

IPCC @ RWTH Aachen University Optimization of multibody and long-range solvers in LAMMPS

Rodrigo Canales **William McDoniel** Markus Höhnerbach Ahmed E. Ismail Paolo Bientinesi

IPCC Showcase – November 2016

	Intel	
Georg Zitzlsberger	Klaus-Dieter Oertel	Michael W. Brown

Introduction

2015

May: Kickoff – IPCC @ RWTH Aachen Optimizing LAMMPS kernels

• Oct.: First results on Xeon & KNC, @ EMEA IPCC

2016

- Feb.: Showcase 1st year
- March: First results on KNL, @ IPCC & IXPUG Forum
- May: KNL Access
- Nov.: Showcase

2017

May: End 2nd year

Agenda

- Intro to MD, LAMMPS
- Achievements 1st year
- ► Goals & Progress 2nd year
 - AIREBO
 - REBO
 - PPPM Electrostatics
 - PPPM Dispersion
- Future Projects

LAMMPS

Large-scale Atomic–Molecular Massively Parallel Simulator

- Sandia National Labs http://lammps.sandia.gov
- Widely used open source MD code
- Support for OpenMP, Xeon Phi, and GPU (CUDA and OpenCL)

Molecular Dynamics

- Many particle systems
- Computes interactions between pairs of atoms

$$\Phi_{LJ} = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

First Year

Pair Potentials

KNL Ready

Buckingham: KNC vs. KNL - Full Node

Tersoff: KNC

Thread	Core	Full	
Cores 1 SMT 1	Cores 1 SMT 4	Cores 60 SMT 4	
Atoms 32.000	Atoms 32.000	Atoms 512.000	

Measurements in 1000 atom-ns/day/core, SMT minimizes runtime.

Tersoff: KNL

Thread		Core		Full	
Cores	1	Cores	1	Cores	64
SMT	1	SMT	4	SMT	4
Atoms	32.000	Atoms	32.000	Atoms	512.000
HBM	Yes	HBM	Yes	HBM	Yes

Measurements in 1000 atom-ns/day/core, SMT minimizes runtime.

The Vectorization of the Tersoff Many-Body Potential: An Exercise in Performance Portability

- Initial work: workshop on MD simulation software @ SC'15
 - Full portability across existing Intel archs
 - Focus on vector operation wrapper
- Submitted to SC'16 technical program
 - Additional architectures
 - KNL results
- KNL measurements via Mike (Thanks!)
- For submission: NDA waiver
- Accepted
- Best Student Paper Finalist
- (Maybe) part of replication initiative SC'17

Second Year (After Q2)

- Multi-body Potentials
- Long Range Interactions

Multi-body Potential: REBO

- Similar to Tersoff
- Applicable to Carbohydrates
- Improves Tersoff through additional terms
- Additional neighbor finding routines needed by REBO (Ready)
- Vectorized/Optimized code for KNC/KNL
- Optimized code for CPU, same approach as Tersoff (Ready)
- Vectorized/Optimized code for CPU (In Progress)
- Offloading Performance (In Progress)
- Speedup KNL: ca. 2.5x total, and ca. 3x on kernel
- Bottleneck: Neighbor Lists

(Ready)

REBO Results - KNL

Based on REBO

- Two additional terms: Torsion and Lennard-Jones
- *Torsion:* Easy to vectorize
- Lennard-Jones: Hard to vectorize

(In Progress)

(Ready)

- Search through neighbor list and branch
- Idea: Separate expensive and cheap cases

Long Range Interactions: PPPM

Cutoff distances make pair potential calculations feasible

Long-range calculations can still be important:

- Electrostatics
- Interfaces
- Particle-Particle Particle-Mesh (PPPM) approximates long-range forces without requiring pair-wise calculations

PPPM

Four Steps:

- 1. Determine the charge distribution ρ by mapping particle charges to a grid
- 2. Take the Fourier transform of the charge distribution to find the potential:

$$abla^2 \Phi = -rac{
ho}{\epsilon_0}$$

3. Obtain forces due to *all* interactions by inverse Fourier transform:

$$\vec{F} = -\nabla \Phi$$

4. Map forces back to the particles

\bigcirc				
			\bigcirc	
		\bigcirc		

\bigcirc				
			\bigcirc	
		\bigcirc		

(intel) 1

Threading across atoms instead of across grid points

Look-up table for stencil coefficients

Vectorized inner stencil loop

Larger stencil takes advantage of KNL vector length

PPPM: Charge Mapping on KNL 1c/1t

PPPM: Distributing Forces

Look-up table for stencil coefficients

Vectorized inner stencil loop

Larger stencil takes advantage of KNL vector length

Repack force data to get multiple components simultaneously

PPPM: Distributing Forces on KNL 1c/1t

PPPM: FFTs

Larger stencil allows coarser grid while preserving accuracy

▶ Reduce communication by doing: $2D \rightarrow remap \rightarrow 1D \rightarrow remap$ instead of: $1D \rightarrow remap \rightarrow 1D \rightarrow remap \rightarrow 1D \rightarrow remap$

 Vectorization elsewhere makes ad differentiation relatively more appealing than *ik* differentiation – half as many FFTs in exchange for more work in stencil loops

Water Benchmark – KNL 1c/1t

Water Benchmark – KNL 64c/1t

Optimized

(intel)

PPPM Dispersion

Similar particle mapping concept, but with two potentials:

- Electrostatics $\sim \frac{1}{r}$
- Dispersion interactions $\sim \frac{1}{r^6}$
- Optimize compatible pair potentials
 - Buckingham (buck/long/coul/long)
 - Lennard Jones (lj/long/coul/long)
- Optimize PPPM-dispersion solver

(In Progress)

(Ready)

Buckingham – Dispersion

- SiO₂ model, 19200 atoms coulomb and buck potentials
- KNL Cache mode
- Reference : USER_OMP

Speedup on KNL

PPPM Dispersion: Components

Having multiple types of forces requires different mixing rules:

Equivalent routines operate on different stencils

- 2 versions of particle mapping
- 4 versions of charge density
- ▶ 12 versions of force distribution & poisson solver
- We use templates, optimizing only once
 - Minimize control structures

PPPM Dispersion: Results

 Optimized charge & particle mapping double precision + single precision FFTs

- Between 1.4X and 1.6X speedup on K-space
- Potential speedups for poisson & force

Code Availability

Code	$Github^1$	LAMMPS
Tersoff	\checkmark	\checkmark
Buckingham Buckingham Coul Long Buckingham Long Coul Long	$\checkmark \\ \checkmark \\ \checkmark$	√ √
Lennard-Jones Long Coul Long	\checkmark	
PPPM PPPM Dispersion	····	
REBO AIREBO	···· ···	

¹Our group's repositories are at github.com/HPAC.

Dissemination and Community Involvement

- SIAM CSE 2017, Atlanta: MD Exascale Mini-Symposium
 - Bientinesi (Aachen), McDoniel (Aachen), Tchipev (München)
- ISC'17 Paper
- SC'16 Technical Program Talk
- IPCC Meeting Toulouse Talk
- Paper for IXPUG Workshop @ ISC'16: "Dynamic SIMD Lane Scheduling"
 - Krzikalla (Dresden), Wende (Berlin), Höhnerbach (Aachen)
- ISC'16 Booth and IPCC Meeting Talks
- Parallel'16 Talk
 - Krzikalla (Dresden), Höhnerbach (Aachen)
- IPCC Meeting Ostrava Talk
- SC'15 Workshop Talk
- IPCC Meeting München Code Dungeon

Other activities & future work

Other research activities

Tensors operations

- Tensor transposition, summations, contractions
- Applications from Chemistry and Machine Learning
- Collaboration with IPCC UT Austin
- BLAS
 - ► Idea: CPU + stream to Phi
 - MKL limited functionality
 - Application in Density Functional Theory
 - Initial results: 1610 vs 1350 GFLOPS/s (MKL)

LAMMPS

- Continue collaboration with Mike Brown
- Additional Long-Ranged Solvers
 - ▶ Multi-Level Summation (MSM): *O*(*n*) algorithm
 - 2/3rd of routines similar to PPPM (particle to grid and back)
 - 1/3rd: Stencil application (Research topic)
 - MSM Dispersion solver developed by our group
 - ► Gaussian split Ewald: Mesh-based real/frequency space
 - Might provide better accuracy than MSM
 - First implementation into LAMMPS
- Extend KOKKOS to enable vector classes (avoid GPU bias)

DSMC

- Particle-based method for rarefied gas
- Similar to molecular dynamics and LAMMPS

Buckingham: vectorization, single thread

Buckingham: vectorization, full node

Part 2: Tersoff multibody potential

Markus Höhnerbach

for *i* in local atoms of the current thread **do** for *j* in atoms neighboring *i* do $\zeta_{ii} \leftarrow 0;$ for k in atoms neighboring i do $\zeta_{ii} \leftarrow \zeta_{ii} + \zeta(i, j, k);$ $E \leftarrow E + V(i, j, \zeta_{ii});$ $F_i \leftarrow F_i - \partial_{x_i} V(i, j, \zeta_{ji});$ $F_i \leftarrow F_i - \partial_{x_i} V(i, j, \zeta_{ii});$ $\delta \zeta \leftarrow \partial_{\zeta} V(i, j, \zeta_{ii});$ for k in atoms neighboring i do $F_i \leftarrow F_i - \delta \zeta \cdot \partial_{x_i} \zeta(i, j, k);$ $F_i \leftarrow F_i - \delta \zeta \cdot \partial_{x_i} \zeta(i, j, k);$ $F_k \leftarrow F_k - \delta \zeta \cdot \partial_{x_k} \zeta(i, j, k);$

