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Objective

Performance =
#FLOPS

Execution_time

#FLOPS is known a priori

Modeling Performance
Target—linear algebra algorithms

LAPACK ScaLAPACK FLAME PLAPACK ATLAS
↘ ↓ ↙

BLAS
Model time of the kernel operations (BLAS) by
conducting only few measurements

Higher level algorithms are modeled without timings
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Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time

Roman Iakymchuk (AICES, RWTH Aachen) Performance Prediction October 12-14, 2011 4 / 14



Time Measurements
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Figure: In-cache timing of GER

GER:
A := A+ αxyT

The cycle-
accurate wall
timer is used
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Figure: Out-of-cache
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Timer

Source: R. Clint Whaley
(UTSA-CS)

size(flush_area) =
Associativity× size(cache)

Conduct n_rep timing samples of an
algorithm

On each iteration of n_rep loop
operands are out-of-cache
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Performance Prediction

BLAS subroutines
Apply polynomial interpolation

Execution_time = akn
k + ak−1n

k−1 + ...+ a1n+ a0

Complexity of a BLAS subroutine is at most O(n3)→ k ≤ 3

Perform 4− 6 measurements on each memory level

Solve a linear least squares problem

Higher level algorithms

Execution_time =

n−1∑
i=1

Model_subroutines_time(i)
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A Case Study: LU Factorization

Partition

A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0

While m(ATL) < m(A) do
Repartition(
ATL ATR

ABL ABR

)
→

A00 a01 A02

aT10 α11 a
T
12

A20 a21 A22


where α11 is 1× 1

a21 := a21/α11 SCAL

A22 := A22 − a21aT12 GER

Continue with(
ATL ATR

ABL ABR

)
←

A00 a01 A02

aT10 α11 aT12
A20 a21 A22


endwhile

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

m− i− 1

i 1 n− i− 1

Figure: 3× 3 partitioning of A.

GER performs more than 96 % of the #FLOPS in the LU
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GER
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Figure: Piecewise-parabolic behavior of GER

Intel Harpertown
@3.0 GHz

L1 (32 KB) and
L2 (6 MB) caches

Apply parabolic
interpolation on
L1 & L2 caches
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Performance Prediction: GER & LU

GER
Complexity of GER is O(n2)→

Execution_time = a2n
2 + a1n+ a0

The unblocked LU
Prediction:

Execution_time =
n−1∑
i=1

Model_GER_time(i)

In total, GER is measured only 8-12 times
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Evaluation: GER
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Figure: Predicting the execution time of GER on Harpertown

GER from the
GotoBLAS
library is used

p ≤ 64 fit in the
L1 cache

The deviation
decreases; it is
less than 3 %
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Figure: Predicting the execution time of GER on Harpertown

p < 300 fit in
the L1 and L2

The deviation
is less than 2 %
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Evaluation: LU
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Figure: Modeling the execution time of the LU on Harpertown

Closer to origin
the deviation is
higher

When m = n
increases the
deviation→ 0
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Figure: Modeling the execution time of the LU on Barcelona

Each core has
L1(64 KB),
L2(512 KB),
and L3(2 MB)
The results
have higher
variance

The deviation
is less than 3 %
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Conclusions

The approach was validated by modeling the
execution time of GER and the LU factorization

The experiments were conducted on two
different architectures

The deviation is mostly less than 2-3 %
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