
High-performance and automatic computing

Paolo Bientinesi

AICES, RWTH Aachen
pauldj@aices.rwth-aachen.de

October 22nd, 2013
Goethe Universität Frankfurt am Main

1 / 23

1 HPAC: Introduction

2 Application: Genome-Wide Association Studies

3 Performance experiments

4 Conclusions

2 / 23

Overview

High-performance computing
numerical computations, parallel architectures
→ time-to-solution, efficiency, scalability, . . .

Automatic computing
optimization, search, but also derivation & deduction
→ range of algorithms, productivity

Applications
→ application-specific properties & needs, large scale, full code

3 / 23

Overview

High-performance computing
numerical computations, parallel architectures
→ time-to-solution, efficiency, scalability, . . .

Automatic computing
optimization, search, but also derivation & deduction
→ range of algorithms, productivity

Applications
→ application-specific properties & needs, large scale, full code

3 / 23

Overview

High-performance computing
numerical computations, parallel architectures
→ time-to-solution, efficiency, scalability, . . .

Automatic computing
optimization, search, but also derivation & deduction
→ range of algorithms, productivity

Applications
→ application-specific properties & needs, large scale, full code

3 / 23

hpac.rwth-aachen.de – group overview

methods & applications
P. Bientinesi

E. Di Napoli Electronic structure calculations

M. Petschow Parallel eigensolvers

D. Fabregat Automation, Computational biology

D. Tameling? Molecular dynamics

E. Peise Performance modeling & prediction

L. Beyer Density Functional Theory

F. Kürten, Y. Madzhunkov, A. Frank, P. Springer, . . .

4 / 23

hpac.rwth-aachen.de – group overview

methods & applications
P. Bientinesi

E. Di Napoli Electronic structure calculations

M. Petschow Parallel eigensolvers

D. Fabregat Automation, Computational biology

D. Tameling? Molecular dynamics

E. Peise Performance modeling & prediction

L. Beyer Density Functional Theory

F. Kürten, Y. Madzhunkov, A. Frank, P. Springer, . . .

D. Fabregat

E. Peise

Y. Aulchenko

4 / 23

1 HPAC: Introduction

2 Application: Genome-Wide Association Studies

3 Performance experiments

4 Conclusions

5 / 23

Genome-Wide Association Studies

Source: David Hall

Genome-Wide Association Studies

Source: David Hall

Genome-Wide Association Studies

Yurii Paolo

“Mixed models” ???

Linear regression with non-independent outcomes ???

Generalized least-square problems . . .

b :=
(
XTM−1X

)−1
XTM−1y

Inputs: M ∈ Rn×n, X ∈ Rn×p, y ∈ Rn

Output: b ∈ Rp

?To be repeated millions of times?

7 / 23

Genome-Wide Association Studies

Yurii Paolo

“Mixed models” ???

Linear regression with non-independent outcomes ???

Generalized least-square problems . . .

b :=
(
XTM−1X

)−1
XTM−1y

Inputs: M ∈ Rn×n, X ∈ Rn×p, y ∈ Rn

Output: b ∈ Rp

?To be repeated millions of times?

7 / 23

Genome-Wide Association Studies

Yurii Paolo

“Mixed models” ???

Linear regression with non-independent outcomes ???

Generalized least-square problems . . .

b :=
(
XTM−1X

)−1
XTM−1y

Inputs: M ∈ Rn×n, X ∈ Rn×p, y ∈ Rn

Output: b ∈ Rp

?To be repeated millions of times?

7 / 23

Genome-Wide Association Studies

Yurii Paolo

“Mixed models” ???

Linear regression with non-independent outcomes ???

Generalized least-square problems . . .

b :=
(
XTM−1X

)−1
XTM−1y

Inputs: M ∈ Rn×n, X ∈ Rn×p, y ∈ Rn

Output: b ∈ Rp

?To be repeated millions of times?

7 / 23

Genome-Wide Association Studies

Yurii Paolo

“Mixed models” ???

Linear regression with non-independent outcomes ???

Generalized least-square problems . . .

b :=
(
XTM−1X

)−1
XTM−1y

Inputs: M ∈ Rn×n, X ∈ Rn×p, y ∈ Rn

Output: b ∈ Rp

?To be repeated millions of times?

7 / 23

Mixed models b :=
(
XTM−1X

)−1
XTM−1y

= -1 -1 -1

Genome-wide association analysis
y: phenotype (outcome; vector of observations)
E.g.: height, blood pressure for a set of people

X : genome measurements and covariates
(design matrix; predictors)
E.g.: sex and age over height

M : dependencies between observations
E.g.: tall parents have tall children

b: relation between a variation in the outcome (y)
and a variation in the genome sequence (X)

8 / 23

Stats

n: Population size

9 / 23

Stats

m: Number of SNPs

9 / 23

Problem definition (1)

b :=
(
XTM−1X

)−1
XTM−1y

“to be repeated millions of times”

⇓
bi :=

(
XT

i M
−1
i Xi

)−1
XT

i M
−1
i yi

for i = 1, . . . ,m

⇓
Problem size

Mi ∈ Rn×n 1000 ≤ n ≤ 20k+ 7.5MBs – 3GBs
Xi ∈ Rn×p 3 ≤ p ≤ 20 30 – 625KBs
yj ∈ Rn 8 – 780KBs
bi ∈ Rp 24 – 160 Bytes
Total 106 ≤ m ≤ 108 7.5 – 3000 TBs

10 / 23

Problem definition (1)

b :=
(
XTM−1X

)−1
XTM−1y

“to be repeated millions of times”
⇓

bi :=
(
XT

i M
−1
i Xi

)−1
XT

i M
−1
i yi

for i = 1, . . . ,m

⇓
Problem size

Mi ∈ Rn×n 1000 ≤ n ≤ 20k+ 7.5MBs – 3GBs
Xi ∈ Rn×p 3 ≤ p ≤ 20 30 – 625KBs
yj ∈ Rn 8 – 780KBs
bi ∈ Rp 24 – 160 Bytes
Total 106 ≤ m ≤ 108 7.5 – 3000 TBs

10 / 23

Problem definition (1)

b :=
(
XTM−1X

)−1
XTM−1y

“to be repeated millions of times”
⇓

bi :=
(
XT

i M
−1
i Xi

)−1
XT

i M
−1
i yi

for i = 1, . . . ,m

⇓
Problem size

Mi ∈ Rn×n 1000 ≤ n ≤ 20k+ 7.5MBs – 3GBs
Xi ∈ Rn×p 3 ≤ p ≤ 20 30 – 625KBs
yj ∈ Rn 8 – 780KBs
bi ∈ Rp 24 – 160 Bytes
Total 106 ≤ m ≤ 108 7.5 – 3000 TBs

10 / 23

Problem definition (2)

bi :=
(
XT

i M
−1
i Xi

)−1
XT

i M
−1
i yi

⇓

bi :=
(
XT

i M
−1Xi

)−1
XT

i M
−1y

and Xi = [XL|XRi],
for i = 1, . . . ,m

⇓
Problem size

M ∈ Rn×n 1000 ≤ n ≤ 100k 7.5MBs – 74.5GBs
XRi ∈ Rn 8 – 780KBs
bi ∈ Rp 24 – 160 Bytes
Total 106 ≤ m ≤ 108 74GBs – 7 TBs

10 / 23

Problem definition (2)

bi :=
(
XT

i M
−1
i Xi

)−1
XT

i M
−1
i yi

⇓

bi :=
(
XT

i M
−1Xi

)−1
XT

i M
−1y

and Xi = [XL|XRi],
for i = 1, . . . ,m

⇓
Problem size

M ∈ Rn×n 1000 ≤ n ≤ 100k 7.5MBs – 74.5GBs
XRi ∈ Rn 8 – 780KBs
bi ∈ Rp 24 – 160 Bytes
Total 106 ≤ m ≤ 108 74GBs – 7 TBs

10 / 23

Problem definition (3)

bi :=
(
XT

i M
−1Xi

)−1
XT

i M
−1y

⇓

bij :=
(
XT

i M
−1
j Xi

)−1
XT

i M
−1
j yj

and
Mj = σj(Φ + hjI),

for i = 1, . . . ,m and j = 1, . . . , t

Moreover, either t = 1 or t ≤ 105.

10 / 23

Problem definition (3)

bi :=
(
XT

i M
−1Xi

)−1
XT

i M
−1y

⇓

bij :=
(
XT

i M
−1
j Xi

)−1
XT

i M
−1
j yj

and
Mj = σj(Φ + hjI),

for i = 1, . . . ,m and j = 1, . . . , t

Moreover, either t = 1 or t ≤ 105.

10 / 23

GWAS: complete problem definition

γ δ

α

β

m

t

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ Mα yα

bγ,β

=
XT
γ

−1

Mβ Xγ

−1

XT
γ Mβ yβ bδ,β

=
XT
δ

−1

Mβ Xδ

−1

XT
δ

Mβ yβ

XL XRδ

Problem size
M ∈ Rn×n 1000 ≤ n ≤ 100k 7.5MBs – 74.5GBs
XRi, yj ∈ Rn 8 – 780KBs
bij ∈ Rp 3 ≤ p ≤ 20 24 – 160 Bytes
Total m ≤ 108, t ≤ 105 1.5 – 100s TBs

11 / 23

GWAS: complete problem definition

γ δ

α

β

m

t

p

B

bγ,α

=
XT
γ

−1

Mα Xγ

−1

XT
γ Mα yα

bγ,β

=
XT
γ

−1

Mβ Xγ

−1

XT
γ Mβ yβ bδ,β

=
XT
δ

−1

Mβ Xδ

−1

XT
δ

Mβ yβ

XL XRδ

Problem size
M ∈ Rn×n 1000 ≤ n ≤ 100k 7.5MBs – 74.5GBs
XRi, yj ∈ Rn 8 – 780KBs
bij ∈ Rp 3 ≤ p ≤ 20 24 – 160 Bytes
Total m ≤ 108, t ≤ 105 1.5 – 100s TBs

11 / 23

Vision: domain-specific compiler

α, β, γ ∈ R

µ :=
(
γ ∗ α−1 ∗ γ

)−1 ∗ β
⇓

compiler
⇓

code for µ :=
αβ

γ2

Nov. 1954: The IBM Mathematical FORmula TRANslating System, FORTRAN

“a set of programs to accept a concise formulation of a problem
and to produce automatically a solution of the problem”

12 / 23

Vision: domain-specific compiler

α, β, γ ∈ R

µ :=
(
γ ∗ α−1 ∗ γ

)−1 ∗ β
⇓

compiler
⇓

code for µ :=
αβ

γ2

Nov. 1954: The IBM Mathematical FORmula TRANslating System, FORTRAN

“a set of programs to accept a concise formulation of a problem
and to produce automatically a solution of the problem”

12 / 23

Automatic generation

Y ∈ Rn×p, A ∈ Rn×n, b ∈ Rn

v := (Y T ∗A−1 ∗ Y)−1 ∗ b
⇓

< lin. alg. compiler >
⇓

algorithm, code

Matrix algebra

Inference of properties

Building blocks

Sequences of operations

Cost analysis

Code generation

13 / 23

Automatic generation

Y ∈ Rn×p, A ∈ Rn×n, b ∈ Rn

v := (Y T ∗A−1 ∗ Y)−1 ∗ b
⇓

< lin. alg. compiler >
⇓

algorithm, code

Matrix algebra

Inference of properties

Building blocks

Sequences of operations

Cost analysis

Code generation

13 / 23

Algorithms generated

Algorithm 1 Algorithm 2 . . . Algorithm 20 . . .

LLT = M

X := L−1X

S := XTX

GGT = S

y := L−1y

b := XT y

b := G−1b

b := G−T b

LLT = M

X := L−1X

QR := X

y := L−1y

b := QT y

b := R−1b

ZWZT = Φ

D :=(hW +(1−h)I)−1

KKT = D

X := ZTX

X := KTX

QR := X

y := L−1y

b := QT y

b := R−1b

14 / 23

Many algorithms! Predictions?

Flop count – rough estimate

Alg. 1 Alg. 2 Alg. 20

Single instance
(t = 1)

O(n3) O(n3) O(n3)

2D sequence
(t� 1)

O(tn3 + mtn2) O(tn3 + mtn2) O(n3 + mtn)

Analytic models
Roman Iakymchuk

Model-based prediction
Elmar Peise

15 / 23

Many algorithms! Predictions?

Flop count – rough estimate

Alg. 1 Alg. 2 Alg. 20

Single instance
(t = 1)

O(n3) O(n3) O(n3)

2D sequence
(t� 1)

O(tn3 + mtn2) O(tn3 + mtn2) O(n3 + mtn)

Analytic models
Roman Iakymchuk

Model-based prediction
Elmar Peise

15 / 23

Many algorithms! Predictions?

Flop count – rough estimate

Alg. 1 Alg. 2 Alg. 20

Single instance
(t = 1)

O(n3) O(n3) O(n3)

2D sequence
(t� 1)

O(tn3 + mtn2) O(tn3 + mtn2) O(n3 + mtn)

Analytic models
Roman Iakymchuk

Model-based prediction
Elmar Peise

15 / 23

Algorithm→ implementations

operands
X input 100s GBs – 2 TBs streaming from disk
y input 1 – 10 GBs streaming from disk
M input MBs – 80 GBs read once
b output 100s MBs or 10s TBs streaming to disk

Does M fit in memory?
YES⇒ single node + multithreading
streaming HD↔CPU, double buffering, in-core implementation

Does M fit in GPU-memory?
Yes⇒ accelerator
streaming HD↔CPU↔GPU, triple+double buffering, GPU implementation

NO⇒ distributed memory + MPI
partitioning + streaming HD↔CPUs, double buffering, data distribution

16 / 23

Algorithm→ implementations

operands
X input 100s GBs – 2 TBs streaming from disk
y input 1 – 10 GBs streaming from disk
M input MBs – 80 GBs read once
b output 100s MBs or 10s TBs streaming to disk

Does M fit in memory?

YES⇒ single node + multithreading
streaming HD↔CPU, double buffering, in-core implementation

Does M fit in GPU-memory?
Yes⇒ accelerator
streaming HD↔CPU↔GPU, triple+double buffering, GPU implementation

NO⇒ distributed memory + MPI
partitioning + streaming HD↔CPUs, double buffering, data distribution

16 / 23

Algorithm→ implementations

operands
X input 100s GBs – 2 TBs streaming from disk
y input 1 – 10 GBs streaming from disk
M input MBs – 80 GBs read once
b output 100s MBs or 10s TBs streaming to disk

Does M fit in memory?
YES⇒ single node + multithreading
streaming HD↔CPU, double buffering, in-core implementation

Does M fit in GPU-memory?
Yes⇒ accelerator
streaming HD↔CPU↔GPU, triple+double buffering, GPU implementation

NO⇒ distributed memory + MPI
partitioning + streaming HD↔CPUs, double buffering, data distribution

16 / 23

Algorithm→ implementations

operands
X input 100s GBs – 2 TBs streaming from disk
y input 1 – 10 GBs streaming from disk
M input MBs – 80 GBs read once
b output 100s MBs or 10s TBs streaming to disk

Does M fit in memory?
YES⇒ single node + multithreading
streaming HD↔CPU, double buffering, in-core implementation

Does M fit in GPU-memory?
Yes⇒ accelerator
streaming HD↔CPU↔GPU, triple+double buffering, GPU implementation

NO⇒ distributed memory + MPI
partitioning + streaming HD↔CPUs, double buffering, data distribution

16 / 23

Algorithm→ implementations

operands
X input 100s GBs – 2 TBs streaming from disk
y input 1 – 10 GBs streaming from disk
M input MBs – 80 GBs read once
b output 100s MBs or 10s TBs streaming to disk

Does M fit in memory?
YES⇒ single node + multithreading
streaming HD↔CPU, double buffering, in-core implementation

Does M fit in GPU-memory?
Yes⇒ accelerator
streaming HD↔CPU↔GPU, triple+double buffering, GPU implementation

NO⇒ distributed memory + MPI
partitioning + streaming HD↔CPUs, double buffering, data distribution

16 / 23

1 HPAC: Introduction

2 Application: Genome-Wide Association Studies

3 Performance experiments

4 Conclusions

17 / 23

Results t = 1
Single-trait analysis

10
20

40

60

80

100

1,000 10,000 20,000 40,000

Ti
m

e
(h

ou
rs

)

Sample size (n)

44 hours

7 hours

25 hours

EMMAX
GWFGLS
FaSTLMM
CLAK-Chol

10
20

40

60

80

106 107 3.6*107
Ti

m
e

(h
ou

rs
)

Number of SNPs (m)

68 hours

6 hours

EMMAX
GWFGLS
FaSTLMM
CLAK-Chol

18 / 23

Results t = 1, large-scale

Single node MPI

1 min

1 hour

1 day

10
3

10
4

10
5

10
6

10
7

T
im

e

m

HP-GWAS
OOC-HP-GWAS

1 load start first Xblk

2 LLT := M

3 XL := L−1XL , y := L−1y

4 copy XL := XL , y := y

5 STL := X
T
LXL , bT := X

T
Ly

6 for each blk
7 load wait current Xblk

8 i f not last blk : load start next Xblk

9 set Xblk := combine (Xblk)

10 Xblk := L−1Xblk

11 set Xblk := l o c a l p a r t (Xblk)

12 Sblk := Xblk
T XL

13 for i in {1, . . . , mblk
np

}
14 set XRi := Xblk[i] , SBLi := Sblk[i]

15 SBRi := XRi
T XRi

16 bBi := XRi
T y

17 set Si :=

(
STL ∗
SBLi SBRi

)
, bi :=

(
bT

bBi

)

18 bi := S−1
i bi

19 set bblk[i] := bi

20 end
21 i f not first blk : store wait previous bblk

22 store start current bblk

23 end
24 store wait last bblk

Algorithm 3: Distributed memory version of
Algorithm 1. Asynchronous I/O operations are de-
picted green, distributed matrices and operations in
blue, and quantities that differ across processes in
red.

In addition to blocking XRi and bBi, the computation of all
row vectors SBLi belonging to the current block is combined
into a single matrix product (line 12) resulting in the SBLi

being stacked in a block Sblk. In line 14, SBLi is selected
from Sblk, along with XRi from Xblk for the innermost loop.
This loop then computes the local bblk independently on
each process. Finally, bblk (whose columns bi corresponds
to the initially loaded vectors XRi within Xblk) is stored
asynchronously, while the next iteration commences.

4.3 Performance Results
We compile Elem-OOC, the C++-implementation of Algorithm 3,
with the GNU C compiler (version 4.7.2), use Elemental
(version 0.78-dev) with OpenMPI (version 1.6.4) and link
to Intel’s Math Kernel Library (MKL version 11.0). In our
tests, we use a compute cluster with 40 nodes, each equipped
with 16 GB of RAM and two quad-core Intel Harpertown
E5450 processors running at 3.00 Ghz. The nodes are con-
nected via InfiniBand and access a high speed Lustre file
system.

Throughout all our experiments, we use the empirically op-
timal local block-size mblk

np
= 256 by choosing mblk = 256np.

4.3.1 Processing huge numbers of SNPs out-of-core
Since Elem-OOC incorporates the double-buffering method
introduced in Section 3, it can process datasets with arbi-

104 105 106 107

10 min

1 hour

1 day

16 GB

32 GB

64 GB

128 GB

m

np = 8

np = 16

np = 32

np = 64

Figure 5: Performance of Elem-OOC as a function
of m. Here, n = 40,000, p = 4, and m ranges from
2,048 to 8.2 · 106. The vertical lines are limits for a
theoretical in-core version of the parallel algorithm
imposed by the accumulated RAM sizes.

0 20,000 40,000 60,000 80,000 105
0

1

2

3

4

16 GB

32 GB

64 GB

n

ti
m

e
[h

o
u
rs

]

np = 8

np = 16

np = 32

np = 64

Figure 6: Performance of Elem-OOC as a function
of n. p = 4, m = 65,536, and n ranges from 5,000
to 100,000. The vertical lines indicate the limits im-
posed by the accumulated RAM sizes.

trarily large m without introducing any overhead due to I/O
operations. To confirm this claim, we perform a series of ex-
periments, using np = 8, 16, 32, and 64 cores (1, 2, 4, and 8
nodes) to solve a system of size n = 40,000 and p = 4 with
increasing dataset size m. The performance of these experi-
ments is presented in Figure 5, where the vertical lines mark
the points at which the 16 GB of RAM per node are insuf-
ficient to store all m vectors XRi. The plot shows a very
smooth behavior with m (dominated by the triangular solve
in Algorithm 3, line 10) well beyond this in-core memory
limit.

4.3.2 Increasing the population size n
We now turn to the main goal of our effort: performing
computations on systems whose matrix M ∈ Rn×n exceeds
the capacity of the main memory. For this purpose, we use
m = 65,536, p = 4 and execute Elem-OOC on np = 8,
16, 32, and 64 cores (1, 2, 4, and 8 nodes) with increasing
matrix size n. Figure 6 reports the performance of these
executions, which is dominated by the cubic complexity of
the Cholesky factorization of M (Algorithm 3, line 2). The
vertical lines indicate where the nodes’ memory would be
exceeded by the size of the distributed M and the buffers
for Xblk. The plot shows that our implementation succeeds

19 / 23

Results t = 1, large-scale

Single node MPI

1 min

1 hour

1 day

10
3

10
4

10
5

10
6

10
7

T
im

e

m

HP-GWAS
OOC-HP-GWAS

1 load start first Xblk

2 LLT := M

3 XL := L−1XL , y := L−1y

4 copy XL := XL , y := y

5 STL := X
T
LXL , bT := X

T
Ly

6 for each blk
7 load wait current Xblk

8 i f not last blk : load start next Xblk

9 set Xblk := combine (Xblk)

10 Xblk := L−1Xblk

11 set Xblk := l o c a l p a r t (Xblk)

12 Sblk := Xblk
T XL

13 for i in {1, . . . , mblk
np

}
14 set XRi := Xblk[i] , SBLi := Sblk[i]

15 SBRi := XRi
T XRi

16 bBi := XRi
T y

17 set Si :=

(
STL ∗
SBLi SBRi

)
, bi :=

(
bT

bBi

)

18 bi := S−1
i bi

19 set bblk[i] := bi

20 end
21 i f not first blk : store wait previous bblk

22 store start current bblk

23 end
24 store wait last bblk

Algorithm 3: Distributed memory version of
Algorithm 1. Asynchronous I/O operations are de-
picted green, distributed matrices and operations in
blue, and quantities that differ across processes in
red.

In addition to blocking XRi and bBi, the computation of all
row vectors SBLi belonging to the current block is combined
into a single matrix product (line 12) resulting in the SBLi

being stacked in a block Sblk. In line 14, SBLi is selected
from Sblk, along with XRi from Xblk for the innermost loop.
This loop then computes the local bblk independently on
each process. Finally, bblk (whose columns bi corresponds
to the initially loaded vectors XRi within Xblk) is stored
asynchronously, while the next iteration commences.

4.3 Performance Results
We compile Elem-OOC, the C++-implementation of Algorithm 3,
with the GNU C compiler (version 4.7.2), use Elemental
(version 0.78-dev) with OpenMPI (version 1.6.4) and link
to Intel’s Math Kernel Library (MKL version 11.0). In our
tests, we use a compute cluster with 40 nodes, each equipped
with 16 GB of RAM and two quad-core Intel Harpertown
E5450 processors running at 3.00 Ghz. The nodes are con-
nected via InfiniBand and access a high speed Lustre file
system.

Throughout all our experiments, we use the empirically op-
timal local block-size mblk

np
= 256 by choosing mblk = 256np.

4.3.1 Processing huge numbers of SNPs out-of-core
Since Elem-OOC incorporates the double-buffering method
introduced in Section 3, it can process datasets with arbi-

104 105 106 107

10 min

1 hour

1 day

16 GB

32 GB

64 GB

128 GB

m

np = 8

np = 16

np = 32

np = 64

Figure 5: Performance of Elem-OOC as a function
of m. Here, n = 40,000, p = 4, and m ranges from
2,048 to 8.2 · 106. The vertical lines are limits for a
theoretical in-core version of the parallel algorithm
imposed by the accumulated RAM sizes.

0 20,000 40,000 60,000 80,000 105
0

1

2

3

4

16 GB

32 GB

64 GB

n

ti
m

e
[h

o
u
rs

]

np = 8

np = 16

np = 32

np = 64

Figure 6: Performance of Elem-OOC as a function
of n. p = 4, m = 65,536, and n ranges from 5,000
to 100,000. The vertical lines indicate the limits im-
posed by the accumulated RAM sizes.

trarily large m without introducing any overhead due to I/O
operations. To confirm this claim, we perform a series of ex-
periments, using np = 8, 16, 32, and 64 cores (1, 2, 4, and 8
nodes) to solve a system of size n = 40,000 and p = 4 with
increasing dataset size m. The performance of these experi-
ments is presented in Figure 5, where the vertical lines mark
the points at which the 16 GB of RAM per node are insuf-
ficient to store all m vectors XRi. The plot shows a very
smooth behavior with m (dominated by the triangular solve
in Algorithm 3, line 10) well beyond this in-core memory
limit.

4.3.2 Increasing the population size n
We now turn to the main goal of our effort: performing
computations on systems whose matrix M ∈ Rn×n exceeds
the capacity of the main memory. For this purpose, we use
m = 65,536, p = 4 and execute Elem-OOC on np = 8,
16, 32, and 64 cores (1, 2, 4, and 8 nodes) with increasing
matrix size n. Figure 6 reports the performance of these
executions, which is dominated by the cubic complexity of
the Cholesky factorization of M (Algorithm 3, line 2). The
vertical lines indicate where the nodes’ memory would be
exceeded by the size of the distributed M and the buffers
for Xblk. The plot shows that our implementation succeeds

19 / 23

1 GPU Scalability

m CPU only CPU + 1GPU CPU + 2GPU
1000
5000
10000
20000
25000
30000
40000
50000
60000
70000
80000
90000
100000

1,79 0,490 0,294
1,22

11,6 4,174 2,251
24,9 8,201 4,308

10,44 5,326
32,9 12,47 6,3
43,1 16,56 8,3
52,4 20,59 10,3
65,6 24,62 12,4
74,6 28,75 14,3
84,8 32,76 16,3
96,7 36,75 18,3

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU CPU + 2GPU

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU

⟵in-core out-of-core⟶⟵in-core out-of-core⟶

1 2 3 4
Runtime
Ideal
scalability

41 21,6 16,2 11,7
40,7 20,4 13,6 10,2

0

11

23

34

45 40,7s

Runtime Ideal scalability

0

12,5

25

37,5

50

1 2 3 4

40,7

21,6

16,2
11,7

Ru
nt

im
e

[s
]

Number of GPUs

Runtime Ideal scalability

20 / 23

1 GPU Scalability

m CPU only CPU + 1GPU CPU + 2GPU
1000
5000
10000
20000
25000
30000
40000
50000
60000
70000
80000
90000
100000

1,79 0,490 0,294
1,22

11,6 4,174 2,251
24,9 8,201 4,308

10,44 5,326
32,9 12,47 6,3
43,1 16,56 8,3
52,4 20,59 10,3
65,6 24,62 12,4
74,6 28,75 14,3
84,8 32,76 16,3
96,7 36,75 18,3

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU CPU + 2GPU

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU

⟵in-core out-of-core⟶⟵in-core out-of-core⟶

1 2 3 4
Runtime
Ideal
scalability

41 21,6 16,2 11,7
40,7 20,4 13,6 10,2

0

11

23

34

45 40,7s

Runtime Ideal scalability

0

12,5

25

37,5

50

1 2 3 4

40,7

21,6

16,2
11,7

Ru
nt

im
e

[s
]

Number of GPUs

Runtime Ideal scalability

20 / 23

Results t� 1
Multi-trait analysis, “OMICS”-data

1

2

3

4

5

104 5 * 104 105

Ti
m

e
(y

ea
rs

)

Number of traits (t)

14 hours

20 months

26 months

4.58 years
EMMAX
FaSTLMM
GWFGLS
CLAK-Eig

 1
 250
 500
 750

 1000
 1250
 1500
 1750
 2000

100 101 102 103 104 105
R

at
io

 o
ve

r C
LA

K-
Ei

g
Number of traits (t)

FaST-LMM: 1352x

GWFGLS: 1012x

EMMAX: 2789x

CLAK-Eig: 1x

21 / 23

1 HPAC: Introduction

2 Application: Genome-Wide Association Studies

3 Performance experiments

4 Conclusions

22 / 23

Final comments

HPC’s perspective
In-core efficiency
How to sustain efficiency?

App’s perspective
Many data formats
Missing data, bogus data
Output data. Post-processing?
New features

HUGE gap:
algorithm↔ optimized implementation
(data management, parallelism)

Development cycle: several months!

How to deal with BIG problems?
Expose knowledge, exploit knowledge

23 / 23

Final comments

HPC’s perspective
In-core efficiency
How to sustain efficiency?

App’s perspective
Many data formats
Missing data, bogus data
Output data. Post-processing?
New features

HUGE gap:
algorithm↔ optimized implementation
(data management, parallelism)

Development cycle: several months!

How to deal with BIG problems?
Expose knowledge, exploit knowledge

23 / 23

Final comments

HPC’s perspective
In-core efficiency
How to sustain efficiency?

App’s perspective
Many data formats
Missing data, bogus data
Output data. Post-processing?
New features

HUGE gap:
algorithm↔ optimized implementation
(data management, parallelism)

Development cycle: several months!

How to deal with BIG problems?
Expose knowledge, exploit knowledge

23 / 23

Final comments

HPC’s perspective
In-core efficiency
How to sustain efficiency?

App’s perspective
Many data formats
Missing data, bogus data
Output data. Post-processing?
New features

HUGE gap:
algorithm↔ optimized implementation
(data management, parallelism)

Development cycle: several months!

How to deal with BIG problems?
Expose knowledge, exploit knowledge

23 / 23

Final comments

HPC’s perspective
In-core efficiency
How to sustain efficiency?

App’s perspective
Many data formats
Missing data, bogus data
Output data. Post-processing?
New features

HUGE gap:
algorithm↔ optimized implementation
(data management, parallelism)

Development cycle: several months!

How to deal with BIG problems?
Expose knowledge, exploit knowledge

23 / 23

	HPAC: Introduction
	 Application: Genome-Wide Association Studies
	 Performance experiments
	Conclusions

