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I Taxonomy of contractions: Can you GEMM? E. Di Napoli, D. Traver-Fabregat
“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

I Performance prediction E. Peise
“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

I Density Functional Theory: FLAPW methods E. Di Napoli, E. Peise
“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

I High-performance kernels P. Springer
“TTC: A high-performance Compiler for Tensor Transpositions”, ACM TOMS 44(2), 2017
“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, ACM TOMS 44(3), 2018
“Spin Summations: A High-Performance Perspective”, ACM TOMS 45(1), 2019

I High-intensity kernels C. Psarras, L. Karsson
“Concurrent Alternating Least Squares for multiple simultaneous Canonical Polyadic Decompositions”, 2020

3 / 31



Outline

I Part 1: (Dense) Linear Algebra – historical overview

I Part 2: Tensor Operations
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Dense Linear Algebra – 1973

“[..] a fairly small number of basic operations which are generally responsible for a significant
percentage of the total execution time” – Hanson, Krogh, Lawson

I DOT: w := xT y

I ELVOP: y := αx + y

I NRM: η := (xT x)1/2
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1973 – 1979

I 1973: “A proposal for standard linear algebra subprograms” – Hanson, Krogh, Lawson
Class I: DOT, ELVOP, G2, MG2 – Assembly
Class II: NRM, XDOT, COPY, SWAP, SCALE, SUM, MAX – Fortran

I 1974: “Standardization of FORTRAN callable subprograms for basic linear algebra” –
Lawson

I 1975–: LINPACK

I 1977: “Basic Linear Algebra Subprograms for FORTRAN usage—an extended report” –
Hanson, Krogh, Kinkaid, Lawson

I 1977: “Fortran BLAS timing” – Dongarra
Tests on 24 different computers
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1979: BLAS 1

“Basic Linear Algebra Subprograms for FORTRAN usage”
— Hanson, Krogh, Kinkaid, Lawson (ACM TOMS)

“38 subprograms for basic operations of linear algebra”

I “aid in design and coding stages”

I “self-documenting quality of code”

I “a reduction of the execution time spent in these operations might be reflected in cost
savings in the running of programs”

I “the programming of some of these low level operations involves algorithmic and
implementation subtleties that are likely to be ignored”
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I 1988: BLAS 2 “with some modern machine architectures, the use of the BLAS is
not the best way to improve the efficiency of higher level codes. [..] the use of BLAS
inhibits this optimization.”

Matrix-vector operations NOT built on top of BLAS 1

I 1990: BLAS 3 “Unfortunately, [BLAS 2] is often not well suited to computers with a
hierarchy of memory”

Matrix-matrix operations NOT built on top of BLAS 1 & 2

I Immediate, widespread adoption: LAPACK, ScaLAPACK, PETSc, PLAPACK, . . .

I Specialization, optimization, auto-tuning, high-level notation, automation, . . .
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But ...

I Rigid interface

I Inflexible black-box nature

I (Often) Sub-optimal at small scale

I . . .
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In practice:
Signal Processing x :=

(
A−T BT BA−1 + RT LR

)−1
A−T BT BA−1y R ∈ Rn−1×n , UT; L ∈ Rn−1×n−1, DI

Kalman Filter Kk := Pb
k HT (HPb

k HT + R)−1; xa
k := xb

k + Kk (zk − Hxb
k ); Pa

k := (I − KK H) Pb
k

Ensemble Kalman Filter Xa := Xb +
(

B−1 + HT R−1H
)−1 (

Y − HXb
)

B ∈ RN×N SSPD; R ∈ Rm×m , SSPD

Image Restoration xk := (HT H + λσ2In)−1(HT y + λσ2(vk−1 − uk−1))

Rand. Matrix Inversion Λ := S(ST AWAS)−1ST ; Θ := ΛAW ; Mk := XkA− I
Xk+1 := Xk −Mk Θ− (Mk Θ)T + ΘT (AXkA− A)Θ

Generalized Least Squares b := (XT M−1X)−1XT M−1y n > m; M ∈ Rn×n , SPD; X ∈ Rn×m ; y ∈ Rn×1

Stochastic Newton Bk := k
k−1Bk−1(In − AT Wk ((k − 1)Il + W T

k ABk−1AT Wk )−1W T
k ABk−1)

Optimization xf := WAT (AWAT )−1(b − Ax); xo := W (AT (AWAT )−1Ax − c)

Tikhonov Regularization x := (AT A + ΓT Γ)−1AT b A ∈ Rn×m ; Γ ∈ Rm×m ; b ∈ Rn×1

Gen. Tikhonov Reg. x := (AT PA + Q)−1(AT Pb + Qx0) P ∈ Rn×n , SSPD; Q ∈ Rm×m , SSPD; x0 ∈ Rm×1

LMMSE estimator Kt+1 := CtAT (ACtAT + Cz )−1; xt+1 := xt + Kt+1(y − Axt); Ct+1 := (I − Kt+1A)Ct
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Kk := Pb
k HT (HPb

k HT + R)−1; xa
k := xb

k + Kk(zk − Hxb
k ); Pa

k := (I − KK H) Pb
k{

C† := PCPT + Q
K := C†HT (HC†HT )−1

Λ := S(ST AWAS)−1ST ; Θ := ΛAW ; Mk := XkA− I
Xk+1 := Xk −Mk Θ− (Mk Θ)T + ΘT (AXkA− A)Θ

x := A(BT B + AT RT ΛRA)−1BT BA−1y . . . E := Q−1U(I + UT Q−1U)−1UT

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

. . . BLAS LAPACK . . .

MUL ADD MOV

MOVAPD

VFMADDPD . . .

LINEAR ALGEBRA
MAPPING PROBLEM

(“LAMP”)

C. Psarras, H. Barthels, “The Linear Algebra Mapping Problem. Current state of linear algebra languages and libraries”.
[arXiv:1911.09421]
H. Barthels, C. Psarras, “Linnea: Automatic Generation of Efficient Linear Algebra Programs”, ACM TOMS, 2021.
[arXiv:1912.12924]
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Tensors

Tensor App #1 Tensor App #2 . . . Tensor App #N

??? ??? · · · ???
??? ??? · · · ???

BLAS ??? . . . ???

MUL ADD MOV

MOVAPD

VFMADDPD . . .
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Tensors

I No “Tensor BLAS” – collections of building blocks

I No agreement on interface(s)

I Lack of reference implementations

I A jungle of independent libraries and packages, in a variety of languages
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Tensor computations

I Two separate worlds
I Contractions Computational physics / chemistry

Tensor = Multi-linear operator
Generalization of matrix-matrix product

I Decompositions Data science
Tensor = Collection of data
Generalization of matrix factorizations

I Terminology and notation vary (and conflict) even within one world

I Very few software efforts cut across the boundary
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Representative operations

Data layout operations Arithmetic operations Decompositions

I Reshape
I Permute / transpose
I Sort (sparse)
I Convert data layout
I Partition
I Distribute
I . . .

I Add, subtract, scale
I Inner product
I Norms
I Element-wise operations
I Tensor-times-vector (TTV)
I Tensor-times-matrix (TTM)
I MTTKRP
I Contractions
I . . .

I CP
(CANDECOMP/PARAFAC)

I Tucker
I INDSCAL
I PARAFAC2
I CANDELINC
I DEDICOM
I PARATUCK2
I . . .

In setting up a library, where to draw the boundaries?
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Contractions

Paul Springer

I Tensor Transpositions

I Summations

I Tensor Contractions
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Contractions

Paul Springer

I Tensor Transpositions
Bi1i2...iN ← α · Aπ(i1i2...iN ) + β · Bi1i2...iN

I Summations — linear summation over tensor transpositions
Bi0i1i2 ← 2Ai0i1i2 −Ai2i1i0 −Ai0i2i1

Bi0i1i2 ← 4Ai0i1i2 − 2Ai1i0i2 − 2Ai2i1i0 +Ai1i2i0 − 2Ai0i2i1 +Ai2i0i1

Bi0i1i2i3 ← 2Ai0i1i2i3 −Ai2i1i0i3 −Ai0i2i1i3 −Ai0i1i3i2

I Tensor Contractions
CπC(Im∪In) ← α · AπA(Im∪Ik ) × BπB(In∪Ik ) + β · CπC(Im∪In)
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Contractions
Paul Springer

I Tensor Transpositions
TTC: A high-performance Compiler for Tensor Transpositions. ACM TOMS, 2017
Compiler: https://github.com/HPAC/TTC Library: https://github.com/HPAC/hptt

I Summations — linear summation over tensor transpositions
Spin Summations: A High-Performance Perspective. ACM TOMS, 2019
Generator: https://github.com/springer13/spin-summations

I Tensor Contractions
Design of a high-performance GEMM-like Tensor-Tensor Multiplication. ACM TOMS, 2018
Compiler: https://github.com/HPAC/tccg Library: https://github.com/springer13/tcl
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But . . .

Coupled-Cluster methods

Finite Element 3D diffusion operator

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss credits to A. Fisher – https://github.com/LLNL/acrotensor
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I “Wrong” level of abstraction for domain scientists

I Mismatch→ mapping problem

I Matrix counterpart: Matrix Chain Problem (aka “parenthesisation”)

A B c

(AB)c O(n3) A(Bc) O(n2)

Product is associative, but its cost is not!
H. Barthels, “The Generalized Matrix Chain Algorithm”, CGO’18. [arXiv:1804.04021]

I Optimal parenthesisation: Polynomial time (matrices), exponential time (tensors)
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Decompositions
With L. Karlsson

I Survey of the field
I From an algorithmic and software perspective

I Quickly realized there is an abundance of
I Decompositions (CP, Tucker, . . . )
I Variants thereof (non-negative, orthogonal, . . . )
I Algorithms (alternating, all-at-once, algebraic, . . . )
I Software packages & languages
I Papers on software without software
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Publications on algorithms for CP decomposition

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Year of publication

0

5

10

15

20

25

30

# 
of

 p
ub

lic
at

io
ns

20 / 31



Algorithms for CP decomposition

I Algebraic algorithms
I Generalized Rank Annihilation Method
I Direct TriLinear Decomposition
I The “algebraic algorithm”

by Domanov and De Lathauwer
I The “simpler algorithm”

by Pimentel-Alarcón
I . . .

I Alternating optimization algorithms
I Alternating Least Squares
I Fast ALS
I Hierarchical ALS
I Regularized ALS
I . . .

I All-at-once optimization algorithms
I Gradient descent
I (Damped) Gauss–Newton
I Nonlinear CG, GMRES
I Quasi-Netwon (e.g., L-BFGS)
I . . .

I Enhancements
I Line search
I Compression
I Randomization
I Transient constraints
I . . .
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Matlab and R packages with support for CP decomposition (subset)
I Tensor Toolbox by Bader, Kolda, & others

https://www.tensortoolbox.org/
I Tensorlab by Vervliet, Debals, Sorber, Van Barel, & De Lathauwer

https://www.tensorlab.net/index.html
I The N-way Toolbox by Bro & Andersson

http://www.models.life.ku.dk/nwaytoolbox
I TensorBox by Phan, Tichavsky, & Cichocki

https://github.com/phananhhuy/TensorBox
I Tensor Package by Comon & others

http://www.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html

I multiway by Helwig
https://cran.r-project.org/package=multiway

I ThreeWay by Giordani, Kiers, & Del Ferraro
https://cran.r-project.org/package=ThreeWay

I rTensor by Li, Bien, & Wells
https://cran.r-project.org/package=rTensor
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C/C++ packages with support for CP decomposition (subset)

I Genten by SANDIA (Phipps)
https://gitlab.com/tensors/genten

I SPLATT by Smith & Karypis
https://github.com/ShadenSmith/splatt

I ParTI! by Li, Ma, & Vuduc
https://github.com/hpcgarage/ParTI

I Cyclops by Solomonik & others
https://github.com/cyclops-community

And then there’s Python, Fortran, . . .
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Massive redundancy

I Development (mostly) driven by applications

I Replication of effort. Wheel reinvented over and over

I Algorithm versus implementation: Which algorithm is fastest?

I Runtimes are measured on implementations
I Different implementations of the same algorithm (on different languages)
I Impl. A faster than Impl. B 6⇒ Alg. A faster than Alg. B
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Is it a good implementation?

Tensor Toolbox’s cp_als performance depends on the shape of the tensor.
An optimal implementation should barely be affected by the shape.

Experiment setup:
I CP model of rank 10
I Seven three-way arrays with 27M elements each
I Shapes:

1. 300× 300× 300

2. 9000× 300× 10
3. 9000× 10× 300
4. 300× 9000× 10
5. 300× 10× 9000
6. 10× 9000× 300
7. 10× 300× 9000

I Building block: “Matricized tensor times Khatri-Rao product” (MTTKRP)
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Algorithm versus implementation

Tensor Toolbox cp_als: MTTKRP time per iteration
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Building blocks for tensor computations

I MTTKRP is an obvious candidate
I (Re-)Implemented in every package / language
I Performance critical (and basically a matrix multiply)
I Yielding wild differences in performance (different shapes, different packages)

I Should be. . .
I Implemented once, used many times
I Highly optimized
I Optimized for all inputs (as opposed to the common inputs)
I Compared with BLAS in term of efficiency

I There’s a long way to go (just for MTTKRP)
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One specific application: Gas Chromatography
Workflow

. . .

4. Fit model or rank k ∈ [1, . . . , 15], if needed, add non-negativity constraints
Tensor decompositions: PARAFAC — PARAFAC2 — TUCKER

5. Determine whether or not one of the models is “right”
I : Determine which of the components represent chemical information

I : Start over; add/change constraints, change model

Computation of each individual model: bandwidth bound!

Hence: “Concurrent Alternating Least Squares for multiple simultaneous Canonical Polyadic Decompositions”, with
C. Psarras, L. Larsson. (Submitted).
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Chromatography-MS

PARAFAC Tucker PARAFAC2

Transposition Contraction · · · Alternating LS

Khatri-Rao SpMTTKRP · · · TTV, TTM

HPTT TCL . . . BLAS

MUL ADD MOV

MOVAPD

VFMADDPD . . .
29 / 31



Chromatography-MS

PARAFAC Tucker PARAFAC2

Transposition Contraction · · · Alternating LS

Khatri-Rao SpMTTKRP · · · TTV, TTM

HPTT TCL . . . BLAS

MUL ADD MOV

MOVAPD

VFMADDPD . . .
30 / 31



Comparing matrix and tensor efforts

Matrices Tensors

Driver performance, HW applications
Community effort BLAST/LAPACK/... group by group
Industry wide support not much
Standardization interface, . . . “pointless”
Preferred outlet ACM TOMS —
Language support plenty language by language
Automation plenty TCE (2001), but then?

Thank you for the intvitation and for your attention!
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