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Objective

Performance =
#FLOPS

Execution_time

#FLOPS is known a priori

Modeling Performance
Target—linear algebra algorithms

LAPACK ScaLAPACK FLAME PLAPACK ATLAS
↘ ↓ ↙

BLAS
Model time of the kernel operations (BLAS) by
conducting only few measurements

Higher level algorithms are modeled without timings
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Timing Methodologies

Choosing a system timer
CPU time

if machine heavily loaded and no I/O and parallelism

Low resolution

Over- and under-reports time

Wall time
High resolution (cycle-accurate)

Includes other processes

Improving the accuracy of timings
Take multiple timing samples

Select median timing for CPU time

Select minimum for wall time
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Time Measurements
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Figure: In-cache timing of GER

GER:
A := A+ αxyT

The cycle-
accurate wall
timer is used
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Figure: Out-of-cache
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Timer

Source: R. Clint Whaley
(UTSA-CS)

size(flush_area) =
Associativity× size(cache)

Conduct n_rep timing samples of an
algorithm

On each iteration of n_rep loop
operands are out-of-cache
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Performance Prediction

BLAS subroutines
Apply polynomial interpolation

Execution_time = akn
k + ak−1n

k−1 + ...+ a1n+ a0

Complexity of a BLAS subroutine is at most O(n3)→ k ≤ 3

Perform 4− 6 measurements on each memory level

Solve a linear least squares problem

Higher level algorithms

Execution_time =

n−1∑
i=1

Model_subroutines_time(i)
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A Case Study: LU Factorization

Partition

A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0

While m(ATL) < m(A) do
Repartition(
ATL ATR

ABL ABR

)
→

A00 a01 A02

aT10 α11 a
T
12

A20 a21 A22


where α11 is 1× 1

a21 := a21/α11 SCAL

A22 := A22 − a21aT12 GER

Continue with(
ATL ATR

ABL ABR

)
←

A00 a01 A02

aT10 α11 aT12
A20 a21 A22


endwhile

A00 a01 A02

aT10 α11 aT12

A20 a21 A22

i

1

m− i− 1

i 1 n− i− 1

Figure: 3× 3 partitioning of A.

GER performs more than 96 % of the #FLOPS in the LU
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GER

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 10  20  30  40  50  60  70  80  90  100

T
im

e 
[s

ec
s]

Problem size [p=q]

min

Figure: Piecewise-parabolic behavior of GER

Intel Harpertown
@3.0 GHz

L1 (32 KB) and
L2 (6 MB) caches

Apply parabolic
interpolation on
L1 & L2 caches
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Performance Prediction: GER & LU

GER
Complexity of GER is O(n2)→

Execution_time = a2n
2 + a1n+ a0

The unblocked LU
Prediction:

Execution_time =
n−1∑
i=1

Model_GER_time(i)

In total, GER is measured only 8-12 times
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Evaluation: GER
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Figure: Predicting the execution time of GER on Harpertown

GER from the
GotoBLAS
library is used

p ≤ 64 fit in the
L1 cache

The deviation
decreases; it is
less than 3 %
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Figure: Predicting the execution time of GER on Harpertown

p < 300 fit in
the L1 and L2

The deviation
is less than 2 %
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Evaluation: LU
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Figure: Modeling the execution time of the LU on Harpertown

Closer to origin
the deviation is
higher

When m = n
increases the
deviation→ 0
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Figure: Modeling the execution time of the LU on Barcelona

Each core has
L1(64 KB),
L2(512 KB),
and L3(2 MB)
The results
have higher
variance

The deviation
is less than 3 %
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Conclusions

The approach was validated by modeling the
execution time of GER and the LU factorization

The experiments were conducted on two
different architectures

The deviation is mostly less than 2-3 %
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