IPCC @ RWTH Aachen University Optimization of multibody and long-range solvers in LAMMPS

> Paolo Bientinesi Markus Höhnerbach

Rodrigo Canales Ahmed E. Ismail

First year showcase February 23rd, 2016

High Performance and Automatic Computing

RWTH

Large-scale Atomic–Molecular Massively Parallel Simulator

- Sandia National Labs http://lammps.sandia.gov
- Wide collection of potentials
- Open source Support for OpenMP, Xeon Phi, and GPU (CUDA and OpenCL)

- Optimize core kernels within LAMMPS
 - Multi-threading and vectorization
 - Intel[®] Xeon Phi^{TM}

• **Buckingham** potential, (P3M solver) \Rightarrow Rodrigo

• **Tersoff** potential, (AIREBO potential) \Rightarrow Markus

Intel[®] Parallel Computing Center @ RWTH Aachen University

Buckingham Potential Optimization

Rodrigo Canales RWTH Aachen University

February 23, 2016

PARALLEL PACKAGES FOR LAMMPS

- LAMMPS was designed to be run on a computer cluster. By default it divides the problem among processes using MPI.
- Additional parallelization packages have been created for different architectures
 - USER OpenMP
 - ► GPU
 - Kokkos
 - USER Intel

USER INTEL PACKAGE

- ► Developed by Michael Brown (Intel[®])
- Adds offloading support for Xeon Phi coprocessors
- Gives the option of using multiple precision
- Includes several potentials optimized for Intel[®] architectures.

Figure : Xeon Phi coprocessors (source: Intel)

PAIR POTENTIALS

Lennard Jones

Available in USER-INTEL

$$\Phi_{lj} = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

Buckingham

$$\Phi_{buck} = Ae^{-r/\rho} - \frac{C}{r^6}$$

- ► buck/cut
- buck/coul/cut
- buck/coul/long

$$\Phi_{buck/coul} = \Phi_{buck} + \frac{Cq_iq_j}{\epsilon r_{ij}}$$

BUCK POTENTIAL OPTIMIZATION

- ► USER-INTEL package as base of the development
 - Data Packing for parameters
 - Alignment of force and position arrays
 - Multiple precision support
 - Enable Xeon Phi Offloading
 - Vectorization

VECTORIZATION

- For each atom calculate the distance (and forces) to each of the neighbor atoms (2 loops)
- Goal: Calculate more than one force simultaneously
- Vectorization:
 - Compiler assisted: SIMD pragmas.
 - Intrinsics

CONCLUSIONS

SIMD PRAGMA VECTORIZATION

- ► First vectorization attempt: SIMD pragmas
- Inner loop vectorization
- ► Multi-precision Force and energy accumulators.

TEST PLATFORM

- ► The Baseline comparison is the USER_OMP package.
- Three types of Buckingham potentials.
- Tested on Xeon Phi (native) and on Xeon Processor for both single and double precision.
- ► Speedup calculated for 1 thread
- Computing node setup:

Processor (host):	Intel Xeon E-2650
	Sandy Bridge
Coprocessor:	Intel Xeon Phi 5110p

INTRODUCTION 000

Speedup Xeon Phi

Figure : Speedup on Xeon Phi 5110p

Speedup Xeon

Figure : Speedup on the Xeon E5-2650 (Sandy Bridge)

KNC INTRINSICS VECTORIZATION

- Motivation: Optimize neighbor loading
- Manually Gather Swizzle
- ► C++ Templates to allow multiple precision

Summary of changes

Templating intrinsics:	760 lines
Implementation pair/buck:	330 lines

INTRODUCTION 000

KNC INTRINSICS VS SIMD PRAGMAS

Figure : Speedup comparison on the Xeon Phi (Double)

INTRODUCTION 000 Conclusions

CURRENT AND FUTURE WORK

KNC INTRINSICS VS SIMD PRAGMAS

Figure : Speedup comparison on the Xeon Phi (Single)

RUNTIME ON FULL SYSTEM

Buckingham potential for 576000 atoms, double precision

Xeon Phi Native	Base	252.5s
(240 Threads)	Simd	201.5s
	KNC Intrinsics	203.1s
Xeon (\times 2) + Xeon Phi	Base	119.7s
(32 + 240 Threads)	Simd	76.7s
	KNC Intrinsics	74.4s

CONCLUSIONS

- We optimized the Buckingham potential for the KNC and the Xeon architectures.
- We proved that the compiler does a good job on assisted vectorization.
- Source code is already integrated into LAMMPS development branch.

CURRENT AND FUTURE WORK

- Optimizing the P3M electrostatics long range solver.
 - Prototyping using SIMD pragmas and vector functions.
 - Developing towards native mode execution.

► Next goal: Optimization of the P3M dispersion solver.

IPCC Workitem: Multibody potentials Modernization of the Tersoff potential and the current status of the AIREBO potential

Markus Höhnerbach

Aachen Institute for Advanced Study in Computational Engineering Science RWTH Aachen University

February 23, 2016

Molecular Dynamics

The Tersoff potential

$$V = \sum_{i} \sum_{j \in \mathcal{N}_{i}} \overbrace{f_{C}(r_{ij}) [f_{R}(r_{ij}) + \mathbf{b}_{ij} f_{A}(r_{ij})]}^{V(i,j,\zeta_{ij})}$$
(1)
$$b_{ij} = (1 + \beta^{\eta} \zeta_{ij}^{\eta})^{-\frac{1}{2\eta}}$$
(2)

$$\zeta_{ij} = \sum_{k \in \mathcal{N}_i \setminus \{j\}} \underbrace{f_C(r_{ik})g(\theta_{ijk})\exp(\lambda_3(r_{ij} - r_{ik}))}_{\zeta(i,j,k)}$$
(3)

- Terms in V and b_{ij} depend on the type of i and j
- Terms in ζ_{ij} depend on the type of *i*, *j* and *k*

Popularity

- Tersoff potential: Widely used, fairly simple (~700 LOC)
- Previous work for GPU: EAM^a, Stillinger-Weber^b and Tersoff ^c

The Tersoff Algorithm

for *i* in local atoms of the current thread do for *j* in atoms neighboring *i* do $\zeta_{ii} \leftarrow 0;$ for k in atoms neighboring i do $\zeta_{ij} \leftarrow \zeta_{ij} + \zeta(i,j,k);$ $E \leftarrow E + V(i, j, \zeta_{ii});$ $F_i \leftarrow F_i - \partial_{x_i} V(i, j, \zeta_{ii});$ $F_i \leftarrow F_i - \partial_{x_i} V(i, j, \zeta_{ii});$ $\delta \zeta \leftarrow \partial_{\zeta} V(i, j, \zeta_{ii});$ for k in atoms neighboring i do $\begin{bmatrix} F_i \leftarrow F_i - \delta\zeta \cdot \partial_{x_i}\zeta(i,j,k); \\ F_j \leftarrow F_j - \delta\zeta \cdot \partial_{x_j}\zeta(i,j,k); \\ F_k \leftarrow F_k - \delta\zeta \cdot \partial_{x_k}\zeta(i,j,k) \end{bmatrix}$

Close-Up

Challenges

Figure : Graphene

- Few neighbors
- Fewer interactions

Model Problem: CNT

Stress in Carbon Nanotubes^a For single core measurements: Scaled down 100x and simplified

Model Problem: Si

Bulk silicon Shipped with LAMMPS

^aThanks to Marcus Schmidt

Vectorization

"J" algorithm for *i* do for $j \in \mathcal{N}_i$ do skip cutoff; ...; for $k \in \mathcal{N}_i \setminus \{j\}$ do skip cutoff;

...;

```
 \begin{array}{c} -\\ \dots;\\ \text{for } k \in \mathcal{N}_i \setminus \{j\} \text{ do} \\ | \text{ skip cutoff;}\\ \dots; \end{array}
```

"I" algorithm

```
for i do
     for j \in \mathcal{N}_i do
           skip cutoff;
           .....
           for k \in \mathcal{N}_i \setminus \{j\} do
                skip cutoff;
                ...;
           . . . 1
           for k \in \mathcal{N}_i \setminus \{j\} do
                 skip cutoff;
                ...;
```


Abstraction

```
typedef vector_routines<double, double, AVX> v;
typedef v::fvec fvec;
fvec a(1);
fvec b(2);
fvec c = v::recip(a + b);
```

Features

- Supports single, double and mixed precision
- Supports scalar, SSE4.2, AVX, AVX2, IMCI, AVX-512, array notation (Cilk)

Advantages

- Maintainability
- Testing (through AN)
- Portability
- Thin wrapper

KNL Readiness

Intrinsics abstraction already supports AVX-512

- Compilation possible for -xMIC-AVX512
- Running under Intel SDE sde -knl -- ...
- Has been tested on KNL prototypes by Intel employees
- We already have benchmarks prepared for the point when performance data can be shared

Portable Speedups (single-threaded, native)

Individual Node Performance (Multi-Threaded, Offloaded, Realistic Simulation)

Configuration			
Arch.	Model	Year	Cores
Haswell	2x Xeon E5-2680 v3	2014	24
Sandy Bridge	2x Xeon E5-2450	2012	16
	1x Xeon Phi 5110P	2012	60

Confirmentia

AIREBO

Compared to Tersoff

- Symmetrical bond order (REBO)
- Additional bond order terms (REBO)
- Lennard-Jones (longer) ranged force
- Torsion force

Challenges

- Software Engineering: 4200 lines vs 800 lines
- Again very short loops (1, 2, 3 iterations)
- Ill-suited patterns: Searches, branching on values

Timeline		
May'15	IPCC @ RWTH – kickoff	 Image: A set of the set of the
Q1-Q2	Buckingham potential	✓
Q1-Q2	Tersoff potential	1
Q3–Q4	AIREBO potential	in progress
Q3–	PPPM electrostatics solver	in progress
Year 2	PPPM dispersion solver	

Dissemination		
Oct'15	Code dungeon EMEA IPCC meeting, Munich	✓
Nov'15	github.com/HPAC Code, tests and benchmarks	O in progress
Nov'15	Talk + paper at SC'15	
Dec'15	Code release LAMMPS' USER–Intel package	1
Dec'15	IXPUG Vectorization WG (Markus); PC (Paolo)	in progress
Feb'16	Intel paper on chemistry codes	in progress