
A journey from scalar to tensor computations
A tale of efficiency and productivity

Paolo Bientinesi
Aachen Institute for Computational Engineering Science

RWTH Aachen University

Tensor Computation Workshop
September 14 & 15, 2017

Flatiron Institute, New York City

High-performance & Automatic Computing

I
Edoardo Di Napoli
Diego Traver-Fabregat

Taxonomy of contractions: Can you GEMM?

“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

I Elmar Peise Performance prediction
“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

I
Yurii Aulchenko
Diego Traver-Fabregat

Genome-wide association studies (GWAS)

“Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies”, TOMS 40, 2014

I Edoardo Di Napoli
Elmar Peise

Density Functional Theory: FLAPW methods

“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

I Paul Springer High-performance kernels
“TTC: A high-performance Compiler for Tensor Transpositions”, TOMS 44, 2017

“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, TOMS, 2017

2 / 13

High-performance & Automatic Computing

I
Edoardo Di Napoli
Diego Traver-Fabregat

Taxonomy of contractions: Can you GEMM?

“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

I Elmar Peise Performance prediction
“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

I
Yurii Aulchenko
Diego Traver-Fabregat

Genome-wide association studies (GWAS)

“Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies”, TOMS 40, 2014

I Edoardo Di Napoli
Elmar Peise

Density Functional Theory: FLAPW methods

“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

I Paul Springer High-performance kernels
“TTC: A high-performance Compiler for Tensor Transpositions”, TOMS 44, 2017

“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, TOMS, 2017

2 / 13

High-performance & Automatic Computing

I
Edoardo Di Napoli
Diego Traver-Fabregat

Taxonomy of contractions: Can you GEMM?

“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

I Elmar Peise Performance prediction
“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

I
Yurii Aulchenko
Diego Traver-Fabregat

Genome-wide association studies (GWAS)

“Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies”, TOMS 40, 2014

I Edoardo Di Napoli
Elmar Peise

Density Functional Theory: FLAPW methods

“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

I Paul Springer High-performance kernels
“TTC: A high-performance Compiler for Tensor Transpositions”, TOMS 44, 2017

“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, TOMS, 2017

2 / 13

High-performance & Automatic Computing

I
Edoardo Di Napoli
Diego Traver-Fabregat

Taxonomy of contractions: Can you GEMM?

“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

I Elmar Peise Performance prediction
“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

I
Yurii Aulchenko
Diego Traver-Fabregat

Genome-wide association studies (GWAS)

“Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies”, TOMS 40, 2014

I Edoardo Di Napoli
Elmar Peise

Density Functional Theory: FLAPW methods

“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

I Paul Springer High-performance kernels
“TTC: A high-performance Compiler for Tensor Transpositions”, TOMS 44, 2017

“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, TOMS, 2017

2 / 13

High-performance & Automatic Computing

I
Edoardo Di Napoli
Diego Traver-Fabregat

Taxonomy of contractions: Can you GEMM?

“Towards an Efficient Use of the BLAS Library for Multilinear Tensor Contractions”, AMC 235, 2014

I Elmar Peise Performance prediction
“On the Performance Prediction of BLAS-based Tensor Contractions”, PMBS, SC’14

I
Yurii Aulchenko
Diego Traver-Fabregat

Genome-wide association studies (GWAS)

“Computing Petaflops over Terabytes of Data: The Case of Genome-Wide Association Studies”, TOMS 40, 2014

I Edoardo Di Napoli
Elmar Peise

Density Functional Theory: FLAPW methods

“High-Performance Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods”, CPC 2017

I Paul Springer High-performance kernels
“TTC: A high-performance Compiler for Tensor Transpositions”, TOMS 44, 2017

“Design of a High-Performance GEMM-like Tensor-Tensor Multiplication”, TOMS, 2017

2 / 13

History

3 / 13

Scalars

I 50s: Assembly code
Building blocks == ISA

I [1954]: FORTRAN (IBM, John Backus)
“Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN”

no more Assembly! → compiler → ACM Turing award (1977)

I However, NOT the solution to all problems

4 / 13

Scalars

I 50s: Assembly code
Building blocks == ISA

I [1954]: FORTRAN (IBM, John Backus)
“Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN”

no more Assembly! → compiler

→ ACM Turing award (1977)

I However, NOT the solution to all problems

4 / 13

Scalars

I 50s: Assembly code
Building blocks == ISA

I [1954]: FORTRAN (IBM, John Backus)
“Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN”

no more Assembly! → compiler → ACM Turing award (1977)

I However, NOT the solution to all problems

4 / 13

Scalars

I 50s: Assembly code
Building blocks == ISA

I [1954]: FORTRAN (IBM, John Backus)
“Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN”

no more Assembly! → compiler → ACM Turing award (1977)

I However, NOT the solution to all problems

4 / 13

Matrices

I [70s, . . . , today]: Identification, standardization, optimization of building blocks

Libraries: LINPACK, BLAS, LAPACK, FFTW, . . .

Convenience, portability, separation of concerns

I [80s–early 90s]: Memory hierarchy

Libraries → necessity

I How to use them? (not just optimal parenthesisation)

5 / 13

Matrices

I [70s, . . . , today]: Identification, standardization, optimization of building blocks

Libraries: LINPACK, BLAS, LAPACK, FFTW, . . .

Convenience, portability, separation of concerns

I [80s–early 90s]: Memory hierarchy

Libraries → necessity

I How to use them? (not just optimal parenthesisation)

5 / 13

Matrices

I [70s, . . . , today]: Identification, standardization, optimization of building blocks

Libraries: LINPACK, BLAS, LAPACK, FFTW, . . .

Convenience, portability, separation of concerns

I [80s–early 90s]: Memory hierarchy

Libraries → necessity

I How to use them? (not just optimal parenthesisation)

5 / 13

Applications

x := A(BTB + ATRTΛRA)−1BTBA−1y
exponential

transient excision

∀i ∀j bij :=
(
XT
i M−1

j Xi

)−1
XT
i M1

j yj GWAS

{
C† := PCPT + Q

K := C†H
T (HC†H

T)−1

probabilistic
Nordsieck method

for ODEs

E := Q−1U(I + UTQ−1U)−1UT
L1-norm

minimization on
manifolds

xk|k−1 = Fxk−1|k−1 + Bu
Pk|k−1 = FPk−1|k−1F

T + Q
xk|k = xk|k−1 + Pk|k−1H

T × (HPk|k−1H
T + R)−1(zk − Hxk|k−1)

Pk|k = Pk|k−1 − Pk|k−1H
T × (HPk|k−1H

T + R)−1HPk|k−1

Kalman filter

6 / 13

x := A(BTB + ATRTΛRA)−1BTBA−1y

{
C† := PCPT + Q

K := C†H
T (HC†H

T)−1

E := Q−1U(I + UTQ−1U)−1UT . . .

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

LINPACK BLAS LAPACK . . .

7 / 13

x := A(BTB + ATRTΛRA)−1BTBA−1y

{
C† := PCPT + Q

K := C†H
T (HC†H

T)−1

E := Q−1U(I + UTQ−1U)−1UT . . .

y := αx + y LU = A · · · C := αAB + βC

X := A−1B C := ABT + BAT + C X := L−1ML−T QR = A

LINPACK BLAS LAPACK . . .

7 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-” Algorithm 4

(Q,R) := qr(X)

symbolic simplifications

M := XTX

b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-” Algorithm 4

(Q,R) := qr(X)

symbolic simplifications

M := XTX

b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-” Algorithm 4

(Q,R) := qr(X)

symbolic simplifications

M := XTX

b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-”

Algorithm 4

(Q,R) := qr(X)

symbolic simplifications

M := XTX

b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-”

Algorithm 4

(Q,R) := qr(X)

(Q,R) := qr(X)

symbolic simplifications

M := XTX

b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-”

Algorithm 4

(Q,R) := qr(X)

(Q,R) := qr(X)

symbolic simplifications

symbolic simplifications

M := XTX

b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-” Algorithm 4

(Q,R) := qr(X)

(Q,R) := qr(X)

symbolic simplifications

symbolic simplifications

M := XTX

b := R−1(QT y) b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-” Algorithm 4

(Q,R) := qr(X)

symbolic simplifications

M := XTX

b := R−1(QT y) b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

b := (XTX)−1XT y

b := ((QR)TQR)−1(QR)T y

b := R−1QT y

b := M−1XT y

Algorithm 3

Algorithm 1 Algorithm 2

Algorithm “-” Algorithm 4

(Q,R) := qr(X)

symbolic simplifications

M := XTX

b := (R−1QT)y

b := M−1(XT y) b := (M−1XT)y

b := (M−1)XT y

LINEAR
ALGEBRA
MAPPING
PROBLEM
(LAMP)

8 / 13

Human productivity vs. machine efficiency
A well-known problem

High-level languages

I Matlab

I R

I Julia

I Mathematica

I . . .

Libraries

I Armadillo

I Blaze

I Blitz

I Eigen

I . . .

I NumPy

9 / 13

Example

Example: w := AB−1c , SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended
w = A*(B\c)

Expert
L = Chol(B)

w = A * (L’/(L/c))

Generated – “Linnea” by H. Barthels

ml0 = A; ml1 = B; ml2 = c;

potrf!(’L’, ml1)

trsv!(’L’, ’N’, ’N’, ml1, ml2)

trsv!(’L’, ’T’, ’N’, ml1, ml2)

ml3 = Array{Float64}(10)

gemv!(’N’, 1.0, ml0, ml2, 0.0, ml3)

w = ml3

10 / 13

Example

Example: w := AB−1c , SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended
w = A*(B\c)

Expert
L = Chol(B)

w = A * (L’/(L/c))

Generated – “Linnea” by H. Barthels

ml0 = A; ml1 = B; ml2 = c;

potrf!(’L’, ml1)

trsv!(’L’, ’N’, ’N’, ml1, ml2)

trsv!(’L’, ’T’, ’N’, ml1, ml2)

ml3 = Array{Float64}(10)

gemv!(’N’, 1.0, ml0, ml2, 0.0, ml3)

w = ml3

10 / 13

Example

Example: w := AB−1c , SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended
w = A*(B\c)

Expert
L = Chol(B)

w = A * (L’/(L/c))

Generated – “Linnea” by H. Barthels

ml0 = A; ml1 = B; ml2 = c;

potrf!(’L’, ml1)

trsv!(’L’, ’N’, ’N’, ml1, ml2)

trsv!(’L’, ’T’, ’N’, ml1, ml2)

ml3 = Array{Float64}(10)

gemv!(’N’, 1.0, ml0, ml2, 0.0, ml3)

w = ml3

10 / 13

Example

Example: w := AB−1c , SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended
w = A*(B\c)

Expert
L = Chol(B)

w = A * (L’/(L/c))

Generated – “Linnea” by H. Barthels

ml0 = A; ml1 = B; ml2 = c;

potrf!(’L’, ml1)

trsv!(’L’, ’N’, ’N’, ml1, ml2)

trsv!(’L’, ’T’, ’N’, ml1, ml2)

ml3 = Array{Float64}(10)

gemv!(’N’, 1.0, ml0, ml2, 0.0, ml3)

w = ml3

10 / 13

Example

Example: w := AB−1c , SPD(B)

Naive ← NEVER!!
w = A*inv(B)*c

Recommended
w = A*(B\c)

Expert
L = Chol(B)

w = A * (L’/(L/c))

Generated – “Linnea” by H. Barthels

ml0 = A; ml1 = B; ml2 = c;

potrf!(’L’, ml1)

trsv!(’L’, ’N’, ’N’, ml1, ml2)

trsv!(’L’, ’T’, ’N’, ml1, ml2)

ml3 = Array{Float64}(10)

gemv!(’N’, 1.0, ml0, ml2, 0.0, ml3)

w = ml3

10 / 13

Tensors
I Building blocks?

I BLAS, LAPACK
I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK

I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

(S)G ′,G =
∑
a

∑
L=(l ,m)

(
Aa,G ′

L

)∗
Aa,G
L +

(
Ba,G ′

L

)∗
Ba,G
L ‖u̇l ,a‖2

(H)G ′,G =
∑
a

∑
L′,L

(
A∗L′,a,t′ T

[AA]
L′,L;a AL,a,t

)
+
(
A∗L′,a,t′ T

[AB]
L′,L;a BL,a,t

)
+
(
B∗L′,a,t′ T

[BA]
L′,L;a AL,a,t

)
+
(
B∗L′,a,t′ T

[BB]
L′,L;a BL,a,t

)
.

Generation of overlap and Hamiltonian matrices. With E. Di Napoli.

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK

I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

10x more flops. Speedups: 1.5–2.5x. With E. Di Napoli.

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK

I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

γ µ

α

η

t

m

p

B

bα,γ

=
XT
α

−1

Mγ Xα

−1

XT
α Mγ yγ

bη,γ

=
XT
η

−1

Mγ Xη

−1

XT
η Mγ yγ bη,µ

=
XT
η

−1

Mµ Xη

−1

XT
η Mµ yµ

XL XRη

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK
I Contractions, transpositions, . . .

I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

CCS, CCSD, . . .

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK
I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

TPPα1,n1,α′
1,n

′
1,s1,s2,s′1,s

′
2

=

1

β

∑
s3,s4,s′3,s

′
4

Nint−1∑
n=−Nint

Np∑
α,β

PP
n,s′3,s

′
4

α1,n1,α,s1,s2X
n,s′3,s

′
4

α,β,s3,s4
PP

n,s′3,s
′
4

β,α′
1,n

′
1,s1,s2

Quantum Field Theory, Single Impurity Anderson Model. With E. Di Napoli.

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK
I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK
I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

11 / 13

Tensors
I Building blocks?

I BLAS, LAPACK
I Contractions, transpositions, . . .
I ???

I Do we have a unifying language/formalism? Tensor Networks?

I Are we ready to fix interfaces & standards?

I For once, shall we focus on performance *AND* productivity?

11 / 13

Experiments – Linnea

Example

1 b := (XTX)−1XTy FullRank(X)

2 b := (XTM−1X)−1XTM−1y SPD(M), FullRank(X)

3 W := A−1BCD−TEF LowTri(A), UppTri(D,E)

4

{
X := AB−1C

Y := DB−1AT SPD(B)

5 x := W (AT (AWAT)−1b − c) FullRank(A,W)

Diag(W), Pos(W)
...

12 / 13

Performance results

Jl n
Jl r

Arm
a

n

Arm
a

r

Eig
n
Eig

r
Bl n

M
at n

M
at r

0

2

4

6

1

sp
ee

d
u

p
of

G
en

13 / 13

