Automatic Modeling and Ranking of Linear Algebra Algorithms

Paolo Bientinesi

AICES, RWTH Aachen pauldj@aices.rwth-aachen.de

iWAPT 2012
7th International Workshop on Automatic Performance Tuning
July 17th, 2012
Kobe, Japan

Objective: Ranking

One operation \rightarrow multiple algorithms

```
Algorithm
alg-1
alg-2
Metric, alg-3
:
alg-3
```

Objective: Ranking

One operation \rightarrow multiple algorithms

Metric,	Algorithm	\Rightarrow	Algorithm	Metric
	alg-1		alg-4	27.0
	alg-2		alg-1	22.5
	alg-3	\rightarrow	alg-n	15.5
	÷		:	:
	alg-n		alg-13	1.07

- Motivation
- 2 Analytic Modeling
- Modeling through Sampling
- Results
- 6 Conclusions

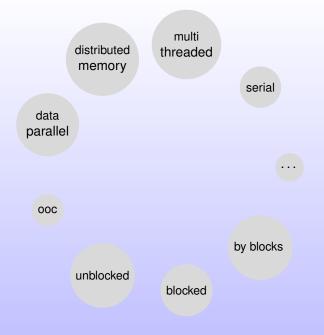
Tuning

LU(A)

$$\begin{array}{c|ccccc} \textbf{Partition} & A \to \left(\begin{array}{c|ccc} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \\ \textbf{where} & A_{TL} \text{ is } 0 \times 0 \\ \textbf{While } & size(A_{TL}) < size(A) & \textbf{do} \\ \textbf{Repartition} \\ & \left(\begin{array}{c|cccc} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \to \left(\begin{array}{c|cccc} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array} \right) \\ \textbf{where} & A_{11} \text{ is } b \times b \\ \hline & U_{01} := L_{00}^{-1} A_{01} \\ L_{10} := A_{10} U_{00}^{-1} \\ A_{11} := \text{LU}(A_{11} - L_{10} U_{01}) \\ \hline \textbf{Continue} \\ & \left(\begin{array}{c|cccc} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c|cccc} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array} \right) \end{array}$$

- block size b?
- how many levels of recursion?
- recursive calls?

endwhile



distributed memory data parallel 00C

multi threaded

serial

"One Algorithm to rule them all"?

by blocks

unblocked

blocked

multi distributed threaded memory serial data "One Algorithm parallel to rule them all"? OOC Not really by blocks unblocked blocked

Generation of algorithms: Cl1ck

Trilny: $X := L^{-1}$

Partition
$$\star \in \{L, X\}$$
 as $\begin{pmatrix} \star_{TL} & 0 \\ \star_{BL} & \star_{BR} \end{pmatrix}$ where L_{TL}, X_{TL} are 0×0 While $size(L_{TL}) < size(L)$ do Repartition $\begin{pmatrix} X_{TL} & 0 \\ X_{BL} & X_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} X_{00} & 0 & 0 & 0 \\ \hline X_{10} & X_{11} & 0 & \hline X_{20} & X_{21} & X_{22} \end{pmatrix}$, and $\begin{pmatrix} L_{TL} & 0 & 0 & 0 & 0 \\ \hline L_{BL} & L_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} L_{00} & 0 & 0 & 0 & 0 \\ \hline L_{10} & L_{11} & 0 & 0 & 0 \\ \hline L_{10} & L$

Generation of algorithms: Cl1ck

Sylvester equation: AX + XB = C

Generation of algorithms: CLAK

Wishlist

- Speed
 - No direct execution of the algorithm
 - Possibly no execution at all
- Accuracy
- Automation

Wishlist

- Speed
 - No direct execution of the algorithm
 - Possibly no execution at all
- Accuracy
- Automation

Approach: Performance Modeling

Analytic Models

Sampling

Wishlist

- Speed
 - No direct execution of the algorithm
 - Possibly no execution at all
- Accuracy
- Automation

Approach: Performance Modeling

Analytic Models

Sampling

Idea

Exploit modularity: from kernels to algorithms

- Motivation
- 2 Analytic Modeling
- Modeling through Sampling
- 4 Results
- 6 Conclusions

Analytic modeling

no execution of code

models built from knowledge

Analytic modeling

no execution of code

models built from knowledge

Model (simplified version)

$$\mathtt{Time} = \alpha \; \#\mathtt{flops} + \sum_i \beta_i \; \#\mathtt{miss}_i$$

Analytic modeling

no execution of code

models built from knowledge

Model (simplified version)

$$\mathtt{Time} = \alpha \; \#\mathtt{flops} + \sum_{i} \beta_{i} \; \#\mathtt{miss}_{i}$$

- storage scheme
- size of the operands
- size and number of caches
- hardware & software prefetching

- how the algorithm traverses the operands
- size of cache-lines
- compilation level
- **)** ...

Feasible?

Feasible?

Roman lakymchuk

'Execution-less
Performance Modeling'

Feasible?

Roman lakymchuk

"Execution-less
Performance Modeling"

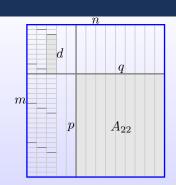
Models for specific architecture, BLAS routine, implementation, ...

Example: GotoBLAS

Rank-k update

$$A := A + xy^T$$

GER, BLAS2

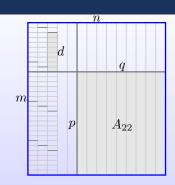


Example: GotoBLAS

Rank-k update

$$A := A + xy^T$$

GER, BLAS2



L1 misses =

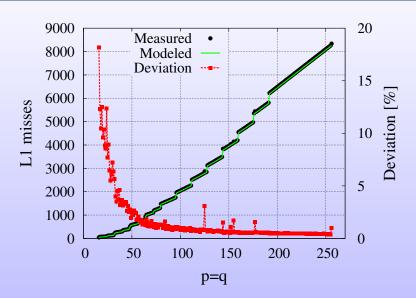
$$\begin{cases} \left\lceil \frac{p}{d} \right\rceil + \left\lceil \frac{q}{d} \right\rceil + \left\lfloor \frac{mq}{d} \right\rfloor, & \text{if } m - p < d \\ 2 \left\lceil \frac{p}{d} \right\rceil + \left\lceil \frac{q}{d} \right\rceil + \sum_{i=1}^{q-1} \left(\left\lceil \frac{p + (mi \bmod d)}{d} \right\rceil + \eta(i) \right), & \text{otherwise} \end{cases}$$

with

$$\eta(i) = \min\left(d - 1, \left\lfloor \frac{m + (mi \bmod d)}{d} \right\rfloor - \left\lceil \frac{p + (mi \bmod d)}{d} \right\rceil\right)$$

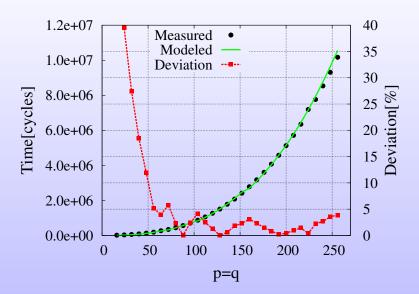
Accuracy

GER, GotoBLAS2



Predicting the execution time

LU factorization, unblocked



Wishlist ■ Speed ✓ ■ No direct execution of the algorithm ✓

Wishlist

- Speed ✓ ¥
 - No direct execution of the algorithm
 - Possibly no execution at all

Wishlist Speed ✓ ★ No direct execution of the algorithm ✓ Possibly no execution at all ✓ Accuracy ✓ ⇒ accurate ranking

Wishlist

- Speed ✓ ¥
 - No direct execution of the algorithm
 - Possibly no execution at all
- Accuracy ✓ ⇒ accurate ranking
- Automation *

- Motivation
- Analytic Modeling
- Modeling through Sampling
- 4 Results
- Conclusions

Elmar Peise

Modeling through sampling

Roadmap

Sample the kernels

Modeling through sampling

Roadmap

- Sample the kernels
- Build polynomial models

Modeling through sampling

Roadmap

- Sample the kernels
- Build polynomial models
- Create a database

Modeling through sampling

Roadmap

- Sample the kernels
- Build polynomial models
- Create a database
- ullet Algorithm execution \equiv querying

Sampling

A X = B

Sampling

A X = B

dtrsm(side, uplo, transA, diag, m, n, alpha, A, ldA, B, ldB)

blind sampling \Rightarrow curse of dimensionality \Rightarrow intractable low accuracy

Sampling

A X = B

dtrsm(side, uplo, transA, diag, m, n, alpha, A, ldA, B, ldB)

blind sampling \Rightarrow curse of dimensionality \Rightarrow intractable low accuracy

Solution:

- Understand the kernels
- Integrate knowledge into the modeling and models

A X = B

$$A X = B$$

dtrsm(side, uplo, transA, diag, m, n, alpha, A, ldA, B, ldB)

Not all arguments affect performance!

A X = B

- Not all arguments affect performance!
- Polynomial models, piecewise defined

A X = B

- Not all arguments affect performance!
- Polynomial models, piecewise defined
- Discrete cases, multiple models

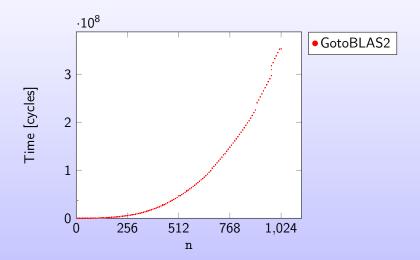
A X = B

- Not all arguments affect performance!
- Polynomial models, piecewise defined
- Discrete cases, multiple models
- Fluctuations ⇒ need for stochastic quantities

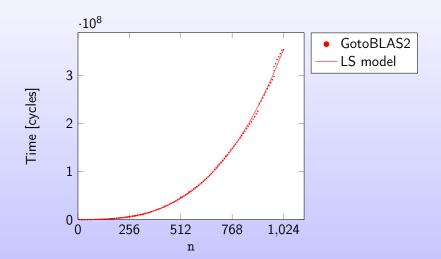
A X = B

- Not all arguments affect performance!
- Polynomial models, piecewise defined
- Discrete cases, multiple models
- Fluctuations ⇒ need for stochastic quantities
- Accuracy: not for performance, for ranking!

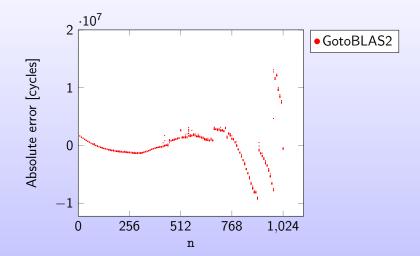
Size arguments



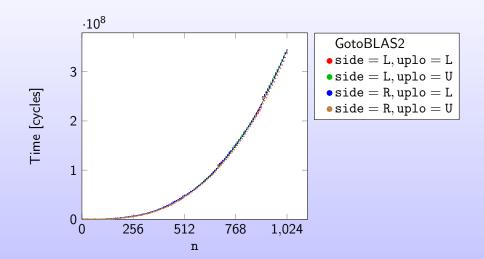
Size arguments



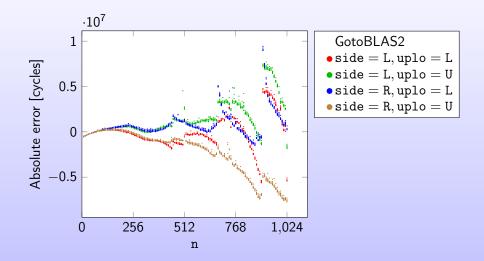
⇒ Piecewise Polynomials



Flags

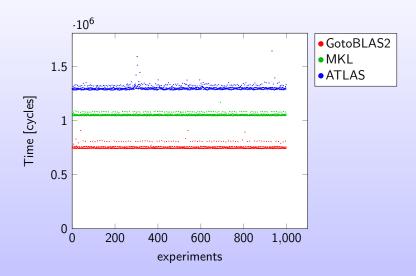


⇒ Independent models



Variability \Rightarrow statistical info

DGEMM



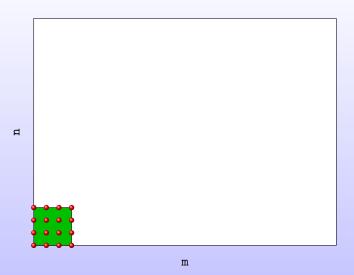
Building the models

- Two tools
 - Sampler
 - Modeler

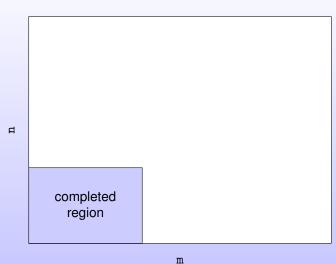
Building the models

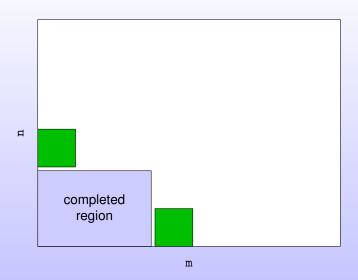
- Two tools
 - Sampler
 - Modeler

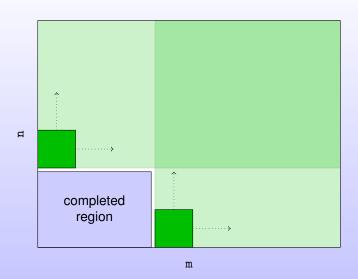
- Two modeling strategies
 - Expansion
 - Adaptive refinement

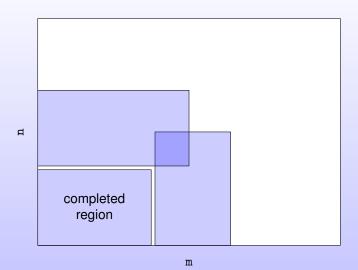


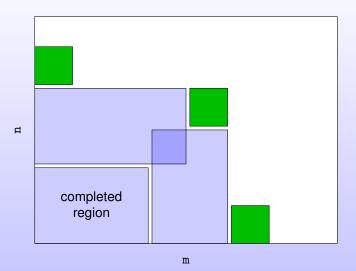


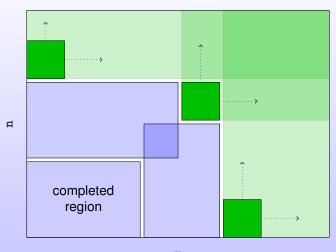




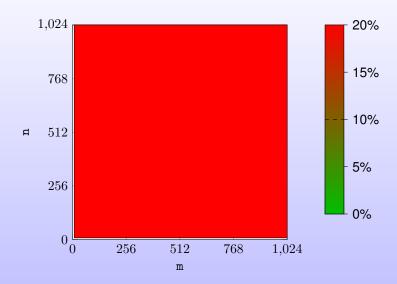


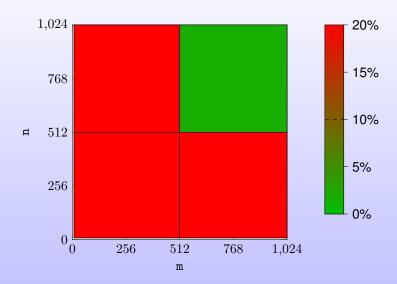


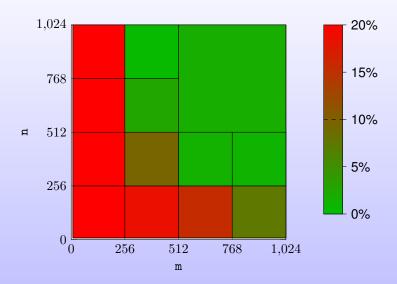


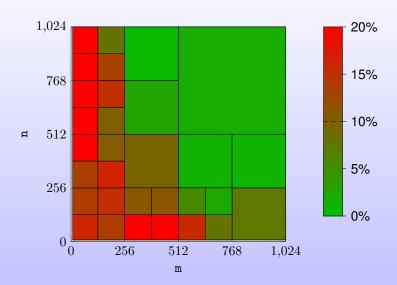


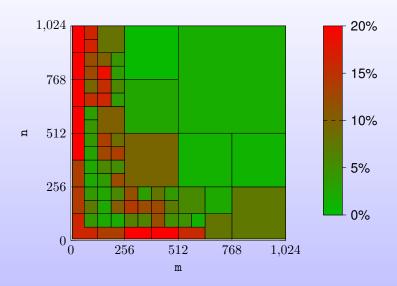
m

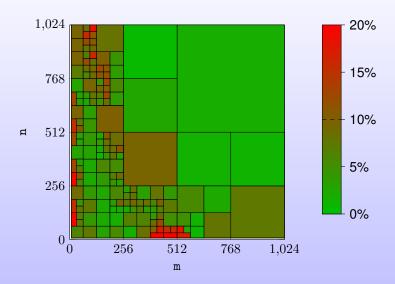


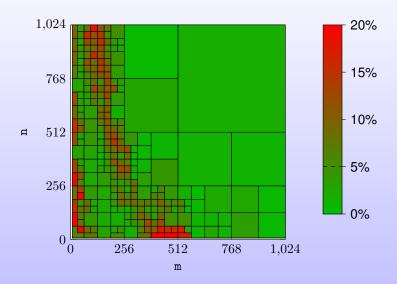












From algorithm to prediction

$$\begin{array}{c|c} {\bf TriInv_1('L',300,A,300,100)} \\ \hline \\ {\bf Partition} \ L \to \left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array} \right) \\ {\bf where} \ L_{TL} \ {\bf is} \ 0 \times 0 \\ \hline \\ {\bf While} \ size(L_{TL}) < size(L) \ {\bf do} \\ \hline \\ {\bf Repartition} \\ \left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array} \right) \to \left(\begin{array}{c|c} L_{00} & 0 & 0 \\ \hline L_{10} & L_{11} & 0 \\ \hline L_{20} & L_{21} & L_{22} \end{array} \right) \\ \hline \\ {\bf where} \ L_{11} \ {\bf is} \ b \times b \\ \hline \\ \hline \\ L_{10} := {\tt TRMM}(L_{10},L_{00}) \\ L_{10} := {\tt TRSM}(-L_{11}L_{10}) \\ L_{11} := {\tt trinv}(L_{11}) \\ \hline \\ {\bf Continue} \\ \left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c|c} L_{00} & 0 & 0 \\ \hline L_{10} & L_{11} & 0 \\ \hline L_{20} & L_{21} & L_{22} \end{array} \right) \\ \\ {\bf endwhile} \\ \hline \end{array}$$

From algorithm to prediction

TriInv_1('L',300,A,300,100)

$$\begin{array}{c|c} \textbf{Partition} \ L \rightarrow \left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array} \right) \\ \textbf{where} \ L_{TL} \ \text{is} \ 0 \times 0 \\ \textbf{While} \ \ size(L_{TL}) < size(L) \ \ \textbf{do} \end{array}$$

Repartition

$$\begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} L_{00} & 0 & 0 \\ \hline L_{10} & L_{11} & 0 \\ \hline L_{20} & L_{21} & L_{22} \end{pmatrix}$$

where L_{11} is $b \times b$

$$L_{10} := \mathtt{TRMM}(L_{10}, L_{00})$$

$$L_{10} := TRSM(-L_{11}L_{10})$$

$$L_{11} := \mathtt{trinv}(L_{11})$$

Continue

$$\begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} L_{00} & 0 & 0 \\ \hline L_{10} & L_{11} & 0 \\ \hline L_{20} & L_{21} & L_{22} \end{pmatrix}$$

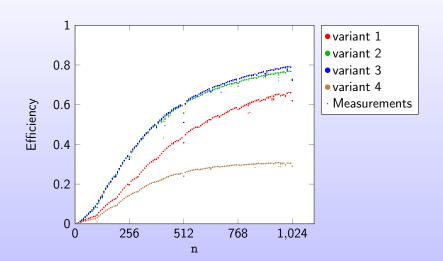
endwhile

```
dtrmm(100, 0, 1, 300, 300)
dtrsm(100, 0, -1, 300, 300)
triinv_1('L', 100, 300, 1)
dtrmm(100, 100, 1, 300, 300)
dtrsm(100, 100, -1, 300, 300)
triinv_1('L', 100, 300, 1)
dtrmm(100, 200, 1, 300, 300)
dtrsm(100, 200, -1, 300, 300)
triinv_1('L', 100, 300, 1)
```

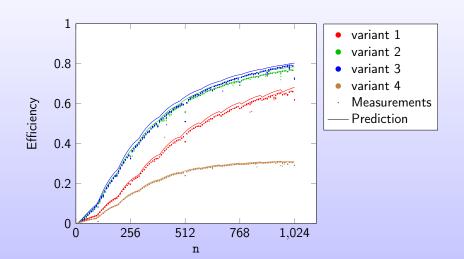
- Motivation
- Analytic Modeling
- Modeling through Sampling
- 4 Results
- Conclusions

- Trilnv: efficiency
- Trilnv: block size tuning
- Sylvester Equation
- GWAS

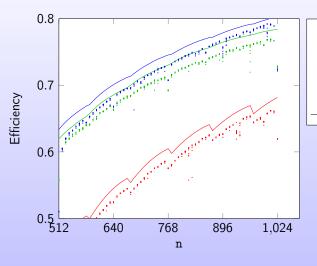
Efficiency



Ranking

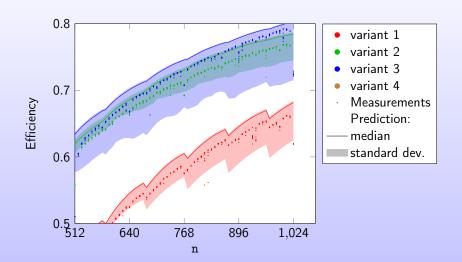


Zoom

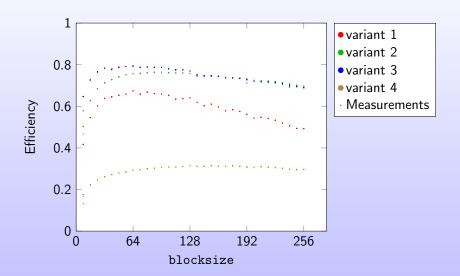


- variant 1
- variant 2variant 3
- variant 4
- Measurements
 - Prediction

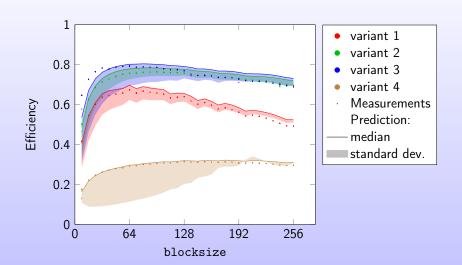
Statistics



Tuning: block size

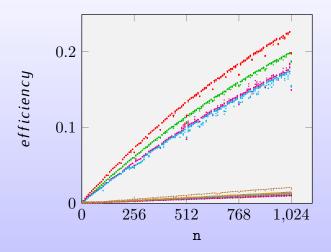


Tuning: block size



Sylvester equation – 16 variants

AX + XB = C



Sylvester equation – 16 variants

 $\overline{AX} + XB = C$

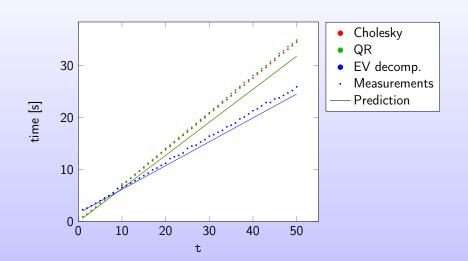
	Efficiency	
Variant	predicted	measured
Var-1	27.03%	24.04%
Var-2	22.52%	21.07%
Var-5	15.51%	18.82%
Var-6	13.72%	18.51%
Var-16	1.79%	2.21%
Var-3	1.52%	1.52%
Var-4	1.50%	1.45%
Var-8	1.49%	1.37%
Var-10	1.43%	1.53%
Var-15	1.43%	1.52%
Var-9	1.40%	1.48%
Var-14	1.34%	1.33%
Var-12	1.29%	1.43%
Var-7	1.06%	1.16%
Var-11	1.04%	1.07%
Var-13	1.01%	1.01%

GWAS

$$b := (X^T M^{-1} X)^{-1} X^T M^{-1} y$$

GWAS

$b := (X^T M^{-1} X)^{-1} X^T M^{-1} y$



Wishlist

Speed

Wishlist

- Speed
 - No direct execution of the algorithm

Wishlist

- Speed
 - No direct execution of the algorithm
 - Possibly no execution at all *

Wishlist

- Speed
 - No direct execution of the algorithm
 - Possibly no execution at all *
- Accuracy ✓ ⇒ accurate ranking

Wishlist Speed ✓ No direct execution of the algorithm ✓ Possibly no execution at all * Accuracy ✓ ⇒ accurate ranking Automation ✓

- Motivation
- 2 Analytic Modeling
- Modeling through Sampling
- 4 Results
- 6 Conclusions

Conclusions

Ranking of algorithms

- Request: no direct execution
- Solutions:
 - Analytic models
 - Models through samples
- Accuracy in the models vs. accuracy in the ranking

Conclusions

Ranking of algorithms

- Request: no direct execution
- Solutions:
 - Analytic models
 - Models through samples
- Accuracy in the models vs. accuracy in the ranking

What's next? ...

we just started!

Extrapolation, MPI, sparse computations, . . .

Deutsche Forschungsgemeinschaft

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 is gratefully acknowledged.