – other than occasionally communicating atoms moving through the domain, this is the only communication.

The runtime-optimal cutoff rises and work should be shifted into pair interactions.

If we choose a cutoff based on few processors, scalability is very bad!

Overall Speedup (parallel)

Scalability worsens across multiple nodes (64 to 128 cores).

We end up with worse overall scaling but better real performance because everything *except* the FFTs is much faster.

You can pick cutoffs that make scalability look good but this is misleading.

A better-scaling method for solving Poisson's Equation is needed (MSM?).

LAMMPS' PPPM Long-Range Solver for the Second Generation Xeon Phi

William McDoniel

Ahmed E. Ismail

Paolo Bientinesi

ISC '17 Frankfurt

Thanks to: Klaus-Dieter Oertel, Georg Zitzlsberger, and Mike Brown Funded as part of an Intel Parallel Computing Center