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The problem: Genome-Wide Association Studies

Source: David Hall

GWAS:

Correlation between a difference
in the genome sequence (SNP)
and a difference in the phenotype
(observations)

Published GWA Reports, 2005 — 6/2012
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The method

@ “Mixed models”
@ Linear regression with non-independent outcomes
@ Generalized least-square problems

, 1
b= (XTM'X)" XTM'y
@ y: phenotype (outcome; vector of observations)
E.g.: height, blood pressure for a set of people

e X: genome measurements and covariates
(design matrix; predictors)

E.g.: sex and age over height

e M': dependencies between observations
E.g.: tall parents have tall children

@ b: relation between a variation in the outcome (y)
and a variation in the genome sequence (X)
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XT

@ X ¢ RM*P
@ yeR"
@ HheRP
@ M e RM™

-1
M
“SNP”
“trait”
“genetic effect”

“covariance mairix”

Xt M Y

@ n ~ 1,000 — 50,000

@ pell,.. 20
@ M:SPD
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(Wrong) Problem definition

b= (XTM1X) " XTM-ly
“to be repeated millions of times”
J
fori=1,....m m ~ 106 — 107
bi = (XT M X)) XT My,
U
fori=1,....m
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(Wrong) Problem definition

b= (XTM1X) " XTM-ly

“to be repeated millions of times”

yi := L'y TRSV
b; := OLS(X;, i ) O(n®*m)
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Problem definition #1

fori=1,...,m m ~ 106 — 107
b= (XTM-1X,) " XM~y
and
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fori=1,....m m ~ 108 — 107
b= (XTM-1X,) " XM~y
and
X; = [Xr|XRri], where Xg; € R"*!
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Problem definition #1

fori=1,....m m =~ 108 — 107
b= (XIMX) T XT MYy
and
X; = [Xr|XRri], where Xg; € R"*!
I
fori=1,...,m
£LT = Xpi:=L 'Xg;  TRSV
X, :zj‘lXL; Sprs e XIXs
a i/’T— SBri = Y;iylﬁ
Str =X Xr;
br = XLy;

b; := S, b, O(n?*m)
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Problem definition #2

bij = (X,TM; X)X T My,

J
fori=1,....m
forj=1,...,¢
bij = (XT M%) XT MYy,
and

X; = [Xr|Xgi], with Xg; € R"*!
and SPD(M;)

m =~ 10 — 107; t=1 or~ 103 —10°
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Overview of the full problem
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Overview of the full problem
SFENTEF C(THEYTE
ST ENT E

m
SNPs

Problem size
M € R**n 1000 < n < 100k 7.5MBs — 74.5GBs

Xri, Y; € R™ 8 — 780KBs
b;; € R? 3<p<20 24 — 160 Bytes
Total m < 108, t <10° 1.5 -100s Terabytes
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bij = (X7 M; ' Xa) T X My
M; = o5 (h5® + (1 —h3)I)
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bij = (X7 M; ' Xa) T X My
M; = o5 (h5® + (1 —h3)I)

& — QAQT
= M; =Q (a;A+ 5;1) Q"
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bij = (X7 M; ' Xa) T X My
M; = o3 (hj® + (1 = h))I)

& — QAQT
= M; =Q (a;A+ 5;1) Q"
= M =Q (a;A+B;1)7 " QT

bij =
(XTQD; Q" X,) ' XT QD7 Q"y;
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bij = (X7 M; ' Xa) T X My
M; = o (h;®+ (1= h)I)

d = QAQT
= M; = Q (yA+ 5;1) QT
= M =Q (A + 517 QT

bij =
(XTQD; Q" X,) ' XT QD7 Q"y;

Cost: O(n*mt)

L S I

o

QAQT =@
for 1 < i <m

for 1 < i <m
Wij == K] X]
Sij = WgWij
bij = Wiq;vj
bij =S bij

O(nmt)
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(Big) Data management

operands

X's input 100s GBs — 2 TBs streaming from disk
y's  input 1-10 GBs streaming from disk
M  input MBs — 80 GBs read once

b’s  output 100s MBs or 10s TBs streaming to disk

m

Tiling: tb, mb?
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Parallelism

Does M fit in memory?
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Parallelism

Does M fit in memory?

@ YES = single node + multithreading
streaming HD«+-CPU, double buffering, in-core implementation

Does M fit in GPU-memory?
@ Yes = accelerator
streaming HD+>CPU+«+GPU, triple+double buffering, CPU+GPU implementation

@ NO = distributed memory + hybrid parallelism
partitioning + streaming HD<>CPUs, double buffering, data distribution
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Time ( hours )
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Results GPUs

runtime [s]
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Results t > 1—full grid
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