
IPCC @ RWTH Aachen University
Optimization of multibody and long-range solvers in LAMMPS

Paolo Bientinesi Rodrigo Canales
Markus Höhnerbach Ahmed E. Ismail

First year showcase

February 23rd, 2016



Team

RWTH

Prof. Paolo Bientinesi Rodrigo Canales Markus Höhnerbach Prof. Ahmed Ismail

Intel

Georg Zitzlsberger Klaus-Dieter Örtel Michael W. Brown

2 / 7



LAMMPS

Large-scale Atomic–Molecular Massively Parallel Simulator

Sandia National Labs
http://lammps.sandia.gov

Wide collection of potentials

Open source
Support for OpenMP, Xeon Phi,
and GPU (CUDA and OpenCL)

3 / 7

http://lammps.sandia.gov


Goals

Optimize core kernels within LAMMPS
- Multi-threading and vectorization

- Intel R© Xeon Phi
TM

Buckingham potential, (P3M solver) ⇒ Rodrigo

Tersoff potential, (AIREBO potential) ⇒ Markus

4 / 7



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

Intel R© Parallel Computing Center @ RWTH
Aachen University

Buckingham Potential Optimization

Rodrigo Canales
RWTH Aachen University

February 23, 2016

1 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

PARALLEL PACKAGES FOR LAMMPS

I LAMMPS was designed to be run on a computer cluster.
By default it divides the problem among processes using
MPI.

I Additional parallelization packages have been created for
different architectures

I USER OpenMP
I GPU
I Kokkos
I USER Intel

2 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

USER INTEL PACKAGE

I Developed by Michael Brown
(Intel R©)

I Adds offloading support for
Xeon Phi coprocessors

I Gives the option of using
multiple precision

I Includes several potentials
optimized for
Intel R©architectures.

Figure : Xeon Phi coprocessors
(source: Intel)

3 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

PAIR POTENTIALS

Lennard Jones Available in USER-INTEL

Φlj = 4ε
[(σ

r

)12
−
(σ

r

)6
]

Buckingham

Φbuck = Ae−r/ρ − C
r6

I buck/cut
I buck/coul/cut
I buck/coul/long

Φbuck/coul = Φbuck +
Cqiqj

ε rij

4 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

BUCK POTENTIAL OPTIMIZATION

I USER-INTEL package as base of the development

I Data Packing for parameters

I Alignment of force and position arrays

I Multiple precision support

I Enable Xeon Phi Offloading

I Vectorization

5 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

VECTORIZATION

I For each atom calculate the
distance (and forces) to each of
the neighbor atoms (2 loops)

I Goal: Calculate more than one
force simultaneously

I Vectorization:
I Compiler assisted: SIMD

pragmas.
I Intrinsics

6 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

SIMD PRAGMA VECTORIZATION

I First vectorization attempt: SIMD pragmas

I Inner loop vectorization

I Multi-precision Force and energy accumulators.

7 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

TEST PLATFORM

I The Baseline comparison is the USER OMP package.
I Three types of Buckingham potentials.
I Tested on Xeon Phi (native) and on Xeon Processor for

both single and double precision.
I Speedup calculated for 1 thread
I Computing node setup:

Processor (host): Intel Xeon E-2650
Sandy Bridge

Coprocessor: Intel Xeon Phi 5110p

8 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

SPEEDUP XEON PHI

Figure : Speedup on Xeon Phi 5110p

9 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

SPEEDUP XEON

Figure : Speedup on the Xeon E5-2650 (Sandy Bridge)

10 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

KNC INTRINSICS VECTORIZATION

I Motivation: Optimize neighbor loading

I Manually Gather - Swizzle

I C++ Templates to allow multiple precision

Summary of changes

Templating intrinsics: 760 lines
Implementation pair/buck: 330 lines

11 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

KNC INTRINSICS VS SIMD PRAGMAS

Figure : Speedup comparison on the Xeon Phi (Double)

12 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

KNC INTRINSICS VS SIMD PRAGMAS

Figure : Speedup comparison on the Xeon Phi (Single)

13 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

RUNTIME ON FULL SYSTEM

Buckingham potential for 576000 atoms, double precision

Xeon Phi Native Base 252.5s

(240 Threads) Simd 201.5s

KNC Intrinsics 203.1s

Xeon (×2) + Xeon Phi Base 119.7s

(32 + 240 Threads) Simd 76.7s

KNC Intrinsics 74.4s

14 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

CONCLUSIONS

I We optimized the Buckingham potential for the KNC and
the Xeon architectures.

I We proved that the compiler does a good job on assisted
vectorization.

I Source code is already integrated into LAMMPS
development branch.

15 / 15



INTRODUCTION BUCK POTENTIAL OPTIMIZATION CONCLUSIONS CURRENT AND FUTURE WORK

CURRENT AND FUTURE WORK

I Optimizing the P3M electrostatics long range solver.
I Prototyping using SIMD pragmas and vector functions.

I Developing towards native mode execution.

I Next goal: Optimization of the P3M dispersion solver.

16 / 15



IPCC Workitem: Multibody potentials
Modernization of the Tersoff potential and the

current status of the AIREBO potential

Markus Höhnerbach

Aachen Institute for Advanced Study in Computational Engineering Science
RWTH Aachen University

February 23, 2016

1 / 14



Molecular Dynamics

2 / 14



The Tersoff potential

V =
∑

i

∑

j∈Ni

V (i ,j ,ζij )︷ ︸︸ ︷
fC (rij) [fR(rij) + bijfA(rij)] (1)

bij = (1 + βηζηij )
− 1

2η (2)

ζij =
∑

k∈Ni\{j}

fC (rik)g(θijk) exp(λ3(rij − rik))︸ ︷︷ ︸
ζ(i ,j ,k)

(3)

I Terms in V and bij depend on the type of i and j

I Terms in ζij depend on the type of i , j and k

3 / 14



Popularity

1,990 1,995 2,000 2,005 2,010 2,015
0

50

100

150

200
#Citations

I Tersoff potential: Widely used, fairly simple (~700 LOC)

I Previous work for GPU: EAMa, Stillinger-Weberb and Tersoff c

4 / 14



The Tersoff Algorithm

for i in local atoms of the current thread do
for j in atoms neighboring i do

ζij ← 0;
for k in atoms neighboring i do

ζij ← ζij + ζ(i , j , k);

E ← E + V (i , j , ζij);
Fi ← Fi − ∂xiV (i , j , ζij);
Fj ← Fj − ∂xjV (i , j , ζij);

δζ ← ∂ζV (i , j , ζij);
for k in atoms neighboring i do

Fi ← Fi − δζ · ∂xi ζ(i , j , k);
Fj ← Fj − δζ · ∂xj ζ(i , j , k);
Fk ← Fk − δζ · ∂xk ζ(i , j , k)

5 / 14



Close-Up

(a) (b)

Figure 6: Snapshot of (a) an undeformed silicon nanowire and (b) an undeformed carbon

nanotube.

the crystalline starting configuration used in the MD simulations. Due to thermal fluc-

tuations, the atomistic reference configuration A0 typically deviates from this perfectly

straight shape, leading to different effective lengths L. Three cross sections were chosen

as circular (001) surfaces with atoms located within different radii of Rg = 2.5a, Rg =

3.5a and Rg = 4.5a, which are also merely geometrical. Physically, though, the atoms

are not point particles, but have a finite extent; for example, the van der Waals radius of

Si is Rvdw = 2.1Å. Therefore, the effective cross-sectional radius is Rcs = Rg + Rvdw.

The Lennard-Jones parameters of the wall interaction were set to e = 600 Å3 bar and

s = 3.5 Å, and the wall was tilted against the z-axis, ⌫ =
⇥
0,0.3,�

p
0.91

⇤T
.

The identified mass-dependent properties for systems of different radius and length

are summarized in table 1. The temperature was always T = 300K. We see that the

inertia is distributed symmetrically, as expected. The only exception is the very slen-

der nanowire (Rg = 2.5a, Lg = 150a), where the thermal vibrations lead to significant

deviations in the atomic mean positions from a canonical reference configuration even

without any deforming boundary conditions applied, resulting in a seemingly asym-

metric mass distribution. Averaging the atom positions over a longer time span may

attenuate this issue. The material parameters determined for the constitutive law (58)

are presented in table 2.

Dividing the axial stiffness EA by the cross-sectional area A = R2
csp gives the ax-

ial Young’s modulus of the beam. For example, for beams of length Lg = 150a and

radii Rg = 2.5a, 3.5a, and 4.5a we find E = 49.8GPa, 69.1GPa, and 71.3GPa, respec-

tively. These values are significantly smaller than Young’s modulus for bulk Si, which

is 151.4 GPa for the Stillinger-Weber potential. This reveals a well-known size effect

in the mechanical properties of nanowires, caused by non-negligible surface effects as

26

6 / 14



Challenges

Figure : Graphene

I Few neighbors

I Fewer interactions

Model Problem: CNT

Stress in Carbon Nanotubesa

For single core measurements:
Scaled down 100x and simplified

Model Problem: Si

Bulk silicon
Shipped with LAMMPS

aThanks to Marcus Schmidt

7 / 14



Vectorization

“J” algorithm

for i do
for j ∈ Ni do

skip cutoff;
. . . ;
for k ∈ Ni \ {j} do

skip cutoff;
. . . ;

. . . ;
for k ∈ Ni \ {j} do

skip cutoff;
. . . ;

“I” algorithm

for i do
for j ∈ Ni do

skip cutoff;
. . . ;
for k ∈ Ni \ {j} do

skip cutoff;
. . . ;

. . . ;
for k ∈ Ni \ {j} do

skip cutoff;
. . . ;

8 / 14



K Loop

0 5 10 15
#Lane

←
Ti

m
e

0 5 10 15
#Lane

←
Ti

m
e

9 / 14



Abstraction

typedef vector_routines<double, double, AVX> v;

typedef v::fvec fvec;

fvec a(1);

fvec b(2);

fvec c = v::recip(a + b);

Features

I Supports single, double and
mixed precision

I Supports scalar, SSE4.2,
AVX, AVX2, IMCI,
AVX-512,
array notation (Cilk)

Advantages

I Maintainability

I Testing (through AN)

I Portability

I Thin wrapper

10 / 14



KNL Readiness

I Intrinsics abstraction already supports AVX-512

I Compilation possible for -xMIC-AVX512

I Running under Intel SDE sde -knl -- ...

I Has been tested on KNL prototypes by Intel employees

I We already have benchmarks prepared for the point when
performance data can be shared

11 / 14



Portable Speedups (single-threaded, native)

Westmere
(SSE4.2)

Sandy Bridge
(AVX)

Haswell
(AVX2)

Xeon Phi KNC
(IMCI)

0

2

4

6

8

10

original double single mixed

12 / 14



Individual Node Performance (Multi-Threaded, Offloaded, Realistic Simulation)

Sandy Bridge Xeon Phi Haswell KNL

0

0.5

1

·107

a
to

m
-t

im
es

te
p

s/
se

co
n

d original double
single

Configuration
Arch. Model Year Cores
Haswell 2x Xeon E5-2680 v3 2014 24
Sandy Bridge 2x Xeon E5-2450 2012 16

1x Xeon Phi 5110P 2012 60

13 / 14



AIREBO

Compared to Tersoff

I Symmetrical bond order (REBO)

I Additional bond order terms (REBO)

I Lennard-Jones (longer) ranged force

I Torsion force

Challenges

I Software Engineering: 4200 lines vs 800 lines

I Again very short loops (1, 2, 3 iterations)

I Ill-suited patterns: Searches, branching on values

14 / 14



Conclusion (1/2)

Timeline
May’15 IPCC @ RWTH – kickoff 3

Q1–Q2 Buckingham potential 3

Q1–Q2 Tersoff potential 3

Q3–Q4 AIREBO potential in progress

Q3– PPPM electrostatics solver in progress

Year 2 PPPM dispersion solver

5 / 7



Conclusion (2/2)

Dissemination
Oct’15 Code dungeon 3

EMEA IPCC meeting, Munich

Nov’15 github.com/HPAC

Code, tests and benchmarks in progress

Nov’15 Talk + paper at SC’15 3

Dec’15 Code release 3
LAMMPS’ USER–Intel package

Dec’15 IXPUG in progress
Vectorization WG (Markus); PC (Paolo)

Feb’16 Intel paper on chemistry codes in progress

6 / 7

github.com/HPAC

