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Scalars

I 50s: Assembly code
Building blocks == ISA

I [1954]: FORTRAN (IBM, John Backus)
“Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN”

no more Assembly! → compiler → ACM Turing award (1977)

I However, NOT the solution to all problems
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Matrices

I [70s, . . . , today]: Identification, standardization, optimization of building blocks

Libraries: LINPACK, BLAS, LAPACK, FFTW, . . .

Convenience, portability, separation of concerns

I [80s–early 90s]: Memory hierarchy

Libraries → necessity

I How to use them? (not just optimal parenthesisation)
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Applications

x := A(BTB + ATRTΛRA)−1BTBA−1y
exponential

transient excision

∀i ∀j bij :=
(
XT
i M−1

j Xi

)−1
XT
i M1

j yj GWAS

{
C† := PCPT + Q

K := C†H
T (HC†H

T )−1

probabilistic
Nordsieck method

for ODEs

E := Q−1U(I + UTQ−1U)−1UT
L1-norm

minimization on
manifolds

xk|k−1 = Fxk−1|k−1 + Bu
Pk|k−1 = FPk−1|k−1F

T + Q
xk|k = xk|k−1 + Pk|k−1H

T × (HPk|k−1H
T + R)−1(zk − Hxk|k−1)

Pk|k = Pk|k−1 − Pk|k−1H
T × (HPk|k−1H

T + R)−1HPk|k−1

Kalman filter
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T (HC†H
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y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

LINPACK BLAS LAPACK . . .
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b := (XTX )−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-” Algorithm 4

(Q,R) := qr(X )

symbolic simplifications

M := XTX

b := (R−1QT )y

b := M−1(XT y) b := (M−1XT )y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)
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Human productivity vs. machine efficiency
A well-known problem

High-level languages

I Matlab

I R

I Julia

I Mathematica

I . . .

Libraries

I Armadillo

I Blaze

I Blitz

I Eigen

I . . .

I NumPy
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Example

Example: w := AB−1c , SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended
w = A*(B\c)

Expert
L = Chol(B)

w = A * (L’/(L/c))

Generated – “Linnea” by H. Barthels

ml0 = A; ml1 = B; ml2 = c;

potrf!(’L’, ml1)

trsv!(’L’, ’N’, ’N’, ml1, ml2)

trsv!(’L’, ’T’, ’N’, ml1, ml2)

ml3 = Array{Float64}(10)

gemv!(’N’, 1.0, ml0, ml2, 0.0, ml3)

w = ml3
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Tensors
I Building blocks?

I BLAS, LAPACK
I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?
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(S)G ′,G =
∑
a

∑
L=(l ,m)

(
Aa,G ′

L

)∗
Aa,G
L +

(
Ba,G ′

L

)∗
Ba,G
L ‖u̇l ,a‖2

(H)G ′,G =
∑
a

∑
L′,L

(
A∗L′,a,t′ T

[AA]
L′,L;a AL,a,t

)
+
(
A∗L′,a,t′ T

[AB]
L′,L;a BL,a,t

)
+
(
B∗L′,a,t′ T

[BA]
L′,L;a AL,a,t

)
+
(
B∗L′,a,t′ T

[BB]
L′,L;a BL,a,t

)
.

Generation of overlap and Hamiltonian matrices. With E. Di Napoli.
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I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

10x more flops. Speedups: 1.5–2.5x. With E. Di Napoli.
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γ µ

α

η

t

m

p

B

bα,γ

=
XT
α

−1

Mγ Xα

−1

XT
α Mγ yγ

bη,γ

=
XT
η
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Mγ Xη
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XT
η Mγ yγ bη,µ

=
XT
η
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CCS, CCSD, . . .
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TPPα1,n1,α′
1,n

′
1,s1,s2,s′1,s

′
2

=

1

β

∑
s3,s4,s′3,s

′
4

Nint−1∑
n=−Nint

Np∑
α,β

PP
n,s′3,s

′
4

α1,n1,α,s1,s2X
n,s′3,s

′
4

α,β,s3,s4
PP

n,s′3,s
′
4

β,α′
1,n

′
1,s1,s2

Quantum Field Theory, Single Impurity Anderson Model. With E. Di Napoli.
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Experiments – Linnea

# Example

1 b := (XTX )−1XTy FullRank(X )

2 b := (XTM−1X )−1XTM−1y SPD(M), FullRank(X )

3 W := A−1BCD−TEF LowTri(A), UppTri(D,E)

4

{
X := AB−1C

Y := DB−1AT SPD(B)

5 x := W (AT (AWAT )−1b − c) FullRank(A,W )

Diag(W ), Pos(W )
...
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Performance results
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