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BLAS
@ Model time of the kernel operations (BLAS) by
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@ Complexity of a BLAS subroutine is at most O(n?) — k < 3

@ Perform 4 — 6 measurements on each memory level
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Higher level algorithms

n—1
Execution_time = Z Model_subroutines_time(7)

i=1
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The unblocked LU

@ Prediction:
n—1
Execution_time = ~ Model_GER_time(i)
p=ll

@ In total, GER is measured only 8-12 times
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Conclusions ROWTHIGERUEN

@ The approach was validated by modeling the
execution time of GER and the LU factorization

@ The experiments were conducted on two
different architectures

@ The deviation is mostly less than 2-3 %
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