Performance Prediction through Time **Measurements**

Roman Iakymchuk

AICES Graduate School, RWTH Aachen iakymchuk@aices.rwth-aachen.de

International Conference on High Performance Computing October 12-14, 2011 Kyiv, Ukraine

$$
Performance = \frac{\#FLOPS}{Execution_time}
$$

#FLOPS is known **a priori**

Roman Iakymchuk (AICES, RWTH Aachen) [Performance Prediction](#page-0-0) Change of Cass Cotober 12-14, 2011 2/14

$$
Performance = \frac{\#FLOPS}{Execution_time}
$$

#FLOPS is known **a priori**

Modeling Performance

Target—linear algebra algorithms

#FLOPS is known **a priori**

#FLOPS is known **a priori**

#FLOPS is known **a priori**

Outline

[Timing Methodologies](#page-7-0)

[Performance Prediction](#page-20-0)

[Conclusions](#page-35-0)

CPU time

• if machine heavily loaded and no I/O and parallelism

CPU time

- if machine heavily loaded and no I/O and parallelism
- **Low resolution**

CPU time

- if machine heavily loaded and no I/O and parallelism
- **Low resolution**
- Over- and under-reports time

CPU time

- if machine heavily loaded and no I/O and parallelism
- **Low resolution**
- Over- and under-reports time

Wall time

• High resolution (cycle-accurate)

CPU time

- if machine heavily loaded and no I/O and parallelism
- **Low resolution**
- Over- and under-reports time

Wall time

- High resolution (cycle-accurate)
- Includes other processes

CPU time

- if machine heavily loaded and no I/O and parallelism
- **Low resolution**
- Over- and under-reports time

Wall time

- High resolution (cycle-accurate)
- Includes other processes

Improving the accuracy of timings

Take multiple timing samples

CPU time

- if machine heavily loaded and no I/O and parallelism
- **Low resolution**
- Over- and under-reports time

Wall time

- High resolution (cycle-accurate)
- Includes other processes

Improving the accuracy of timings

- Take multiple timing samples
- Select **median** timing for CPU time

CPU time

- if machine heavily loaded and no I/O and parallelism
- **Low resolution**
- Over- and under-reports time

Wall time

- High resolution (cycle-accurate)
- Includes other processes

Improving the accuracy of timings

- Take multiple timing samples
- Select **median** timing for CPU time
- Select minimum for wall time

Time Measurements

Roman Iakymchuk (AICES, RWTH Aachen) [Performance Prediction](#page-0-0) Channel Detection October 12-14, 2011 5/14

Timer

Source: R. Clint Whaley (UTSA-CS)

 \bullet size(*flush_area*) = *Associativity* × size(*cache*)

Roman Iakymchuk (AICES, RWTH Aachen) [Performance Prediction](#page-0-0) Channel Detection October 12-14, 2011 6 / 14

Timer

Source: R. Clint Whaley (UTSA-CS)

- \bullet size(flush_area) = *Associativity* × size(*cache*)
- Conduct n_rep timing samples of an algorithm

Timer

Source: R. Clint Whaley (UTSA-CS)

- \bullet size(*flush* area) = *Associativity* × size(*cache*)
- Conduct n_rep timing samples of an algorithm
- On each iteration of n_rep loop **operands** are out-of-cache

Apply polynomial interpolation

Execution_time = $a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

• Apply polynomial interpolation

Execution_time = $a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

Complexity of a BLAS subroutine is at most $O(n^3) \rightarrow k \leq 3$

• Apply polynomial interpolation

Execution_time = $a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

- Complexity of a BLAS subroutine is at most $O(n^3) \rightarrow k \leq 3$
- Perform $4 6$ measurements on each memory level

• Apply polynomial interpolation

Execution_time = $a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

- Complexity of a BLAS subroutine is at most $O(n^3) \rightarrow k \leq 3$
- \bullet Perform $4 6$ measurements on each memory level
- Solve a linear least squares problem

• Apply polynomial interpolation

Execution_time = $a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$

- Complexity of a BLAS subroutine is at most $O(n^3) \rightarrow k \leq 3$
- Perform $4 6$ measurements on each memory level
- Solve a linear least squares problem

Higher level algorithms

$$
\textit{Execution_time} = \sum_{i=1}^{n-1} \texttt{Model_subroutines_time}(i)
$$

A Case Study: LU Factorization

Figure: 3×3 partitioning of A.

A Case Study: LU Factorization

GER performs more than 96 % of the *#FLOPS* in the LU

Roman Iakymchuk (AICES, RWTH Aachen) [Performance Prediction](#page-0-0) Computer Controller 12-14, 2011 8/14

- **•** Intel Harpertown @3.0 GHz
- \bullet L1 (32 KB) and L2 (6 MB) caches
- **Apply parabolic** interpolation on L1 & L2 caches

Figure: Piecewise-parabolic behavior of GER

GER

Complexity of GER is $O(n^2) \rightarrow$

 ${\it Execution_time} = a_2n^2 + a_1n + a_0$

GER

Complexity of GER is $O(n^2) \rightarrow$

 ${\it Execution_time} = a_2n^2 + a_1n + a_0$

The unblocked LU

• Prediction:

$$
\textit{Execution_time} = \sum_{i=1}^{n-1} \text{Model_GER_time}(i)
$$

GER

Complexity of GER is $O(n^2) \rightarrow$

 ${\it Execution_time} = a_2n^2 + a_1n + a_0$

The unblocked LU

• Prediction:

$$
\textit{Execution_time} = \sum_{i=1}^{n-1} \texttt{Model_GER_time}(i)
$$

• In total, GER is measured only 8-12 times

Evaluation: GER

- GER from the GotoBLAS library is used
- $p \leq 64$ fit in the L1 cache
- The deviation decreases; it is less than 3 %

Figure: Predicting the execution time of GER on Harpertown

Evaluation: GER

Figure: Predicting the execution time of GER on Harpertown

Evaluation: LU

Time [cycles]

- Closer to origin the deviation is higher
- \bullet When $m = n$ increases the deviation $\rightarrow 0$

Figure: Modeling the execution time of the LU on **Harpertown**

Evaluation: LU

- **•** Each core has L1(64 KB), L2(512 KB), and L3(2 MB)
- **•** The results have higher variance
- **•** The deviation is less than 3 %

Figure: Modeling the execution time of the LU on **Barcelona**

• The approach was validated by modeling the execution time of GER and the LU factorization

- **The approach** was validated by modeling the execution time of GER and the LU factorization
- The experiments were conducted on two **different architectures**

- **The approach** was validated by modeling the execution time of GER and the LU factorization
- The experiments were conducted on two **different architectures**

The **deviation** is mostly less than 2-3 %

Financial support from the **Deutsche Forschungsgemeinschaft** through grant GSC 111 is gratefully acknowledged

Deutsche DJEG I Forschungsgemeinschaft

Roman Iakymchuk (AICES, RWTH Aachen) [Performance Prediction](#page-0-0) Christian Corober 12-14, 2011 14/14