Tensor computations: A fragmented landscape

Paolo Bientinesi
pauldj@cs.umu.se

January 20, 2021
Huawei (via Zoom)

UMEA UNIVERSITY

pauldj@cs.umu.se

About me

High Performance and
Automatic Computing

o HPC2N

High-Performance Computing Center North

58 8T

2/31

Taxonomy of contractions: Can you GEMM? E. Di Napoli, D. Traver-Fabregat
“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

Performance prediction E. Peise
“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

Density Functional Theory: FLAPW methods E. Di Napoli, E. Peise
“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

High-performance kernels P. Springer

“TTC: A high-performance Compiler for Tensor Transpositions”, ACM TOMS 44(2), 2017
“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, ACM TOMS 44(3), 2018
“Spin Summations: A High-Performance Perspective”, ACM TOMS 45(1), 2019

High-intensity kernels C. Psarras, L. Karsson

“Concurrent Alternating Least Squares for multiple simultaneous Canonical Polyadic Decompositions”, 2020

3/31

Outline

Part 1: (Dense) Linear Algebra — historical overview

Part 2: Tensor Operations

4/31

Dense Linear Algebra — 1973

“[..] a fairly small number of basic operations which are generally responsible for a significant
percentage of the total execution time” — Hanson, Krogh, Lawson

DOT: w := xTy

ELVOP: y :=ax+ Yy

NRM: 7 := (x7 x)1/2

5/31

1973 - 1979

1973: “A proposal for standard linear algebra subprograms” — Hanson, Krogh, Lawson
Class I: DOT, ELVOP, G2, MG2 — Assembly
Class II: NRM, XDOT, COPY, SWAP, SCALE, SUM, MAX - Fortran

1974: “Standardization of FORTRAN callable subprograms for basic linear algebra” —
Lawson

1975-: LINPACK

1977: “Basic Linear Algebra Subprograms for FORTRAN usage—an extended report” —
Hanson, Krogh, Kinkaid, Lawson

1977: “Fortran BLAS timing” — Dongarra
Tests on 24 different computers

6/31

1979: BLAS 1

“Basic Linear Algebra Subprograms for FORTRAN usage”
— Hanson, Krogh, Kinkaid, Lawson (ACM TOMS)

“38 subprograms for basic operations of linear algebra”

“aid in design and coding stages”
“self-documenting quality of code”

“a reduction of the execution time spent in these operations might be reflected in cost
savings in the running of programs”

“the programming of some of these low level operations involves algorithmic and
implementation subtleties that are likely to be ignored”

7/31

1988: BLAS 2 “with some modern machine architectures, the use of the BLAS is
not the best way to improve the efficiency of higher level codes. [..] the use of BLAS
inhibits this optimization.”

Matrix-vector operations NOT built on top of BLAS 1

1990: BLAS 3 “Unfortunately, [BLAS 2] is often not well suited to computers with a
hierarchy of memory”

Matrix-matrix operations NOT built on top of BLAS 1 & 2

Immediate, widespread adoption: LAPACK, ScaLAPACK, PETSc, PLAPACK, ...

Specialization, optimization, auto-tuning, high-level notation, automation, ...

8/31

But ...

9/31

But ...

Rigid interface
Inflexible black-box nature

(Often) Sub-optimal at small scale

9/31

In practice:

Signal Processing

Kalman Filter

Ensemble Kalman Filter

Image Restoration
Rand. Matrix Inversion

Generalized Least Squares
Stochastic Newton
Optimization

Tikhonov Regularization
Gen. Tikhonov Reg.

LMMSE estimator

X = (A—TBTBA—1 + RTLR)_I A-TBTBA-ly R eRr—1Xn yT;L e R—1xn-1 pj
Ky := PPHT(HPPHT + R)™1; x? := xP + Ki(z« — HxP); PZ := (I — KxH) P?
xa:=xb+ (B71 + HTR—IH)_I (Y — Hxb) B € RVXN SSPD; R € R™XM SSPD
xe i= (HTH + Xo21,) Y (HTy + Ao2(vk—1 — ux_1))

A := S(STAWAS)~1ST; O := NAW; M := X A— |
Xi+1 := X — MO — (MkG)T =+ GT(AXkA = A)G

b:=(XTM~1X)"1XTM1y n>m; M € R"™" SPD; X € R"™™; y € R”
Bi := X1 Bi_1(ln — AT Wic((k — 1)l + W, AB_1 AT Wi) "W, ABy_)

xr := WAT(AWAT)~1(b — Ax); x, := W(AT(AWAT)~1Ax — c)

x:=(ATA+TTr)~1A7Tp A € R™X™ T € R™Xm, p ¢ R"X1
x:= (ATPA+ Q)" 1(AT Pb + Qxg) P € R"™" SSPD; Q € R™>™, SSPD; xp € R
K1 := GAT(AGAT + C)7Y xep1 = x¢ + Kep1(y — Axe); Ceyr = (I — Key1A)Ce

10/31

Kk :== PPHT(HP?HT + R)™Y; x2 := xP + Ki(zk — Hxf); P := (I — KkH) P?
A := S(STAWAS)~1ST; O := NAW; M := X A — |

C; := PCPT + Q
Xi+1 := Xk — MO — (Mk@)T + @T(AXkA = A)@

K := CtHT(HC;HT)~1

x:= A(B"B+ ATRTARA)"1B"BA- 1y E:=Q'u(l+UuTQtu)uT

[MUL || ADD || MOV |

MOVAPD
VFMADDPD]|5

inte)

Xeop
pmfeSSOr

K := P,’(’HT(HP,‘(’HT S8 R)_l; X2 = x,‘(’ + Ki(zx — Hx,‘(’); P := (I — KkH) P,‘(’

A := S(STAWAS)~1ST; O := NAW; M := X A — |

C; := PCPT + Q@
K := CiHT(HC;HT)! Xiq1 i= X — Mx® — (M ©)T + OT (AX A — A)O
x:= A(B"B+ ATRTARA)"1B"BA- 1y E:=Q'u(l+UuTQtu)uT

yi=ax+y|| LU=A | ---|C:=aAB+5C]|

X:=A'B|[c:=ABT +BAT + C||X:=L-'ML-T|[QR=A

‘ BLAS ‘ LAPACK ‘

inteD B ¢

[MUL || ADD || MOV |

MOVAPD
VFMADDPD]|5

inte])

Xeop
Plocegg, or

K := P,’(’HT(HP,‘(’HT S8 R)_l; X2 = x,‘(’ + Ki(zx — Hx,‘(’); P := (I — KkH) P,‘(’

A := S(STAWAS)~1ST; O := NAW; M := X A — |

Xi+1 := Xk — MO — (Mk@)T + @T(AXkA = A)@

Ci := PCPT + Q
K := CtHT(HC;HT)~1

x:= A(B"B+ ATRTARA)"1B"BA- 1y E:=Q'u(l+UuTQtu)uT

?

yi=ax+y|| LU=A | ---|C:=aAB+5C]|

X:=A'B|[c:=ABT +BAT + C||X:=L-'ML-T|[QR=A

‘ BLAS ‘ LAPACK ‘

inteD)

Phi™ p,

[MUL || ADD || MOV |

MOVAPD
VFMADDPD]|5

inte)

Xeop
Procedy

Ki := PPHT(HPPHT + R)~;

Ci := PCPT + Q
K := CtHT(HC;HT)~1

X2 = x,‘(’ + Ki(zx — Hx,‘(’); P := (I — KkH) P,‘(’

A := S(STAWAS)~1ST; O := NAW; M := X A — |
Xi+1 := Xk — MO — (Mk@)T + @T(AXkA = A)@

-1 U(l + UTQ—] U)—l UT

x:= A(B"B+ ATRTAR/

MAPPING PROBLEM

LINEAR ALGEBRA

(“LAMP")
yi=ax+y|| LU=A | ---|C:=aAB+5C]|
X:=A1B||C:=ABT +BA” + C||[X:=1-'ML-T|[QR = A

. BLAS ‘ LAPACK .

inte)

Xeop
ﬁmceSSOr

1 [MUL || ADD || MOV |

MOVAPD
VFMADDPD]|5

Kk := PPHT(HPEHT + R)™Y; x2 := xP + Ki(zk — Hx?); P7 := (I — KxH) P?

Ci:= PCPT + Q A= S(STAWAS)~1ST; © := NAW; My = XA — |
K := CiHT(HC;HT)! Xig1 := Xk — M® — (M®)T + O7 (AX, A — A)O

-1 U(l + UTQ—] U)—l UT

— T TpT
x:=A(B'B+A'RIAR/ T INEFAR ALGEBRA
MAPPING PROBLEM

(“LAMP")

yi=ax+y|| LU=A | ---|C:=aAB+5C]|

X:=A'B|[c:=ABT +BAT + C||X:=L-'ML-T|[QR=A

g BLAS @ LAPACK G

C. Psarras, H. Barthels, “The Linear Algebra Mapping Problem. Current state of linear algebra languages and libraries’”.

[arXiv:1911.09421]
H. Barthels, C. Psarras, “Linnea: Automatic Generation of Efficient Linear Algebra Programs”, ACM TOMS, 2021.

[arXiv:1912.12924]

- vooavis v e - 11/31

Tensors

12/31

Tensors

Tensor App #1 Tensor App #2 ... Tensor App #N
([
| 777 | 777 cee | 777 |

[MUL|[ADD || MOV |

12/31

Tensors

No “Tensor BLAS" — collections of building blocks
No agreement on interface(s)
Lack of reference implementations

A jungle of independent libraries and packages, in a variety of languages

13/31

Tensor computations

Two separate worlds

Contractions Computational physics / chemistry

Tensor = Multi-linear operator
Generalization of matrix-matrix product

14/31

Tensor computations

Two separate worlds

Contractions Computational physics / chemistry
Tensor = Multi-linear operator
Generalization of matrix-matrix product

Decompositions Data science
Tensor = Collection of data
Generalization of matrix factorizations

14/31

Tensor computations

Two separate worlds

Contractions Computational physics / chemistry
Tensor = Multi-linear operator
Generalization of matrix-matrix product

Decompositions Data science
Tensor = Collection of data
Generalization of matrix factorizations

Terminology and notation vary (and conflict) even within one world

Very few software efforts cut across the boundary

14/31

Representative operations

Data layout operations

Reshape

Permute / transpose
Sort (sparse)
Convert data layout
Partition

Distribute

Arithmetic operations

Add, subtract, scale

Inner product

Norms

Element-wise operations
Tensor-times-vector (TTV)
Tensor-times-matrix (TTM)
MTTKRP

Contractions

Decompositions

cP
(CANDECOMP/PARAFAC)

Tucker
INDSCAL
PARAFAC2
CANDELINC
DEDICOM
PARATUCK2

15/31

Representative operations
Data layout operations

Reshape

Permute / transpose
Sort (sparse)
Convert data layout
Partition

Distribute

Arithmetic operations

Add, subtract, scale

Inner product

Norms

Element-wise operations
Tensor-times-vector (TTV)
Tensor-times-matrix (TTM)
MTTKRP

Contractions

Decompositions

cP
(CANDECOMP/PARAFAC)

Tucker
INDSCAL
PARAFAC2
CANDELINC
DEDICOM
PARATUCK2

In setting up a library, where to draw the boundaries?

15/31

Contractions

16 /31

Contractions

Tensor Transpositions
Bitiy...iy < ¢+ Ar(isiy...in) + B * Bijy...in

Summations — linear summation over tensor transpositions
Biiiy = 2Aiiis — Apiric — Aisiai
Biiriy < 4 Aiiii, — 2 Aiigi, — 2 A4, + Aiiiy — 2Aiii + Apigi
Bioilizia <~ 2Aioi1i2i3 - Aizi1ini3 - Ai0i2i1i3 - 'Aioilisiz

Tensor Contractions

Crc(lmuly) < @+ Ar (aut) X Brg(aut) + B+ Crc(imuly)

16/31

Contractions
Paul Springer

Tensor Transpositions

TTC: A high-performance Compiler for Tensor Transpositions. ACM TOMS, 2017
Compiler: https://github.com/HPAC/TTC Library: https://github.com/HPAC/hptt O

Summations — linear summation over tensor transpositions

Spin Summations: A High-Performance Perspective. ACM TOMS, 2019
Generator: https://github.com/springer13/spin-summations O

Tensor Contractions

Design of a high-performance GEMM:-like Tensor-Tensor Multiplication. ACM TOMS, 2018
Compiler: https://github.com/HPAC/tccg Library: https://github.com/springer13/tcl o

16/31

https://github.com/HPAC/TTC
https://github.com/HPAC/hptt
https://github.com/springer13/spin-summations
https://github.com/HPAC/tccg
https://github.com/springer13/tcl

But ...

https://github.com/LLNL/acrotensor

But

Coupled-Cluster methods

1 .
b = rgb+5PgP;t;’tj’
Fr = fe'"Jerg;"tf
E f
F2 = (1-6e)ff - ZFmra 2Zv A +Z vareh,

mnf

Em = @ 6,,,,)f"’+ZF’”t+ Z ft,,,+Zv
nef

W — g Z vt

- 1

W = vy P,Z v+ Z Vel

Wi = V;im*sz"f +Z vt +22 i
Wem _a_m+P('Z : Z am el
i ,
2 = ZF’”P+ZW€+Z VIS + Z Vi Em 4 %Z:
efm

— b i b i Y b 7 b
1= R e Wi — LY W+

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss

17/31

https://github.com/LLNL/acrotensor

But . ..

Coupled-Cluster methods Finite Element 3D diffusion operator

ab ab 1 a pizah

T =ty PR, . .

. . TE.BeginMultiKernellLaunch();

Fro= £y vardd, TE("T2_e_i1_i2 k3 = B_k3_i3 X_e_i1_i2_i3", T2, B, X);
fn TE("T1_e_il k2 k3 = B_k2_i2 T2_e_i1_i2_ k3", T1, B, T2);

B2 = (176ae)@372?g”t;,7%ng;"rﬁnfn+zv;;t;, TE("Ul_e_k1_k2_k3 = G_k1_il T1_e_il_k2_k3", U1, G, T1);

m mnf n TE("T1_e_il k2 k3 = G_k2_i2 T2_e_i1_i2_k3", T1, G, T2);

TE("U2_e_k1_k2_k3 = B_k1_i1 T1_e_i1_k2_k3", U2, B, T1);
TE("T2_e_i1 i2_k3 = G_k3_i3 X_e_i1_i2_i3", T2, G, X);
TE("T1_e_i1_k2_k3 = B_k2_i2 T2_e_i1_i2 k3", T1, B, T2);
W = ,,e{;mjLZVg,nt‘fﬁ TE("U3_e_k1_k2_k3 = B_k1_il1 T1_e_i1_k2_k3", U3, B, T1);

3 TE("Z_m_e_k1_k2_k3 = U_n_e_k1_k2_k3 D_e_m_n_k1_k2_ k3", zZ, U,

~ 1
Fro= (=6m)f™+ Y Fref + 5 Sovanef 3 vmf
e fn

nef

- o i e Lm e TE("TL e i3 k1 k2 = B_k3_i3 Z1_e k1 k2 k3", T1, B, z1);

Wit = i+ P JZ:”"E b +§Z{"ef 7 TE("T2_e_i2_i3 k1 = B_k2_i2 T1_ e i3 k1 k2", T2, B, T1);
i g . L TE("Y_e_i1 12 i3 = G_k1_il T2_e_i2 i3 k1", Y, G, T2);

Wgm = = YW Y vape 5) v, TE("T1 e i3 k1_k2 = B_k3_i3 Z2_e k1_k2_k3", T1, B, Z2);

" 7 nf TE("T2_e_i2_i3 k1 = G k2_i2 Tl e i3 k1 k2", T2, G, T1);

W,f’" - V5m+pjiz,,;mtf+%zvgp75ﬂ TE("Y_e_i1_i2 i3 += B_k1_i1 T2 e_i2_ i3 k1", Y, B, T2);

. = TE("TL e i3 k1 k2 = G k3_i3 Z3_e k1 k2 k3", T1, G, Z3);

e e N Emas e oo epm 1 TE("T2_e_i2 i3 k1 = B_k2_i2 Tl e i3 k1 k2", T2, B, T1);

7 o= f ’zm:F" tm+2€:fe & +;"é’ t"’+§":""mFﬂ *5; TE("Y e i1 i2 i3 += B k1 il T2 e_i2 i3 k1", Y, B, T2);

; . " - TE.EndMultiKernellLaunch();
B0 = Vi Py bt + PRPIY Wk — P> Wit 4 P ’
e me m

credits to D. Matthews, E. Solomonik, J. Stanton, and J. Gauss credits to A. Fisher — https://github.com/LLNL/acrotensor

17/31

https://github.com/LLNL/acrotensor

“Wrong" level of abstraction for domain scientists

Mismatch — mapping problem

18/31

“Wrong" level of abstraction for domain scientists
Mismatch — mapping problem

Matrix counterpart: Matrix Chain Problem (aka “parenthesisation”)

el
N

(AB)c O(nd) A(Bc) O(n?)

Product is associative, but its cost is not!
H. Barthels, “The Generalized Matrix Chain Algorithm”, CGQO'18. [arXiv:1804.04021]

18/31

“Wrong" level of abstraction for domain scientists
Mismatch — mapping problem

Matrix counterpart: Matrix Chain Problem (aka “parenthesisation”)

el
N

(AB)c O(nd) A(Bc) O(n?)

Product is associative, but its cost is not!
H. Barthels, “The Generalized Matrix Chain Algorithm”, CGQO'18. [arXiv:1804.04021]

Optimal parenthesisation: Polynomial time (matrices), exponential time (tensors)

18/31

Decompositions
With L. Karlsson

19/31

Decompositions
With L. Karlsson

Survey of the field
From an algorithmic and software perspective

19/31

Decompositions
With L. Karlsson

Survey of the field
From an algorithmic and software perspective

Quickly realized there is an abundance of
Decompositions (CP, Tucker, ...)

Variants thereof (non-negative, orthogonal, . ..)
Algorithms (alternating, all-at-once, algebraic, ...)
Software packages & languages

Papers on software without software

19/31

30

25

of publications
[N
a1 o

=
o

Publications on algorithms for CP decomposition

T

T T

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Year of publication

20/31

Algorithms for CP decomposition

Algebraic algorithms

Generalized Rank Annihilation Method
Direct TriLinear Decomposition

The “algebraic algorithm”

by Domanov and De Lathauwer

The “simpler algorithm”

by Pimentel-Alarcén

Alternating optimization algorithms
Alternating Least Squares
Fast ALS
Hierarchical ALS
Regularized ALS

All-at-once optimization algorithms

Gradient descent

(Damped) Gauss—Newton
Nonlinear CG, GMRES
Quasi-Netwon (e.g., L-BFGS)

Enhancements
Line search
Compression
Randomization
Transient constraints

21/31

Matlab and R packages with support for CP decomposition (subset)

Tensor Toolbox by Bader, Kolda, & others

https://www.tensortoolbox.org/

Tensorlab by Vervliet, Debals, Sorber, Van Barel, & De Lathauwer
https://www.tensorlab.net/index.html

The N-way Toolbox by Bro & Andersson
http://www.models.life.ku.dk/nwaytoolbox

TensorBox by Phan, Tichavsky, & Cichocki
https://github.com/phananhhuy/TensorBox

Tensor Package by Comon & others
http://wuw.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html

multiway by Helwig
https://cran.r-project.org/package=multiway
ThreeWay by Giordani, Kiers, & Del Ferraro
https://cran.r-project.org/package=ThreeWay
rTensor by Li, Bien, & Wells

https://cran.r-project.org/package=rTensor
22/31

https://www.tensortoolbox.org/
https://www.tensorlab.net/index.html
http://www.models.life.ku.dk/nwaytoolbox
https://github.com/phananhhuy/TensorBox
http://www.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html
https://cran.r-project.org/package=multiway
https://cran.r-project.org/package=ThreeWay
https://cran.r-project.org/package=rTensor

C/C++ packages with support for CP decomposition (subset)

Genten by SANDIA (Phipps)
https://gitlab.com/tensors/genten

SPLATT by Smith & Karypis
https://github.com/ShadenSmith/splatt

ParTIl! by Li, Ma, & Vuduc
https://github.com/hpcgarage/ParTI

Cyclops by Solomonik & others
https://github.com/cyclops-community

And then there's Python, Fortran, ...

23/31

https://gitlab.com/tensors/genten
https://github.com/ShadenSmith/splatt
https://github.com/hpcgarage/ParTI
https://github.com/cyclops-community

Massive redundancy

Development (mostly) driven by applications

24/31

Massive redundancy

Development (mostly) driven by applications

Replication of effort. Wheel reinvented over and over

24/31

Massive redundancy

Development (mostly) driven by applications
Replication of effort. Wheel reinvented over and over

Algorithm versus implementation: ~ Which algorithm is fastest?

24/31

Massive redundancy

Development (mostly) driven by applications
Replication of effort. Wheel reinvented over and over

Algorithm versus implementation: ~ Which algorithm is fastest?

Runtimes are measured on implementations
Different implementations of the same algorithm (on different languages)

Impl. A faster than Impl. B % Alg. A faster than Alg. B

24/31

Is it a good implementation?

25/31

Is it a good implementation?

Tensor Toolbox’s cp_als performance depends on the shape of the tensor.
An optimal implementation should barely be affected by the shape.

25/31

Is it a good implementation?

Tensor Toolbox’s cp_als performance depends on the shape of the tensor.
An optimal implementation should barely be affected by the shape.

Experiment setup:
CP model of rank 10

Seven three-way arrays with 27M elements each
Shapes:
300 x 300 x 300

9000 x 300 x 10
9000 x 10 x 300
300 x 9000 x 10
300 x 10 x 9000
10 x 9000 x 300
10 x 300 x 9000

25/31

Is it a good implementation?

Tensor Toolbox’s cp_als performance depends on the shape of the tensor.
An optimal implementation should barely be affected by the shape.

Experiment setup:
CP model of rank 10

Seven three-way arrays with 27M elements each
Shapes:
300 x 300 x 300

9000 x 300 x 10
9000 x 10 x 300
300 x 9000 x 10
300 x 10 x 9000
10 x 9000 x 300
10 x 300 x 9000

Building block: “Matricized tensor times Khatri-Rao product” (MTTKRP)

25/31

Algorithm versus implementation

0.35 Tensor Toolbox cp_als: MTTKRP time per iteration
. T T T T T T T

o o
i o N o
o N o w

Time per iteration [s]

=3
[

o
o
a

26 /31

Algorithm versus implementation

Tensor Toolbox cp_als: MTTKRP time per iteration
T T T T T

035 Tensor Toolbox cp_als: MTTKRP time per mode
. T T T T T T T

0.35

o
w

o
N
a

0.25 - 1

Isd
N

Time per iteration [s]
ISd
i
(5]

Time per mode [s]

=3
[

o
o
a

26 /31

Building blocks for tensor computations

MTTKRP is an obvious candidate

(Re-)Implemented in every package / language
Performance critical (and basically a matrix multiply)

Yielding wild differences in performance (different shapes, different packages)

27/31

Building blocks for tensor computations

MTTKRP is an obvious candidate

(Re-)Implemented in every package / language
Performance critical (and basically a matrix multiply)

Yielding wild differences in performance (different shapes, different packages)

Should be...

Implemented once, used many times
Highly optimized
Optimized for all inputs (as opposed to the common inputs)

Compared with BLAS in term of efficiency

27/31

Building blocks for tensor computations

MTTKRP is an obvious candidate

(Re-)Implemented in every package / language
Performance critical (and basically a matrix multiply)

Yielding wild differences in performance (different shapes, different packages)

Should be...

Implemented once, used many times
Highly optimized
Optimized for all inputs (as opposed to the common inputs)

Compared with BLAS in term of efficiency
There’s a long way to go (just for MTTKRP)

27/31

One specific application: Gas Chromatography

Workflow

28/31

One specific application: Gas Chromatography

Workflow

Fit model or rank k € [1,...,15], if needed, add non-negativity constraints
Tensor decompositions: PARAFAC — PARAFAC2 — TUCKER

28/31

One specific application: Gas Chromatography

Workflow

Fit model or rank k € [1,...,15], if needed, add non-negativity constraints
Tensor decompositions: PARAFAC — PARAFAC2 — TUCKER

Determine whether or not one of the models is “right”

28/31

One specific application: Gas Chromatography

Workflow

Fit model or rank k € [1,...,15], if needed, add non-negativity constraints
Tensor decompositions: PARAFAC — PARAFAC2 — TUCKER

Determine whether or not one of the models is “right”

@: Determine which of the components represent chemical information

@: Start over; add/change constraints, change model

28/31

One specific application: Gas Chromatography

Workflow

Fit model or rank k € [1,...,15], if needed, add non-negativity constraints
Tensor decompositions: PARAFAC — PARAFAC2 — TUCKER

Determine whether or not one of the models is “right”
@: Determine which of the components represent chemical information

@: Start over; add/change constraints, change model

Computation of each individual model: bandwidth bound!

Hence: “Concurrent Alternating Least Squares for multiple simultaneous Canonical Polyadic Decompositions”, with

C. Psarras, L. Larsson. (Submitted).

28/31

Chromatography-MS

2§ ©

[PARAFAC] [Tucker | |PARAFAC2]

® § %

| Transposition | Contraction | v Alternating LS |

| Khatri-Rao I | SpMTTKRP | | TTV, TTM

HPTT ‘ TCL ‘ ‘ BLAS

[MUL || ADD || MOV |

MOVAPD
VFEMADDPD | ...
29/31

Chromatography-MS

® § %

[PARAFAC] [Tucker | |PARAFAC2]

® § %

| Transposition | Contraction | s Alternating LS |

| Khatri-Rao I | SpMTTKRP | | TTV, TTM

‘ BLAS

[MUL || ADD || MOV |

MOVAPD
VFEMADDPD | ...
30/31

Comparing matrix and tensor efforts

Matrices Tensors

31/31

Comparing matrix and tensor efforts

Matrices Tensors

Driver performance, HW applications

31/31

Comparing matrix and tensor efforts

Matrices Tensors

Driver performance, HW applications
Community effort BLAST/LAPACK/... group by group

31/31

Comparing matrix and tensor efforts

Matrices

Tensors

Driver
Community effort

Industry

performance, HW

BLAST/LAPACK/...

wide support

applications
group by group

not much

31/31

Comparing matrix and tensor

efforts

Matrices

Tensors

Driver
Community effort
Industry

Standardization

performance, HW

BLAST/LAPACK/...

wide support

interface, ...

applications
group by group
not much

“pointless”

31/31

Comparing matrix and tensor

efforts

Matrices

Tensors

Driver
Community effort
Industry
Standardization

Preferred outlet

performance, HW

BLAST/LAPACK/...

wide support

interface, ...
ACM TOMS

applications
group by group
not much

“pointless”

31/31

Comparing matrix and tensor efforts

Matrices

Tensors

Driver
Community effort
Industry
Standardization
Preferred outlet

Language support

performance, HW

BLAST/LAPACK/...

wide support

interface, ...

ACM TOMS
plenty

applications
group by group
not much
“pointless”

language by language

31/31

Comparing matrix and tensor efforts

Matrices

Tensors

Driver
Community effort
Industry
Standardization
Preferred outlet
Language support

Automation

performance, HW

BLAST/LAPACK/...

wide support

interface, ...

ACM TOMS
plenty
plenty

applications
group by group
not much
“pointless”
language by language
TCE (2001), but then?

31/31

Comparing matrix and tensor efforts

Matrices

Tensors

Driver
Community effort
Industry
Standardization
Preferred outlet
Language support

Automation

performance, HW

BLAST/LAPACK/...

wide support

interface, ...

ACM TOMS
plenty
plenty

applications
group by group
not much
“pointless”
language by language
TCE (2001), but then?

Thank you for the intvitation and for your attention!

31/31

