A journey from scalar to tensor computations A tale of efficiency and productivity

Paolo Bientinesi Aachen Institute for Computational Engineering Science RWTH Aachen University

> Tensor Computation Workshop September 14 & 15, 2017 Flatiron Institute, New York City

Deutsche Forschungsgemeinschaft DFG

High Performance and Automatic Computing

HIPAC High-performance & Automatic Computing

Edoardo Di Napoli Diego Traver-Fabregat

Taxonomy of contractions: Can you GEMM?

"Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions", AMC 235, 2014

HIPAC High-performance & Automatic Computing

Edoardo Di Napoli Diego Traver-Fabregat Taxonomy of contractions: Can you GEMM?

"Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions", AMC 235, 2014

Elmar Peise

Performance prediction

"On the Performance Prediction of BLAS-based Tensor Contractions", PMBS, SC'14

HPAC High-performance & Automatic Computing

Edoardo Di Napoli Diego Traver-Fabregat

Taxonomy of contractions: Can you GEMM?

"Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions", AMC 235, 2014

Elmar Peise

Performance prediction

"On the Performance Prediction of BLAS-based Tensor Contractions", PMBS, SC'14

Yurii Aulchenko Diego Traver-Fabregat

Genome-wide association studies (GWAS)

"Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies", TOMS 40, 2014

HPAC High-performance & Automatic Computing

Edoardo Di Napoli Diego Traver-Fabregat Taxonomy of contractions: Can you GEMM?

"Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions", AMC 235, 2014

Elmar Peise Performance prediction

"On the Performance Prediction of BLAS-based Tensor Contractions", PMBS, SC'14

Yurii Aulchenko Diego Traver-Fabregat

Genome-wide association studies (GWAS)

"Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies", TOMS 40, 2014

Edoardo Di Napoli Elmar Peise

Density Functional Theory: FLAPW methods

"High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods", CPC 2017

HPAC High-performance & Automatic Computing

Edoardo Di Napoli Diego Traver-Fabregat Taxonomy of contractions: Can you GEMM?

"Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions", AMC 235, 2014

Elmar Peise Performance prediction "On the Performance Prediction of BLAS-based Tensor Contractions", PMBS, SC'14

Yurii Aulchenko Genome-wide association studies (GWAS) Diego Traver-Fabregat "Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies", TOMS 40, 2014

Edoardo Di Napoli Elmar Peise *"High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods", CPC 2017*

Paul Springer

High-performance kernels

"TTC: A high-performance Compiler for Tensor Transpositions", TOMS 44, 2017 "Design of a High-Performance GEMM-like Tensor-Tensor Multiplication", TOMS, 2017

History

50s: Assembly code
 Building blocks == ISA

- 50s: Assembly code Building blocks == ISA
- ▶ [1954]: FORTRAN (IBM, John Backus)
 "Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN"
 no more Assembly! → compiler

- 50s: Assembly code Building blocks == ISA
- ▶ [1954]: FORTRAN (IBM, John Backus)
 "Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN"
 no more Assembly! → compiler → ACM Turing award (1977)

- 50s: Assembly code Building blocks == ISA
- ▶ [1954]: FORTRAN (IBM, John Backus)
 "Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN"
 no more Assembly! → compiler → ACM Turing award (1977)
- However, NOT the solution to all problems

Matrices

[70s, ..., today]: Identification, standardization, optimization of building blocks
 Libraries: LINPACK, BLAS, LAPACK, FFTW, ...
 Convenience, portability, separation of concerns

Matrices

- [70s, ..., today]: Identification, standardization, optimization of building blocks
 Libraries: LINPACK, BLAS, LAPACK, FFTW, ...
 Convenience, portability, separation of concerns
- ▶ [80s-early 90s]: Memory hierarchy
 Libraries → necessity

Matrices

- [70s, ..., today]: Identification, standardization, optimization of building blocks Libraries: LINPACK, BLAS, LAPACK, FFTW, ...
 Convenience, portability, separation of concerns
- ▶ [80s-early 90s]: Memory hierarchy
 Libraries → necessity
- How to use them? (not just optimal parenthesisation)

Applications

$$\begin{aligned} x &:= A(B^T B + A^T R^T \Lambda RA)^{-1} B^T B A^{-1} y & \text{exponential} \\ & \text{transient excision} \end{aligned}$$

$$\forall i \ \forall j \quad b_{ij} := \left(X_i^T M_j^{-1} X_i\right)^{-1} X_i^T M_j^1 y_j & \text{GWAS} \end{aligned}$$

$$\begin{cases} C_{\dagger} &:= P C P^T + Q & \text{probabilistic} \\ K &:= C_{\dagger} H^T (H C_{\dagger} H^T)^{-1} & \text{Impossible} \\ K &:= C_{\dagger} H^T (H C_{\dagger} H^T)^{-1} & \text{Impossible} \\ E &:= Q^{-1} U (I + U^T Q^{-1} U)^{-1} U^T & \text{Impossible} \\ E &:= Q^{-1} U (I + U^T Q^{-1} U)^{-1} U^T & \text{Impossible} \\ \begin{cases} x_{k|k-1} &= F x_{k-1|k-1} + B u \\ P_{k|k-1} &= F P_{k-1|k-1} F^T + Q \\ x_{k|k} &= x_{k|k-1} + P_{k|k-1} H^T \times (H P_{k|k-1} H^T + R)^{-1} (z_k - H x_{k|k-1}) \\ P_{k|k} &= P_{k|k-1} - P_{k|k-1} H^T \times (H P_{k|k-1} H^T + R)^{-1} H P_{k|k-1} \end{aligned}$$

$$x := A(B^T B + A^T R^T \Lambda R A)^{-1} B^T B A^{-1} y \qquad \begin{cases} C_{\dagger} := P C P^T + Q \\ K := C_{\dagger} H^T (H C_{\dagger} H^T)^{-1} \end{cases}$$
$$E := Q^{-1} U (I + U^T Q^{-1} U)^{-1} U^T \qquad \dots$$

 $b := (X^T X)^{-1} X^T y$

$$M := X^T X$$

$$M := M^{-1} X^T y$$

$$M := X^T X$$

$$M := X^T X$$

$$b := M^{-1}(X^T y)$$

$$b := M^{-1}(X^T y)$$

$$b := (M^{-1}X^T) y$$

$$b := (M^{-1}X^T) y$$

$$b := (M^{-1}X^T) y$$

$$Algorithm 1$$
Algorithm 2

$$M := X^{T}X$$

$$M := X^{T}X$$

$$b := M^{-1}(X^{T}y)$$

$$b := (M^{-1}(X^{T}y))$$

$$Algorithm 1$$

$$b := (M^{-1})X^{T}y$$

$$Algorithm "-"$$

$$b := (X^T X)^{-1} X^T y$$

$$M := X^T X$$

$$b := M^{-1} X^T y$$

$$b := ((QR)^T QR)^{-1} (QR)^T y$$

$$b := (M^{-1} X^T) y$$

$$Algorithm 1$$

$$b := (M^{-1}) X^T y$$

$$Algorithm "-"$$

Human productivity vs. machine efficiency

A well-known problem

High-level languages

- Matlab
- ► R
- Julia
- Mathematica
- ▶

Libraries

- Armadillo
- Blaze
- Blitz
- Eigen
- ▶
- NumPy

Example:
$$w := AB^{-1}c$$
, SPD(B)

Example:
$$w := AB^{-1}c$$
, SPD(B)

Naive \leftarrow NEVER!! w = A*inv(B)*c

Example:
$$w := AB^{-1}c$$
, SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended

 $w = A*(B\backslash c)$

Example:
$$w := AB^{-1}c$$
, SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended

 $w = A*(B\backslash c)$

Expert

$$L = Chol(B)$$

w = A * (L'/(L/c))

Example:
$$w := AB^{-1}c$$
, SPD(B)

Naive \leftarrow NEVER!! w = A*inv(B)*c

Recommended

 $w = A*(B\backslash c)$

Expert

L = Chol(B)w = A * (L'/(L/c)) Generated - "Linnea" by H. Barthels
ml0 = A; ml1 = B; ml2 = c;
potrf!('L', ml1)
trsv!('L', 'N', 'N', ml1, ml2)
trsv!('L', 'T', 'N', ml1, ml2)
ml3 = Array{Float64}(10)
gemv!('N', 1.0, ml0, ml2, 0.0, ml3)
w = ml3

Building blocks?

- Building blocks?
 - ► BLAS, LAPACK

$$(S)_{G',G} = \sum_{a} \sum_{L=(I,m)} \left(A_{L}^{a,G'}\right)^{*} A_{L}^{a,G} + \left(B_{L}^{a,G'}\right)^{*} B_{L}^{a,G} \|\dot{u}_{I,a}\|^{2}$$

$$(H)_{G',G} = \sum_{a} \sum_{L',L} \left(A^*_{L',a,t'} \ T^{[AA]}_{L',L;a} \ A_{L,a,t} \right) + \left(A^*_{L',a,t'} \ T^{[AB]}_{L',L;a} \ B_{L,a,t} \right) \\ + \left(B^*_{L',a,t'} \ T^{[BA]}_{L',L;a} \ A_{L,a,t} \right) + \left(B^*_{L',a,t'} \ T^{[BB]}_{L',L;a} \ B_{L,a,t} \right).$$

Generation of overlap and Hamiltonian matrices. With E. Di Napoli.

- Building blocks?
 - ► BLAS, LAPACK

1	for $i += 1,, N_A$:	
2	try:	
3	$C_a \coloneqq \operatorname{Chol}(T_a^{\lfloor AA \rfloor})$	(zpotrf: $\frac{4}{3}N_L^3 + O(N_L^2)$ FLOPs)
4	success:	
5	$Y_a \coloneqq C_a^H A_a$	$(\texttt{ztrmm: } 4N_L^2N_G \text{ FLOPs})$
6	add Y_a to Y_{HPD}	
7	failure:	
8	$X_a \coloneqq T_a^{\lfloor AA \rfloor} A_a$	(zhemm: $8N_L^2N_G$ FLOPs)
9	add X_a to $X_{\neg \text{HPD}}$	
10	add A_a to $A_{\neg \text{HPD}}$	
11	$H += A^H_{\neg \text{HPD}} X_{\neg \text{HPD}}$	(zgemm: $8N_{A_{\neg \text{HPD}}}N_L N_G^2$ FLOPs)
12	$H += Y_{\rm HPD}^H Y_{\rm HPD}$	(zherk: $4N_{A_{\text{HPD}}}N_LN_G^2$ FLOPs)

10x more flops. Speedups: 1.5–2.5x. With E. Di Napoli.

- Building blocks?
 - ► BLAS, LAPACK

- Building blocks?
 - ► BLAS, LAPACK
 - Contractions, transpositions, ...

CCS, CCSD, ...

- Building blocks?
 - ► BLAS, LAPACK
 - Contractions, transpositions,
 - ▶ ???

$$TPP_{\alpha_{1},n_{1},\alpha_{1}',n_{1}',s_{1},s_{2},s_{1}',s_{2}'} = \frac{1}{\beta} \sum_{s_{3},s_{4},s_{3}',s_{4}'} \sum_{n=-N_{int}}^{N_{int}-1} \sum_{\alpha,\beta}^{N_{\rho}} PP_{\alpha_{1},n_{1},\alpha,s_{1},s_{2}}^{n,s_{3}',s_{4}'} X_{\alpha,\beta,s_{3},s_{4}}^{n,s_{3}',s_{4}'} PP_{\beta,\alpha_{1}',n_{1}',s_{1},s_{2}}^{n,s_{3}',s_{4}'}$$

Quantum Field Theory, Single Impurity Anderson Model. With E. Di Napoli.

- Building blocks?
 - ► BLAS, LAPACK
 - Contractions, transpositions, . . .
 - ▶ ???
- Do we have a unifying language/formalism? Tensor Networks?

- Building blocks?
 - BLAS, LAPACK
 - Contractions, transpositions, . . .
 - ▶ ???
- Do we have a unifying language/formalism? Tensor Networks?
- Are we ready to fix interfaces & standards?

- Building blocks?
 - BLAS, LAPACK
 - Contractions, transpositions, ...
 - ▶ ???
- Do we have a unifying language/formalism? Tensor Networks?
- Are we ready to fix interfaces & standards?
- ► For once, shall we focus on performance *AND* productivity?

Experiments – Linnea

_

#	Example	
1	$b := (X^T X)^{-1} X^T y$	FullRank(X)
2	$b := (X^T M^{-1} X)^{-1} X^T M^{-1} y$	SPD(M), FullRank(X)
3	$W := A^{-1}BCD^{-T}EF$	LowTri(A), UppTri(D, E)
4	$\begin{cases} X := AB^{-1}C \\ Y := DB^{-1}A^T \end{cases}$	SPD(B)
5	$x := W(A^T(AWA^T)^{-1}b - c)$	FullRank(A, W) Diag(W), Pos(W)
÷		

Performance results

