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Image from wikimedia

Molecular Dynamics

l Simulations the motion of individual 
molecules

l Widely used in fields from materials 
science to biology

l Computes the interaction forces 
between and within molecules 
according to potential functions
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LAMMPS

l Large-scale Atomic-Molecular Massively Parallel Simulator

Sandia National Labs
http://lammps.sandia.gov

Wide collection of potentials

Open source, support for OpenMP, 
Xeon Phi, and GPU (CUDA and 
OpenCL)
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Intermolecular Forces

The forces on atoms are commonly taken to be the result of independent pair-
wise interactions.

Lennard-Jones potential:

Where the force on an atom is given by: 

But long-range forces can be important!

The electrical potential only decreases as 1/r and doesn’t perfectly cancel for 
polar molecules.

Interfaces can also create asymmetries that inhibit cancellation.
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Particle-Particle Particle-Mesh

l PPPM1 approximates long-range forces without requiring pair-wise 
calculations.

Four Steps:

1. Determine the charge distribution ρ by mapping particle charges to a grid.

2. Take the Fourier transform of the charge distribution to find the potential:

3. Obtain forces due to all interactions as the gradient of Φ by inverse Fourier 
transform:

4. Map forces back to the particles.

�⃗� = −𝛻𝛷

𝛻2𝛷 = −
𝜌
𝜖9

1. Hockney and Eastwood, 1988
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Profiling LAMMPS

We use the USER-OMP implementation of LAMMPS as a baseline.
Typically: rc is 6 angstroms, relative error is 0.0001, and stencil size is 5.

The work in FFTs increases rapidly at low cutoffs.
The non-FFT work in PPPM is insensitive to grid size.
Sometimes the FFTs take surprisingly long.

Water benchmark:
40.5k atoms
884k FFT grid points
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Problem: Users

l Runtime and accuracy depend on user inputs and problem specifics 
in very unintuitive ways

l Even expert users make systematic errors in determining good 
inputs.

l Many users do not really try to search for good inputs for their 
problem.

l We need LAMMPS to work for everyone!
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Charge Mapping

Stencil coefficients are polynomials of order stencil size.
3x[stencil size] of them are computed.

Loop over cubic stencil and 
contribute to grid points

Loop over atoms in MPI rank

USER-OMP Implementation
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Charge Mapping

Loop over atoms in MPI rank

USER-OMP Implementation
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Charge Mapping

Stencil coefficients are polynomials of order stencil size.
3x[stencil size] are computed.

USER-OMP Implementation
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Charge Mapping

Loop over cubic stencil and contribute to grid points

USER-OMP Implementation
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Charge Mapping

Our Implementation

Thread over atoms

#pragma simd
for coefficients

USER-OMP Implementation
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Charge Mapping

Innermost loop vectorized with bigger stencil.
Private grids prevent race conditions.

Our Implementation
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Distributing Forces ik
Very similar to charge mapping:
Computes stencil coefficients
Loops over stencil points.

More work and accesses more 
memory

#pragma simd
around atom loop

Update 3 force 
components

Water benchmark:
40.5k atoms
884k FFT grid points
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Distributing Forces ik

Update 3 force components
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Distributing Forces ik
Inner SIMD
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10% faster with 
tripcount instead of 7

50% faster with 
8 instead of 7

Reduction of force 
component arrays

Distributing Forces ik
Inner SIMD
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16-iteration loops are faster 
on KNL, even with extra 0s

Repacking vdx and vdy into vdxy, vdz into 
vdz0 (done outside atom loop)

3 vector operations instead of 4: 60% faster

Distributing Forces ik
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Distributing Forces ad
Different “flavors” of PPPM have the same overall structure

6 coefficients are computed 
for each stencil point
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Distributing Forces ad
Different “flavors” of PPPM have the same overall structure

Only one set of grid values is used to compute every 
component of the potential by choosing different 
combinations of coefficients
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Distributing Forces ad
Different “flavors” of PPPM have the same overall structure

Work is done after the stencil loop to 
convert potential for each atom into force
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Subroutine Speedup
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Accuracy vs Ewald Summation

Accuracy is insensitive to inputs until cutoff drops to 3Å.

Vector and threading optimizations have no impact on accuracy.

Stencil coefficient precomputation preserves accuracy if enough points are used.
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Overall Speedup (1 core / 1 thread)

Together with optimization of the pair interactions (by Mike Brown of Intel), we 
achieve overall speedsups of 2-3x.

PPPM speedup shifts the optimal cutoff lower, while pair interaction speedup shifts 
it higher.  
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Overall Speedup (parallel)

In parallel, the FFTs become more expensive – other than occasionally 
communicating atoms moving through the domain, this is the only communication.

The runtime-optimal cutoff rises and work should be shifted into pair interactions.  

If we choose a cutoff based on few processors, scalability is very bad!
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Overall Speedup (parallel)

Scalability worsens across multiple nodes (64 to 128 cores).

We end up with worse overall scaling but better real performance because 
everything except the FFTs is much faster.

You can pick cutoffs that make scalability look good but this is misleading.

A better-scaling method for solving Poisson’s Equation is needed (MSM?).
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