
Bachelor Thesis - Bachelor of Computer Science

A Study of Productivity and Performance
of Modern Vector Processors

Paul Springer
RWTH Aachen University

Contact: Paul.Springer@RWTH-Aachen.de

Supervised by

Prof. Dr. Martin Bücker (Institute for Scientific Computing)
Prof. Paolo Bientinesi, Ph.D. (Institute for Advanced Study in Computa-

tional Engineering Science)
Sandra Wienke, M.Sc. (HPC-Group - Center for Computing and

Communication)

Declaration of Independence

I hereby declare that I am the sole author of this thesis and that I only used the resources
listed in the reference section.

Aachen, Germany
March 28, 2012

Paul Springer

2

Abstract

This bachelor thesis carries out a case study describing the performance and productiv-
ity of modern vector processors such as graphics processing units (GPUs) and central
processing units (CPUs) based on three different computational routines arising from
a magnetoencephalography application. I apply different programming paradigms to
these routines targeting either the CPU or the GPU. Furthermore, I investigate the per-
formance and productivity of programming paradigms such as OpenMP with respect to
its auto-vectorization capabilities, Intel intrinsic AVX and Intel OpenCL for the CPU.
Moreover, I examine NVIDIA’s CUDA and OpenCL APIs for GPU-sided applications.
The results of the performed case study yield roughly the same performances for the
CPU and GPU implementations, but favour the OpenMP paradigm (i.e. the CPU) with
respect to productivity.

3

Contents

Contents

1. Introduction 5

2. Magnetoencephalography Application 7

3. Central Processing Units (CPUs) 9
3.1. Sandy Bridge Architecture . 9
3.2. Original C Version . 10

3.2.1. Implementation . 10
3.2.2. Performance Results . 12

3.3. OpenMP with Auto-Vectorization . 13
3.3.1. Programming Guidelines . 13
3.3.2. Implementation . 14
3.3.3. Performance Results . 18
3.3.4. Productivity . 20

3.4. Intel Intrinsic AVX . 22
3.4.1. Programming Guidelines . 22
3.4.2. Implementation . 22
3.4.3. Performance Results . 24
3.4.4. Productivity . 24

3.5. Intel OpenCL . 24
3.5.1. Programming Guidelines . 26
3.5.2. Implementation . 27
3.5.3. Performance Results . 30
3.5.4. Productivity . 32

4. Graphics Processing Units (GPUs) 34
4.1. Fermi Architecture . 34
4.2. Execution Model . 35
4.3. Programming Guidelines . 36
4.4. Implementation . 37
4.5. Performance Results . 41
4.6. Productivity . 44

5. Comparison GPUs and CPUs 45
5.1. Performance . 45
5.2. Productivity . 46

6. Conclusion 49

A. Further GPU Versions 50

4

1 Introduction

1. Introduction

Graphics processing units (GPUs) greatly improved their performance over the last ten
years. The first graphics cards have been developed in the 1990’s and were targeted for
the mass market. These first cards were special-purpose hardware, designed to accelerate
graphic processing required in computer games. As the interest in computer games
continued, GPU developers such as NVIDIA and AMD/ATI continuously improved the
performance and level of parallelism of their GPUs. To this end, it became desirable
to exploit this special-purpose hardware for general-purpose computations (GPGPU).
Therefore, parallel programming models such as Compute Unified Device Architecture
(CUDA) and Open Computing Language (OpenCL) are developed in order to utilize
the hundreds of cores of modern GPUs which yield a peak performance of more than
three TFLOPS (single precision) on a single GPU. These programming models greatly
decreased the effort necessary to program these architectures, since they allow to utilize
the GPU without the need to rewrite the application in terms of 3D-rendering APIs such
as OpenGL or DirectX.

At their beginning in 2007 (CUDA) and 2008 (OpenCL), the underlying GPU ar-
chitectures suffered from drawbacks such as low double-precision performance, no ECC
support, few debugging capabilities and the lack of atomic operations. However, up-to-
date GPU architectures such as NVIDIA’s Fermi architecture and current CUDA and
OpenCL implementations do not exhibit these problems anymore [16].

Today’s GPUs are based on the execution model of Single Instruction Multiple Thread
(SIMT), allowing multiple threads to process consecutive elements in lock-step. Like-
wise, modern CPU architectures feature the Single Instruction Multiple Data (SIMD)
execution model which enables them to execute a single instruction on multiple data ele-
ments simultaneously. Hence, these processors operate on multiple consecutive elements
concurrently and are referred to as vector-processors. This SIMD execution model adds
an extra level of parallelism to the parallel execution units in recent CPUs.

Both, Intel and AMD continuously improved their vector extensions since they have
been introduced in the late 1990’s1. These continuous improvements led to Intel’s Ad-
vanced Vector Extension (AVX) which is supported by Intel’s Sandy Bridge microarchi-
tecture and AMD’s Bulldozer microarchitecture. It is intended to close the performance
gap2 between CPUs and GPUs in vector algorithms. In order to utilize these vector
capabilities of CPUs there are mainly two options. First, the programmer can use the
compiler’s auto-vectorization capabilities which I will refer to as implicit vectorization
and second, one can rewrite the application with explicit vector-instructions which I will
refer to as explicit vectorization.

In order to evaluate the performance and productivity of modern vector processors, I
apply different programming paradigms to the most compute-intensive routines arising
from a magnetoencephalography (MEG) application. Furthermore, this thesis outlines
the implementation of these routines using NVIDIA’s CUDA and NVIDIA’s OpenCL

1Intel’s MMX in 1997 and AMD’s 3Dnow! in 1998
2e.g. Intel’s Core i7 Extreme with a peak double-precision performance of 93.6 GFLOPS compared to

NVIDIA’s Quadro 6000 with 515.2 GFLOPS

5

1 Introduction

APIs targeting the GPU and programming paradigms such as OpenMP, Intel’s OpenCL
and Intel’s intrinsic AVX for CPU computations.

In order to elaborate on the productivity of each paradigm, I will use some metrics as
described by Wienke et al. [26]:

• Learning effort: The time needed by a C/C++ programmer to learn the
respective paradigm.

• Tool support: Available debuggers and libraries.

• Code expansion: Number of added or modified source lines of code
(SLOCs).

• Code reorganization: Effort needed to reorganize the original version to fit the
respective paradigm.

This study is organized as follows: Section 2 briefly describes the MEG application and
its computational routines. Programming guidelines, implementations, performance and
productivity results related to each paradigm targeting either the CPU or the GPU are
shown in Section 3 and 4, respectively. Section 5 gives a final discussion on performance
and productivity with respect to the results of this study. Section 6 concludes this thesis.

6

2 Magnetoencephalography Application

2. Magnetoencephalography Application

In this section, I briefly introduce magnetoencephalography (MEG) and describes the
three most compute-intensive routines which are implemented using different program-
ming paradigms throughout this bachelor thesis.

MEG is an non-invasive imaging technique used to display the synchronized neuronal
activity within the cerebral cortex1 of the human brain [8]. It has a high time resolution
in the range of milliseconds and a spatial resolution of up to 2-3 mm for sources within
the cerebral cortex [8]. The weak magnetic field induced by at least 1010 neurons [8]
of the cerebral cortex is measured outside of the head by an array of superconducting
quantum interference devices (SQUIDs). In order to deduce which part of the brain is
responsible for the external magnetic field one has to solve the neuromagnetic inverse
problem formulated as an unconstrained minimization problem [2], [4], [3] of the form

Find x ∈ Rk such that f(x) −→ min (2.1)

where f is the scalar-valued objective function.
Bücker et al. [2] proposed to use a minimum p-norm approach to tackle this ill-

conditioned and numerically challenging problem. Their approach, as described in [4],
is designed for large-scale problems where the number of free scalar variables k, can be
increased to some hundred thousands. In order to deal with the high time complexity
involved in this large-scale problem, their solution is based on a subspace trust-region
algorithm [6] which utilizes the first- and second-order derivatives of f for faster conver-
gence using automatic differentiation. As we will see in the next section, these additional
computations do not increase the overall complexity of the proposed algorithm (i.e. all
routines belong to the same complexity-class).

The software package of Bücker et al. [3] comprises three computationally intensive
routines. The first routine is responsible for the evaluation of the objective function
f : Rk −→ R which is given by

f(x) :=

∥∥∥∥∥
[
L

λI

]
x−

[
b

0

]∥∥∥∥∥
p

p

(2.2)

with L ∈ Rn×k, x ∈ Rk, b ∈ Rn, λ ∈ R, I being the k × k identity and 0 being
the zero-vector of length k. The symbol L denotes a dense lead field matrix (refer to
[8] for detailed information), whereas n represents the number of SQUIDs used2 and b
represents the measurements of the magnetic field outside the human head. Henceforth,
I will refer to this routine as the eval routine.

The first- and second-order derivatives of f are used by the grad routine and hesse
routine, respectively. The grad routine evaluates the gradient ∇f ∈ Rk for a dense

1the outermost layer of the brain which is 2-4 mm thick
2n is typically much less than k. I used n = 128 and k = 512000 as realistic numbers throughout this

study.

7

2 Magnetoencephalography Application

x ∈ Rk while simultaneously evaluating the objective function f(x). In comparison to
the two previous routines, the hesse routine does not evaluate the objective function but
computes the Hessian-Vector product z = (∇2f)y ∈ Rk for a given vector y ∈ Rk at a
given point of interest x ∈ Rk.

8

3 Central Processing Units (CPUs)

3. Central Processing Units (CPUs)

In the course of this section I will cover the CPU-based programming paradigms (i.e.
standard C, OpenMP with auto-vectorization, Intel’s intrinsic AVX and Intel’s OpenCL)
and their respective performances. Furthermore, in order to show the effort involved in
writing high-performance applications, which can benefit from the CPU’s vector capabil-
ities, I will discuss some optimization techniques and highlight their impact on perform-
ance. Moreover, this section outlines different programming guidelines and comments
on the effort needed to implement the three routines (see Section 2) for each paradigm.

Since it is crucial to understand the underlying architecture in order to write high-
performance applications, this section starts with an introduction to the most salient
architectural details of the used CPU architecture, Intel’s Sandy Bridge microarchitec-
ture.

3.1. Sandy Bridge Architecture

CPUs based on the Sandy Bridge microarchitecture support different levels of parallel-
ism. On the one hand, there are multiple cores per CPU which allow an application to
perform different operations on different cores simultaneously. On the other hand, there
is the increasing SIMD support which allows an application to execute the same instruc-
tion to multiple data elements - per core - simultaneously. This process is referred to as
vector operation, whereas the process of operating on a single data element at a time is
called scalar operation. Today’s Sandy Bridge processors support the Advanced Vector
Extensions (AVX) which is an enhancement over Intel’s previous vector extension called
Streaming SIMD Extensions (SSE). CPUs with AVX support have increased the size of
the registers used for vectorization from 128 bit to 256 bit, whereas the old so called
xmm registers are an alias of the lower 128 bit of the new ymm registers. The increased
register size allows each core to operate on up to eight single- or four double-precision
variables simultaneously (see Figure 3.1). Hence, vectorization yields a theoretical peak
speedup of 8× and 4× for single and double precision, respectively.

Scalar

x[0]

+

y[0]

=

z[0]

Vector

x[0]

+

y[0]

=

z[0]

x[1]

+

y[1]

=

z[1]

x[2]

+

y[2]

=

z[2]

x[3]

+

y[3]

=

z[3]

x[4]

+

y[4]

=

z[4]

x[5]

+

y[5]

=

z[5]

x[6]

+

y[6]

=

z[6]

x[7]

+

y[7]

=

z[7]

Figure 3.1: Instead of adding a single element per instruction (left), AVX allows to oper-
ate on up to eight single-precision, consecutive floating point elements sim-
ultaneously (right).

Another important property the programmer has to keep in mind is that Intel’s current
processor family follows the memory design of Non-Unified Memory Access (NUMA),

9

3 Central Processing Units (CPUs)

meaning that the access times to a specific memory location in main memory can differ
between different cores (we will see the impact of this property in Section 3.4.3). Hence,
data which is most often used by a specific core should be allocated “close”1 to it [23].

Another feature of modern microarchitectures is their full cache hierarchy. Intel’s
Xeon E5-2670 for instance has a 32 KB L1 cache, a 256 KB L2 cache and a 20 MB Last
Level Cache (LLC) which is shared among all cores of the CPU, whereas the L1 and L2
caches are exclusive per core. This cache hierarchy allows the programmer to exploit the
locality of a given problem in order to write cache-aware algorithms which often result
in higher performance (see Section 3.3.3).

With these features in mind, the programmer can achieve significant speedups.

3.2. Original C Version

The C versions of the three routines as mentioned in Section 2 form the foundation for all
subsequent versions and are listed for comparison. The original C code of these routines
was generated by an automatic differentiation algorithm. Hence, these routines have
not been optimized to benefit from any of the aforementioned architectural features.
However, I reviewed the generated code and removed unnecessary memory accesses and
calculations.

3.2.1. Implementation

This section outlines the single-threaded C implementation of each routine for further
references. Please note that all kernels shown in this study omit error handling and
boundary checking for the sake of increased readability.

Eval Routine. The C implementation of this routine is straightforward, it is a one-to-
one translation of the mathematical problem as described in equation (2.2) to standard
C code. This routine can be subdivided into a dense subroutine and a sparse subroutine.
Henceforth, I will refer to these subroutines as kernels, so that the naming is conform
with the naming of such subroutines in a GPGPU sense. As the name suggests, the dense
kernel (cEvalDense) is responsible for the computation of the dense part of equation 2.2
(i.e.

∥∥Lx− b∥∥p
p
), whereas the sparse kernel (cSparseEval) computes the “sparse”2 part

(i.e.
∥∥λx∥∥p

p
) (see Figure 3.2).

1meaning that the access time is small
2meaning computationally rather simple - not to be confused with sparse in terms of numerical analysis

10

3 Central Processing Units (CPUs)

Kernel 3.2.1 cEvalSparse

Input: x, λ, p, f(x)
Output: f(x)

1: for j = 0→ k − 1 do
2: tmp← λ · xj ;
3: f(x)← f(x) + |tmp|p
4: end for

Kernel 3.2.2 cEvalDense

Input: L, x, b, p, f(x)
Output: f(x)

1: for i = 0→ n− 1 do
2: tmp←

∑k−1
j=0 Li,j · xj ;

3:

4: tmp← tmp− bi
5: f(x)← f(x) + |tmp|p
6: end for

Figure 3.2: Sparse kernel (left) and dense kernel (right) of the eval routine. All input
and output variables are chosen accordingly to those of Section 2.

Grad Routine. While the eval routine is only concerned with the evaluation of the
objective function f at a point of interest x ∈ Rk, the grad routine simultaneously
evaluates z = ∇f(x) ∈ Rk.

This routine can as well be subdivided into a dense and a sparse kernel (see Figure
3.3) which require O(nk) and O(k) operations, respectively. Despite the fact that these
kernels incorporate small extensions (see highlighted lines of Figure 3.3) to those kernels
of the eval routine, they still belong to the same complexity class.

Kernel 3.2.3 cGradSparse

Input: x, λ, p, f(x)
Output: f(x), z

1: for j = 0→ k − 1 do
2: tmp← λ · xj ;
3: f(x)← f(x) + |tmp|p
4: /* Some O(1) computations */
5: zj ← tmp
6: end for

Kernel 3.2.4 cGradDense

Input: L, x, b, p, f(x)
Output: f(x), z

1: for i = 0→ n− 1 do
2: tmp←

∑k−1
j=0 Li,j · xj ;

3:

4: tmp← tmp− bi
5: f(x)← f(x) + |tmp|p
6: /* Some O(1) computations */
7:

8: for j = 0→ k − 1 do
9: zj ← zj + tmp · Li,j

10: end for
11: end for

Figure 3.3: Sparse kernel (left) and dense kernel (right) of the grad routine. All input
and output variables are chosen accordingly to those of Section 2. The major
differences between these kernels and the kernels of Figure 3.2 are highlighted
in green.

11

3 Central Processing Units (CPUs)

In comparison to Kernel cGradSparse (3.2.3), Kernel cGradDense (3.2.4) still offers
room for further optimizations. Hence, subsequent versions of this kernel are divided
into sub-kernels in order to benefit from different optimization techniques.

Hesse Routine. The hesse routine can once again be split into a sparse kernel (cHesse-
Sparse) and a dense kernel (cHesseDense) which belong to the same complexity classes
as those of the eval and grad routines. Moreover, these kernels only differ slightly from
the kernels we have seen so far (see Figure 3.4).

Kernel 3.2.5 cHesseSparse

Input: x, y, λ, p
Output: z

1: for j = 0→ k − 1 do
2: tmp← λ · xj ;
3: /* Some O(1) computations */
4: zj ← tmp · yj
5: end for

Kernel 3.2.6 cHesseDense
Input: L, x, y, b, p
Output: z

1: for i = 0→ n− 1 do
2: tmpx ←

∑k−1
j=0 Li,j · xj ;

3: tmpy ←
∑k−1

j=0 Li,j · yj ;
4:

5: tmpx ← tmpx − bi
6: /* Some O(1) computations */
7: tmpx ← tmpx · tmpy
8:

9: for j = 0→ k − 1 do
10: zj ← zj + tmpx · Li,j

11: end for
12: end for

Figure 3.4: Sparse kernel (left) and dense kernel (right) of the hesse routine. All input
and output variables are chosen accordingly to those of Section 2. The major
differences between these kernels and the kernels of Figure 3.3 are highlighted
in green.

3.2.2. Performance Results

The compiler used throughout this study is Intel’s C compiler icc 12.1 using identical
compiler flags (i.e. -O3, -ansi-alias, -vec-report3 and -xAVX) and running on Scientific
Linux 6.1. Moreover, to provide a fair comparison of all CPU versions, the measurements
are run on the same shared-memory system based on two Intel Xeon E5-2670 CPUs1,
each having eight physical cores and an LLC of 20 MB. In addition to these settings,
I used Intel’s compiler extension KMP AFFINITY set to scatter, in order to pin the
threads to specific cores. Furthermore, all subsequent versions of each routine implement
roughly the same algorithm, thus it is reasonable to use metrics such as runtime and
GFLOPS for a fair comparison of the different versions (i.e. there is no comparison

1with a peak double-precision performance of 166.4 GFLOPS

12

3 Central Processing Units (CPUs)

between algorithms belonging to different complexity classes). Finally, all the time
measurements throughout this thesis are reproducible and taken of 100 runs using the
minimum as the final result.

Single Double
eval grad hesse eval grad hesse

Runtime 65 147 143 129 257 285

GFLOPS 2.1 1.8 2.8 1.0 1.0 1.4

Table 3.1: Runtime (in ms) and GFLOPS of each routine using either single or double
precision.

The results shown in Table 3.1 indicate that all routines take roughly the same time.
Moreover, we see the expected twofold drop in performance between single-precision and
double-precision performance.

Further analysis of the vec-report and assembly code, generated by the compiler, shows
that all kernels have been automatically vectorized.

3.3. OpenMP with Auto-Vectorization

This section describes the parallelization and vectorization of the aforementioned C ver-
sions of each routine using OpenMP [19] directives and the auto-vectorization capabilities
of Intel’s 12.1 C compiler.

Ideally, the programmer should not have to worry about the vectorization process
and let the compiler figure out a way to vectorize the given code, this procedure is
referred to as auto-vectorization. In practice, however, this is not as simple as it sounds.
The programmer has to follow various programming guidelines in order to benefit from
the auto-vectorization capabilities of the compiler, which I will discuss in section 3.3.1.
Moreover, this section outlines the respective implementations of each routine in section
3.3.2 and analyzes the impact of various optimization techniques on the performance in
Section 3.3.3.

3.3.1. Programming Guidelines

The programming guidelines described in this section apply to implicit vectorization
using Intel’s C compiler [9], thus this section does not list specific OpenMP guidelines.
For detailed information regarding OpenMP please see [5]. Furthermore, I will discuss
selected problems concerning OpenMP and vectorization in Section 3.3.3.

Intel’s C compiler tries to vectorize the innermost loop of a nest and leaves the outer
loops untouched. Moreover, in order to take advantage of the auto-vectorization capab-
ilities one has to follow some fundamental guidelines:

• Avoid divergence based on the iteration.

• Determine the loop trip count at loop-entry.

13

3 Central Processing Units (CPUs)

• Use single entry, single exit loops (no branch in or out).

• Avoid non-contiguous memory accesses.

• Avoid indirect indexing.

• Avoid inter loop dependencies.

• Align the used data elements to 16/ 32 byte boundaries for SSE/ AVX.

• Mark the data elements to be independent of each other1.

• Use structures of arrays (SoA) instead of arrays of structures (AoS).

For further information please refer to [9]. To get started with the auto-vectorization,
I recommend to compile with -vec-report3 which will indicate if the loops have been
vectorized. In some cases -vec-report3 will already give the reason why the loops have
not been vectorized. Moreover, the compiler flag -quide can give some advice on how
the programmer should change the program such that it can take advantage of auto-
vectorization.

Even though the vec-report provides a good initial overview of the vectorization pro-
gress, it is not sufficient if the user wants to verify that the compiler completely utilized
the underlying hardware. Hence, it is recommended to have a brief look at the generated
assembly code to check whether the old xmm or the new ymm registers have been used
and to verify that the compiler invokes the new AVX instructions instead of the old SSE
instructions (see Figure 3.5). It is desirable to use the new AVX instruction (denoted by
the v-prefix) and the packed version since this version operates on multiple consecutive
data elements simultaneously. Please compare [11] for further information.

v mul p s

op code

AVX prefix p = packed/
s = scalar

s = single/
d = double

Figure 3.5: Naming scheme of an AVX assembly instruction on the example of the vmulps
instruction.

3.3.2. Implementation

This section outlines the OpenMP implementation of each routine. The inputs (e.g.
L, x) to these routines are initialized with artificial values which are chosen in a way
such that the results can be reliably verified. Moreover, the initialization process is

1This can be done with the compiler flag -ansi-alias, #pragma ivdep in front of the loop or by using
the restrict keyword.

14

3 Central Processing Units (CPUs)

distributed among all threads. This ensures that memory initialized by thread i running
on core j is allocated “close” to j.

As mentioned in the previous section, data elements should be aligned to 32 byte
boundaries, which allows the processor to invoke the more efficient aligned load instruc-
tions instead of the unaligned load instructions. Hence, all the data elements used in
this section have an alignment of 32 byte.

Eval Routine. The parallelization of the eval routine is quite simple, since the kernels
are pretty much the same as those of the original C version (see Figure 3.2), except for
omp for directives in front of the loops (see Figure 3.6).

Kernel 3.3.1 ompEvalSparse

Input: x, λ, p, f(x)
Output: f(x)

1: # omp for reduction(+:f(x))
2: for j = 0→ k − 1 do
3: tmp← λ · xj ;
4: f(x)← f(x) + |tmp|p
5: end for

Kernel 3.3.2 ompEvalDense

Input: L, x, b, p, f(x)
Output: f(x)

1: # omp for reduction(+:f(x))
2: for i = 0→ n− 1 do
3: tmp←

∑k−1
j=0 Li,j · xj ;

4:

5: tmp← tmp− bi
6: f(x)← f(x) + |tmp|p
7: end for

Figure 3.6: Parallelization of Kernel cEvalSparse (left) and Kernel cEvalDense (right).

Grad Routine. In order to parallelize the dense kernel of the original C version and to
avoid loop carried dependencies, I used two different approaches. First, I parallelized the
outer loop of Kernel cGradDense (3.2.4) at the cost of an additional reduction1. Second,
I split the dense kernel into two separate kernels (see Figure 3.7) using an auxiliary array
h ∈ Rn. I will refer to these two approaches as the grad outer and grad inner version,
respectively. The sparse kernel (ompGradSparse), on the other hand, does not require
any further attention, as it is similar to Kernel cGradSparse (3.2.3) with an additional
omp for directive in front of the loop. As we will see in Section 3.3.3 both approaches
yield different performances.

1omitted in Kernel ompGradDenseOuter (3.3.3)

15

3 Central Processing Units (CPUs)

Kernel 3.3.3 ompGradDenseOuter

Input: L, x, b, p, f(x)
Output: f(x), z

1: # omp for reduction(+:z,f(x))
2: for i = 0→ n− 1 do
3: tmp←

∑k−1
j=0 Li,j · xj ;

4:

5: tmp← tmp− bi
6: f(x)← f(x) + |tmp|p
7: /* Some O(1) computations */
8:

9: for j = 0→ k − 1 do
10: zj ← zj + tmp · Li,j /* working on local array*/
11: end for
12: end for

Kernel ompGradDenseOuter (3.3.3) illustrates the parallelization of the outer loop
(line 2). Hence the loops in line 3 and 9 can be vectorized as long as each thread is
working on a local copy of z. Please note that the exact implementation of the reduction
of z and the data-sharing attribute clauses are omitted due to better readability.

Kernel 3.3.4 ompGradDenseInner1

Input: L, x, h, b, p, f(x)
Output: f(x), h

1: # omp for reduction(+:f(x))
2: for i = 0→ n− 1 do
3: tmp←

∑k−1
j=0 Li,j · xj ;

4:

5: tmp← tmp− bi
6: f(x)← f(x) + |tmp|p
7: /* Some O(1) computations */
8: hi ← tmp
9: end for

Kernel 3.3.5 ompGradDenseInner2

Input: L, h, z
Output: z

1: for i = 0→ n− 1 do
2: # omp for
3: for j = 0→ k − 1 do
4: zj ← zj + hi · Li,j

5: end for
6: end for

Figure 3.7: Parallelization of Kernel cGradDense (3.2.4) using two kernels.

The parallelization of the former Kernel cGradDense (3.2.4) using the inner approach
is outlined by Kernel ompGradDenseInner1 (3.3.4) and Kernel ompGradDenseInner2
(3.3.5). While Kernel ompGradDenseInner1 is very similar to the first part of the
original C dense kernel, Kernel ompGradDenseInner2 is essentially a transposed matrix-
vector product of the form z = hT ·L. Further performance analysis showed that Kernel
ompGradDenseInner2 accounts for the major part of the overall runtime of the grad
routine. This is mainly due to its many accesses to main memory (i.e. z is to large to be

16

3 Central Processing Units (CPUs)

cached). Thus, it is desirable to take advantage of the full cache hierarchy of the CPU
in order to reduce memory access times as much as possible. This observation has led
to Kernel ompGradDenseInner2 (3.3.6), which exhibits much better performance (see
Section 3.3.3). Because this kernel is more complex than the aforementioned kernels
and the fact that I will reuse this kernel for the hesse routine, Figure 3.8 illustrates the
control flow of this blocked version.

Kernel 3.3.6 ompGradDenseInner2Blocked

Input: L, h, z
Output: z

1: numBlocks← k/BLOCKDIM
2: # omp for
3: for i = 0→ numBlocks− 1 do
4: /* Initialize tmp with 0 */
5: for j = 0→ n− 1 do
6: for l = 0→ BLOCKDIM − 1 do
7: tmpl ← tmpl + hj · Lj,i·BLOCKDIM+l;
8: end for
9: end for

10:

11: for l = 0→ BLOCKDIM − 1 do
12: zi·BLOCKDIM+l ← tmpl
13: end for
14: end for

BLOCKDIM

Thread 0 Thread 1
BLOCKDIM

tmp

z

L

2 2

4 4
h

n

k

*

3 3

1

*

1

*

+= +=

BLOCKDIM BLOCKDIM

Figure 3.8: Exemplary control flow of Kernel ompGradDenseInner2Blocked using only
two threads. The numbering within the blue cycles indicate the order of
execution. Elements colored in orange denote the active elements while the
elements colored in lighter orange denote the next elements. BLOCKDIM
denotes the number of elements in each block.

17

3 Central Processing Units (CPUs)

Hesse Routine. The parallelization of Kernel cHesseDense (3.2.6) is analogous to the
grad inner version of the grad routine. Hence, I split the dense kernel into two separate
parts. The first part is outlined by Kernel ompHesseDenseInner1 (3.3.7) and the second
part is equivalent to Kernel ompGradDenseInner2Blocked (3.3.6), hence it is not listed
again. Furthermore, the parallelization of Kernel cHesseSparse (3.2.5) does not require
further evaluation, as it only requires one additional omp for directive in front of the
loop.

Kernel 3.3.7 ompHesseDenseInner1

Input: L, x, h, b, p
Output: h

1: # omp for
2: for i = 0→ n− 1 do
3: tmpx ←

∑k−1
j=0 Li,j · xj ;

4: tmpy ←
∑k−1

j=0 Li,j · yj ;
5:

6: tmpx ← tmpx − bi
7: /* Some O(1) computations */
8: hi ← tmpx · tmpy
9: end for

The calculations of tmpx and tmpy of Kernel ompHesseDenseInner1 (3.3.7) in line 3 and
4 are executed in a single loop, which allows the kernel to exploit the temporal locality
of the memory accesses to Li,j .

3.3.3. Performance Results

In the course of this section, I discuss and analyze the performance of the different
OpenMP versions which are outlined in the previous section. To allow a fair comparison
between all CPU versions, I used the same setup as described in Section 3.2.2. Un-
less otherwise stated, the measurements are run on all physical cores (i.e. 16 threads).
Moreover, all loops have been successfully vectorized by the compiler.

Table 3.2 makes clear that Kernel ompGradDenseOuter (3.3.3) yields the poorest per-
formance. Even though the straightforward parallelization of the inner loop (see Figure
3.7) results in a performance improvement of roughly 1.4×, the blocked version (Kernel
ompGradDenseInner2Blocked) is even faster and achieves a speedup of up to 2.4×. The
improvement of Kernel ompGradDenseInner2Blocked over Kernel ompGradDenseInner2
is due to the fact that all the write operations of Kernel ompGradDenseInner2 in line
4 have to go to main memory (i.e. z is too large to be kept in the cache), while the
write operations to tmp of Kernel ompGradDenseInner2Blocked, on the other hand, can
be kept in the cache. Hence, the successive improvements payed off. A more detailed
comparison between the blocked kernel and the non-blocked kernel of the inner version
can be found in Table 3.3.

18

3 Central Processing Units (CPUs)

Single Double

Kernel Runtime GFLOPS Speedup Runtime GFLOPS Speedup

ompGradDense-
Outer

23 12.1 - 37.1 7.2 -

ompGradDense-
Inner2

14.9 17.9 1.5 26.4 10.1 1.4

ompGradDense-
Inner2Blocked

9.6 28.7 2.4 19.0 13.8 2.0

Table 3.2: Runtime (in ms) and GFLOPS of the OpenMP grad routine using different
kernels. For a more detailed comparison between Kernel ompGradDenseIn-
ner2 and Kernel ompGradDenseInner2Blocked, please see Table 3.3.

Single Double

Kernel Runtime Speedup Runtime Speedup

ompGradDense-
Inner2

9.2 - 16.2 -

ompGradDense-
Inner2Blocked

6.4 1.4 9.9 1.6

Table 3.3: Runtime (in ms) of Kernel ompGradDenseInner2 and Kernel ompGradDen-
seInner2Blocked excluding the remainder of the grad routine.

In order to investigate the cooperation of OpenMP and vectorization and to demon-
strate the speedup solely due to vectorization, I compiled all routines either with or
without vectorization (i.e. with or without the compiler flag -no-vec), respectively and
measured the performance for 1, 2, 4, 8 and 16 threads. The results of these measure-
ments are illustrated in Figure 3.9.

First, Figure 3.9 illustrates that the speedup solely due to vectorization decreases
with an increasing number of threads. This matches the results of my preliminary
work [22]. However, the measurement of the grad routine using Kernel ompGradDen-
seInner2Blocked (3.3.6) seems to be an exception here. While the measurements using
single precision are not extraordinary, the measurements of the grad inner routine using
double precision are, as the speedup (due to vectorization) is increasing with an increas-
ing number of threads. Moreover, Figure 3.9 indicates that the grad inner routine using
double precision even suffers a significant performance decrease of up to 2× due to vec-
torization1 running on 1, 2, 4 or 8 threads. A more detailed investigation of this odd
behavior is left as future work.

Second, single-precision computations benefits more from vectorization than double-
precision computations. This was expected since the single-precision computation allows
eight elements to be processed simultaneously while double precision is restricted to four

1the decision of vectorization was solely up to the compiler. Hence, the compiler vectorized without
being forced to

19

3 Central Processing Units (CPUs)

1 2 4 8 16
0

1

2

3

#threads

S
p

ee
d

u
p

eval grad hesse

(a) Single precision

1 2 4 8 16
0

1

2

3

#threads

S
p

ee
d

u
p

(b) Double precision

Figure 3.9: Speedup of each routine using OpenMP with auto-vectorization over the
same version without auto-vectorization running on 1, 2, 4, 8 and 16 threads,
respectively.

elements (see Section 3.3.1).
Furthermore, the speedup solely due to vectorization is much smaller than the theor-

etical peak speedups of 8× and 4× for single precision and double precision, respectively.
This might be surprising because all of the computationally intensive operations are vec-
torized. Additionally, this seems to be even more surprising if we compare these results
with the results shown by Chris Lomont (Intel) [10] who achieved speedups of up to
7.58× for single precision and 3.66× for double precision. However, a closer look at the
algorithm used in [10] reveals that it only requires very few (O(1) many) accesses to
global memory, while the routines used in this study require O(nk) accesses to main
memory.

Finally, to demonstrate the NUMA-behavior of the CPU [23], I initialized all the data
by a single thread. Hence, most of the threads encounter higher memory access times,
which lead to performance degradation. A comparison between the final OpenMP ver-
sions with and without parallel initialization and the final speedups of the OpenMP
routines over the original C versions are summarized in Table 3.4. Table 3.4 illustrates
the importance of NUMA since the version with parallel initialization is roughly two
times faster than the same version without parallel initialization. Furthermore, it shows
a significant speedup of up to 16.3× for single precision and 15.8× for double preci-
sion. However, please bear in mind that these speedups are mostly due to thread-level
parallelism and not due to vectorization (compare Figure 3.9).

3.3.4. Productivity

As far as the productivity is concerned, auto-vectorization can be considered to be quite
easy since most of the work is automatically done by the compiler. Moreover, the
kernels examined in this thesis are quite pleasant to work with when it comes to auto-
vectorization as they do not require much code reorganizations. They merely require

20

3 Central Processing Units (CPUs)

Single Double
eval grad hesse eval grad hesse

Runtime 4 9.6 9.1 9.3 19 18

GFLOPS 33.3 37.8 43.6 14.3 14.1 22

Speedup NUMA 2.1 1.8 1.8 2.0 1.9 1.9

Speedup C 16.3 15.3 15.7 13.9 13.5 15.8

Table 3.4: Runtime (in ms) and GFLOPS of the parallelized routines using OpenMP
with auto-vectorization and parallel initialization. Speedup C denotes the
speedup w.r.t. the original C routines (see Table 3.1), Speedup NUMA de-
notes the speedup over the same versions without parallel initialization. Grad
denotes the grad routine using Kernel ompGradDense2Blocked (3.3.6).

the typical OpenMP directives and some additional lines of code in order to ensure the
necessary alignment. It is worth mentioning that the compiler does not even require
any additional compiler flags for vectorization. However, despite the fact that the vec-
torization process for the examined kernels is straightforward, the speedup solely due
to vectorization decreases with increasing parallelization (see Figure 3.9) and is almost
non-existing if 16 threads are used. However, this observation does not always hold. In
fact, in my preliminary work [22], I was able to achieve speedups of 4× for single preci-
sion and 2× for double precision across different number of threads. Anyhow, the results
shown in [22] required more code rearrangements than the kernels of this study. Fur-
thermore, the programming guidelines are concisely presented in [9] and do not require
much learning effort.

Additionally, OpenMP is supported by a rich set of tools. For instance:

• Rouge Wave TotalView : GUI-based debugger with multi-threading support and
memory analysis engine.

• Intel Inspector XE 2011 : Analyzes memory and threading behavior (e.g. memory
leaks, data races, hotspots, thread level performance).

All in all it is fair to say that productivity - as a ratio of speedup over programming
effort - can be considered quite high.

21

3 Central Processing Units (CPUs)

3.4. Intel Intrinsic AVX

Intel’s intrinsic AVX gives the programmer more control over the vectorization process
which can come in handy in certain situations where the compiler either is not capable of
any vectorization or the result is not as fast as it could be. This extra control, however,
comes at the cost of increased programming effort, because the programmer has to define
the vectorization explicitly using intrinsic functions (see Section 3.4.2).

This Section gives a brief introduction to Intel’s intrinsic AVX and demonstrates
explicit vectorization based on Kernel ompEvalDense (3.3.2). The reason for choosing
Kernel ompEvalDense is twofold. First, it is easily comprehensible. Second, as we have
seen in Figure 3.9 the kernel evinces only a very small speedup due to vectorization, thus
it is desirable to increase this speedup by using explicit vectorization.

3.4.1. Programming Guidelines

This section conveys the basics involved with intrinsic C functions, which are required
to understand the implementation as described in Section 3.4.2. Basically, the same
guidelines mentioned in Section 3.3.1 apply to intrinsics AVX as well, but instead of
implicit vectorization, the programmer has to vectorize explicitly using the intrinsic
functions as provided by the immintrin.h header file. Most intrinsic AVX functions
follow the following naming scheme [10]:

mm256 op suffix(dataType param1, dataType param2, dataType param3)

where mm256 is a prefix for operations using the new 256 bit wide ymm registers, op
denotes the operation code (e.g. add, mul, load) and suffix denotes the data type which
is operated on (e.g. ps for packed single, pd for packed double, sd for single double).
While the AVX version of the eval routine (see Kernel avxEvalDense (3.4.1)) only uses
the mm256d data type, which denotes 256 bit as four double-precision floating point
values, there exist several other data types as well. Please see [10] for more detailed
information.

3.4.2. Implementation

The AVX implementation of Kernel ompEvalDense (3.3.2) is essentially a one-to-one
translation to AVX intrinsics. Nevertheless, the AVX implementation (see Kernel avx-
EvalDense (3.4.1)) is suited to illustrate the collaboration between OpenMP and AVX
and to demonstrate the explicit vectorization in a comprehensible way (see Figure 3.10).

1 #pragma omp p a r a l l e l for p r i v a t e (i , j) r educt ion (+: funva l)
2 for (i = 0 ; i < n ; ++i)
3 {
4 m256d tmpRow, chunkOfL , chunkOfX , chunkOfLX ;
5 tmpRow = mm256 broadcast sd(&zero) ; //STEP 1
6

7 for (j = 0 ; j < k ; j+= 4)
8 {

22

3 Central Processing Units (CPUs)

9 chunkOfL = mm256 load pd (&L [i ∗k+j]) ; //STEP 2
10 chunkOfX = mm256 load pd (&x [j]) ; //STEP 3
11 chunkOfLX = mm256 mul pd (chunkOfL , chunkOfX) ; //STEP 4
12 tmpRow = mm256 add pd (chunkOfLX , tmpRow) ; //STEP 5
13 } //STEP 6
14 double tmp [4] ;
15 mm256 store pd (tmp , tmpRow) ;
16 tmp [0] = tmp [0] + tmp [1] + tmp [2] + tmp [3] − bhat [i] ;
17 r e s u l t += pow(fabs (tmp [0]) , p) ;
18 } //STEP 7

Kernel 3.4.1: avxEvalDense. Implemention of Kernel ompEvalDense (3.3.2) using Intel’s
intrinsic AVX functions. Each step in this kernel works on four double
values simultaneously and is illustrated in 3.10.

T
h

re
ad

 0
T

h
re

ad
 1

tm
pR

ow

x

L
2

4

k

*

tm
pR

ow

1

1
2

3

6

*

6

7

7

4

5

5

n

Figure 3.10: Exemplary control flow of Kernel avxEvalDense using only two threads. The
steps shown in this figure are aligned to the steps shown in Kernel 3.4.1.
Elements colored in orange denote the active elements while the elements
colored in lighter orange denote the next elements.

As it is depicted in Figure 3.10, each thread works on its own set of rows. Hence, there
are no dependencies between the threads and the steps are as follows:

1. Initialize tmpRow with zeros.

2. Load four consecutive double values of L to chunkOfL.

3. Load four consecutive double values of x to chunkOfX.

4. Multiply chunkOfX and chunkOfL element-wise.

5. Add the result to tmpRow.

6. Return to step 2 until the end of the row is reached.

7. Return to step 1 until all rows have been processed.

23

3 Central Processing Units (CPUs)

3.4.3. Performance Results

Time measurements reveal, that there is no performance difference (i.e. speedup is 1)
between Kernel avxEvalDense using explicit vectorization and Kernel ompEvalDense
(3.3.2) using implicit vectorization. Even though this is not the result I was hoping for,
it shows the good auto-vectorization capabilities of Intel’s C compiler.

3.4.4. Productivity

In this particular case, Intel intrinsics seem to be a poor choice because the explicit
vectorization does not only require additional knowledge about Intel’s intrinsic AVX
functions but also requires additional programming effort. Nevertheless, AVX intrinsics
give the programmer more control over the vectorization process which can be necessary
in certain situations.

However, there exists an alternative to the intrinsics, namely user-mandated vector-
ization (using #pragma simd) [9]. User-mandated vectorization can be seen as a com-
promise between full control (intrinsics AVX) and little control (auto-vectorization). It
is based on compiler directives which allow explicit vectorization of the subsequent loop.
The interested reader is referred to [9] for further information.

The vectorization in terms of intrinsics AVX was straightforward and took only little
time using the OpenMP kernel as the origin. Nevertheless, I recommend to use auto-
vectorization or user-mandated vectorization first and shift the attention to intrinsics if
the speedup is not satisfactory.

3.5. Intel OpenCL

This section covers the implementation and analysis of the three routines of Section 2
using Intel’s OpenCL SDK 1.5 running on Scientific Linux 6.1. Intel’s OpenCL SDK 1.5
fully conforms with the OpenCL 1.1 specification [7]. Please note that I refer to the CPU
as the host and to the device which is responsible for executing the kernel as the device.
This distinction might be unnecessary, since the device and the host in this section are
the same (i.e. the CPU), however, this distinction is conform to the terminology which
I use in Section 4.

OpenCL is an open standard for programming heterogeneous systems (e.g. consisting
of CPUs and GPUs). One idea behind OpenCL is to increase portability and to reduce
the effort needed to take advantage of GPUs as co-processors. Thus, it is desirable to
write the application once and choose between different compute devices (e.g. NVIDIA
GPUs, AMD/ATI GPUs or CPUs) as available. Hence, ideally it should be possible to
run the same program on the CPU or GPU without the need of extensive code changes,
just by specifying the desired compute device. Even though this works in some cases, it
typically results in performance degradation because different compute devices require
different optimization techniques (see Table 3.5).

OpenCL follows the programming scheme of Single Program Multiple Data (SPMD). A
kernel (single program) is executed concurrently, whereas each instance works on differ-
ent data elements (multiple data). These kernel instances are referred to as work-items.

24

3 Central Processing Units (CPUs)

The number of work-items is determined by an N-dimensional index space (see Figure
3.11) which is explicitly specified by the programmer or implicitly determined by the
OpenCL implementation. Moreover, the index space is partitioned into work-groups,
which consist of multiple work-items. The execution model of OpenCL is outlined in
Figure 3.11.

Index Space

Work-Group (w
x
, w

y
)

Work-Item Work-Item

Work-ItemWork-Item

G
x

G
y

S
x

S
y

(l
x
: 0, l

y
: S

y
-1)

(g
x
: w

x
*S

x
+l

x
,

 g
y
: w

y
*S

y
 +l

y
)

(l
x
: S

x
-1, l

y
: S

y
-1)

(g
x
: w

x
*S

x
+l

x
,

 g
y
: w

y
*S

y
 +l

y
)

(l
x
: S

x
-1, l

y
: 0)

(g
x
: w

x
*S

x
+l

x
,

 g
y
: w

y
*S

y
 +l

y
)

(l
x
: 0, l

y
: 0)

(g
x
: w

x
*S

x
+l

x
,

 g
y
: w

y
*S

y
 +l

y
)

Figure 3.11: OpenCL Execution Model: The index space consists of Gx ·Gy many work-
items, while each work-group consists of Sx ·Sy many. Each work-group has
its unique id within the index space (wx, wy). Moreover, each work-item
has an unique local id (lx, ly) within its work-group and an unique global
id (gx, gy) within the index space. In the style of [13].

The execution model is mapped onto OpenCL’s platform model, which consists of
compute devices (CD), compute units (CU) and processing elements (PE) (see
Figure 3.12). Multiple work-groups can be scheduled to a single CU, whereas multiple
work-items are mapped to a single PE. Furthermore, each CD has a global memory
and each CU has its own local memory.

Different work-groups can access the global memory independently of each other.
Work-items belonging to the same work-group can collaborate and . . .

• . . . share data through local memory.

• . . . synchronize execution using barriers and memory fences.

• . . . utilize special work-group functions1.

However, work-items belonging to different work-groups can not exploit these features.
Hence, work-groups are meant to be independent of each other.

1e.g. functions to prefetch data from global memory

25

3 Central Processing Units (CPUs)

Host

Global Memory

CD

Local Memory

CU

SP SP PE

Local Memory

CU

SP SP SP

Local Memory

CU

SP SP SP

Global Memory

CD

Local Memory

CU

SP SP SP

Local Memory

CU

SP SP SP

Local Memory

CU

SP SP SP

Global Memory

CD

Local Memory

CU

PE PE PE

Local Memory

CU

SP SP SP

Local Memory

CU

PE PE PE

Figure 3.12: OpenCL Platform Model: The host can control multiple CDs, whereas each
CD can consist of multiple CUs which in turn consists of multiple PEs.

3.5.1. Programming Guidelines

This section focuses on the basic techniques and programming guidelines unique to Intel’s
OpenCL SDK for the CPU and neglects general optimization techniques for OpenCL.
For further information regarding OpenCL in general, please refer to [7] or [15]. Further-
more, I will outline the most salient differences between OpenCL on CPUs and OpenCL
on GPUs.

Intel’s OpenCL SDK is able to utilize the SIMD capabilities of the underlying CPU, in
a way it is supporting two different forms of vectorization, namely implicit vectorization
and explicit vectorization. Since implicit vectorization is done by the compiler, the
programmer does not have to do any additional work. Explicit vectorization, on the
other hand, uses built-in vector data types (e.g. float8, double4) such that each work-
item operates on multiple consecutive data elements in lock-step. Thus, the programmer
is responsible for changing the index space size accordingly (i.e. reduce the size w.r.t. the
vector width). Explicit vectorization can become beneficial if the implicit vectorization
turns out to yield bad performance and one wants to hand-tune the respective kernel.
Moreover, in order to benefit from the vectorization capabilities of the CPU, one should
pay attention to the same programming guidelines as those in Section 3.3.1.

The data type used in the kernel should match the register width of the underlying
architecture (e.g. float8 for AVX and float4 for SSE). However, the compiler might still
decide to merge consecutive work-items if it seems beneficial. On the other hand, using
larger vector types than supported by the CPU is comparable to loop-unrolling this
might improve the performance at the cost of increased register pressure and scales for
future CPUs.

Another important property is the proper choice of the work-group size. This is a
complex task, as it is influenced by many factors. First, since work-groups are inde-
pendent of each other, they can be mapped to different hardware threads. Thus, it is
recommended to have at least as many work-groups as physical cores. Second, increasing
the number of work-groups will increase the amount of parallelism, which gives the OS

26

3 Central Processing Units (CPUs)

more freedom with respect to scheduling. Having to many work-groups, on the other
hand, reduces the number of work-items per work-group, which in turn increases the
runtime overhead. A solution might be to introduce “heavy” kernels (i.e. kernels with
a larger workload), which will amortize the runtime overhead. In order to exempt the
programmer from this decision, it is possible to let the compiler choose the right work-
group size. Even though this might be a good choice in some situations, I encourage
the programmer to experiment with different work-group sizes as they can have a severe
impact on performance (see Figure 3.15).

Furthermore, programmers used to write OpenCL applications for GPUs should pay
attention to the following guidelines, when writing OpenCL applications for CPUs:

• Avoid needless memory transfers.

• Avoid the usage of local memory, since all memory access are cached anyway and
the local qualifier only introduces an additional overhead.

• Avoid event based synchronization because these calls block the underlying hard-
ware thread. Using functions such as clFinish, on the other hand, allow the thread
to participate in kernel execution.

For further information on optimization techniques regarding Intel’s OpenCL SDK,
please refer to [13].

The introduced programming guidelines in this section improved the performance at
the cost of decreased portability (e.g. using host memory for memory accesses within
the kernel might lead to performance degradation while running on GPUs).

3.5.2. Implementation

An OpenCL application can be roughly broken down in the following steps:

1. Create the computing context.

a) Choose the compute device.

b) Compile the kernel for that device.

c) Create kernel objects.

d) Create a command queue1.

2. Transfer the data to the device.

3. Launch the kernel.

4. Transfer data back to the host.

1each CD can have multiple command queues

27

3 Central Processing Units (CPUs)

At the time of implementing the Intel OpenCL versions, I had already completed the
work on the OpenMP and GPU OpenCL versions (see Section 4). Thus, I started out by
using the GPU OpenCL versions and chose the CPU as the compute device. Even though
this approach did not consume much time, it did not yield the desired performance of
the Intel OpenCL versions (see Table 3.5). Moreover, since the GPU versions have been
optimized for the GPU (see Section 4.4), it would have required much effort to modify
these GPU versions. Thus, I decided to rewrite the kernels in an OpenMP-like manner.
This turned out to be a troublesome work as well, but resulted in good performance, as
we will see in the upcoming section.

Additionally, most of the subsequent versions are similar to their OpenMP counter-
parts. Thus I will not give implementation details but illustrate the work distribution
among the work-items and work-groups. Moreover, all compute-intensive parts are com-
puted on the device side (i.e. using OpenCL), whereas the less compute-intensive parts
(i.e. reductions) are computed on the host side. The reason for this is that device sided
reductions require synchronization across different work-groups, which is not directly
supported by OpenCL and would require a new kernel invocation. In addition, since I
use the CPU, there are no data transfers necessary, thus there is no benefit in reducing
the temporal results on the device in order to reduce memory transfers. This, however,
is different with GPUs (see Section 4.4).

Eval Routine. The implementation of this routine is quite similar to its OpenMP
and intrinsic AVX counterparts. There are essentially two kernels, a dense kernel
(cpuOCLEvalDense) and a sparse kernel (cpuOCLEvalSparse). An exemplary distri-
bution of work-items belonging to two work-groups of Kernel cpuOCLEvalDense and
Kernel cpuOCLEvalSparse is depicted in Figure 3.13. While Figure 3.13 only shows
two work-groups, the real implementation uses at least 16 work-groups in order to fully
utilize the underlying architecture. Moreover, both kernels are using explicit vectoriz-
ation by utilizing the built-in vector data types. Hence, each work-item works on four
double-precision or eight single-precision elements simultaneously (indicated by vector
width in Figure 3.13).

In order to compute the final value of f(x), the temporal arrays hn and hk in this
figure are reduced using OpenMP on the host side. Since, work-groups can be mapped
to hardware threads, these versions are more or less equal to the OpenMP version (com-
pare Kernel ompEvalSparse (3.3.1) and ompEvalDense (3.3.2)), thus I assume similar
performance results.

Grad Routine. Similar to the eval routine, the grad routine is roughly the same
as its OpenMP counterpart which uses the blocked version for its dense computations
(i.e. Kernel ompGradDenseInner2Blocked (3.3.6)). Hence, this implementation can be
divided into a sparse kernel (cpuOCLGradSparse) and two dense kernels (cpuOCLGrad-
Dense1 and cpuOCLGradDense2). While the workload distribution of Kernel cpuO-
CLGradSparse and Kernel cpuOCLGradDense1 is similar to the distribution of Kernel
cpuOCLEvalSparse and Kernel cpuOCLEvalDense of the previous section, the work

28

3 Central Processing Units (CPUs)

W
or

k-
G

ro
up

 0
W

or
k-

G
ro

up
 1

L

k

n

Vector Width

W
or

k-
G

ro
u

p
S

iz
e

W
or

k-
G

ro
u

p
S

iz
e

h
n

h
k

k

x

Work-Group 1 Work-Group 2

Work-Group SizeWork-Group Size

Vector Width

(a) cpuOCLEvalSparse

W
or

k-
G

ro
up

 0
W

or
k-

G
ro

up
 1

L

k

n

Vector Width

W
or

k-
G

ro
u

p
S

iz
e

W
or

k-
G

ro
u

p
S

iz
e

h
n

h
k

k

x

Work-Group 1 Work-Group 2

Work-Group SizeWork-Group Size

Vector Width

(b) cpuOCLEvalDense

Figure 3.13: Exemplary work distribution of kernel cpuOCLEvalSparse (a) and cpuOCL-
EvalDense (b) among two work-groups and their work-items. The work
assigned to each work-item is colored differently.

distribution of Kernel cpuOCLGradDense2 requires further evaluation.
Since the control flow of Kernel cpuOCLGradDense2 is equivalent to the control flow

of Kernel ompGradDenseInner2Blocked (3.3.6) it is not listed again (compare Figure
3.8). The straight-forward way to divide the work among the work-items following an
OpenCL-like style would be to remove the outer loop by starting as many work-items
per work-group as the loop trip count (i.e. BLOCKDIM 1 many work-items, see Figure
3.14 (a)). This results in light-weighted kernels. Figure 3.14 (b), on the other hand,
illustrates the work distribution of a very heavy-weighted kernel. This approach uses
only one work-item per work-group and is very similar to the OpenMP implementation
(see Kernel ompGradDenseInner2Blocked (3.3.6)). However, this feels counter-intuitive
when writing OpenCL applications.

Performance analysis of these two versions shows that the latter approach following the
OpenMP-like style is approximately two times faster than the OpenCL-like approach.
Henceforth, I will refer to the OpenMP-style implementation when talking about per-
formance of this routine.

Furthermore, both variants are vectorized explicitly via the built-in vector data types.

Hesse Routine. Analogous to the OpenCL routines mentioned before, the OpenCL
implementation of the hesse routine is similar to its OpenMP counterpart (i.e. it is split
into three kernels). The kernels and their work distribution among the work-groups,

1BLOCKDIM is set to 128

29

3 Central Processing Units (CPUs)

BLOCKDIM

Work-Group 0 Work-Group 1
BLOCKDIM

L

BLOCKDIM

Work-Group 0 Work-Group 1
BLOCKDIM

L

Vector Width

Vector Width

(a) OpenCL Style

BLOCKDIM

Work-Group 0 Work-Group 1
BLOCKDIM

L

BLOCKDIM

Work-Group 0 Work-Group 1
BLOCKDIM

L

Vector Width

Vector Width

(b) OpenMP Style

Figure 3.14: Exemplary work distribution of Kernel cpuOCLGradDense2 among two
work-groups and their work-items. The work assigned to each work-item is
colored differently. The vector width denotes the number of elements which
are operated on simultaneously. This value is the same for both variants
(a) and (b).

however, does not require further evaluation as it is analogous to the work distribution
of the grad routine. Moreover, all kernels of the hesse routine are explicitly vectorized
as well.

3.5.3. Performance Results

The performance results shown in this section are gathered using the same measuring
environment as in Section 3.3.3. Moreover, the results neglect the building overhead of
the OpenCL context, since this is a minor part of the overall runtime and is amortized
over several application runs1.

1i.e. it can be completely avoided by using pre compiled binaries

30

3 Central Processing Units (CPUs)

Figure 3.15 illustrates the exemplary effect of the work-group size on the runtime of
the eval routine. With regard to the eval routine, we can derive the following:

1. Work-group sizes less or equal to 8 result in the same performance.

2. Work-group sizes larger than 8 increase the overall runtime.

3. Work-group sizes larger than 128 result in the same performance.

In order to explain these phenomena, please recap that I distributed the rows of the
matrix L ∈ Rn×k among the work-items (i.e. n = 128). Furthermore, each work-group
can be mapped to a hardware thread. Hence, work-group sizes less or equal to 8 result in
at least 128/8 = 16 work-groups. Furthermore, work-group sizes larger than 8 result in
less work-groups than there are physical cores available. Hence, the underlying hardware
is not fully utilized. Given these performance results, it is obvious that this parameter
needs to be finely tuned to the application and hardware architecture. An alternative is
to leave this choice up to the compiler. In this case, however, the compiler decided to
use a work-group size of 128 which results in the worst performance.

1 2 4 8 16 32 64 128256
0

10

20

30

Work-group size

R
u

n
ti

m
e

(m
s)

(a) Single precision

1 2 4 8 16 32 64 128256
0

20

40

60

Work-group size

R
u

n
ti

m
e

(m
s)

(b) Double precision

Figure 3.15: Runtime of the eval routine using Kernel cpuOCLEvalDense and different
work-group sizes.

Another important feature of OpenCL is its portability between different compute
devices. Table 3.5 shows the speedup of the Intel OpenCL versions as outlined in the
previous section (i.e. specially optimized for the CPU) over the NVIDIA OpenCL ver-
sions (i.e. specially optimized for the GPU) of Section 4, both running on the CPU.
Please note, that the GPU versions are not adapted in order to fit to the CPU. Hence,
they do not even use parallel initialization which could result in a potentially twofold
speedup. Nevertheless, the NVIDIA OpenCL versions would still be roughly two times
slower than the optimized CPU versions. This demonstrates the necessity of tuning the
versions for the applied compute device in order to achieve high performance.

A final performance comparison between the OpenCL versions running on the CPU
and their OpenMP and C counterparts is outlined in Table 3.6. The results show that

31

3 Central Processing Units (CPUs)

Single Double
eval grad hesse eval grad hesse

Speedup 3.5 5.8 4.6 2.4 3.1 2.7

Table 3.5: Speedup of the Intel OpenCL routines (see Section 3.5.2) over the NVIDIA
OpenCL routines (see Section 4.4), both running on the CPU.

Intel’s OpenCL versions yield almost the same performance as the OpenMP versions.
The slight performance differences might be due to an additional OpenCL overhead.

Single Double
eval grad hesse eval grad hesse

Runtime 4.3 9.8 13 9.6 21 25.4

GFLOPS 31.0 27.3 30.5 13.9 12.7 15.6

Speedup C 15.1 15.0 11.0 13.4 12.2 11.2

Speedup OMP 0.9 1.0 0.7 1.0 0.9 0.7

Table 3.6: Runtime (in ms) and GFLOPS of OpenCL routines discussed in this section.
Speedup C and Speedup OMP denote the speedups with respect to the per-
formance of the serial C routines (see Table 3.1) and the improved OpenMP
versions (see Table 3.4), respectively.

3.5.4. Productivity

In comparison to the OpenMP versions, the OpenCL versions require an additional
overhead due to the OpenCL context creation. Even though the process of OpenCL ini-
tialization is tedious, it is not a huge drawback since it can be reused for future OpenCL
applications with little effort. The more severe drawback however, is the limited tool
support. The only debuggers available are Graphic Remedy’s gDEBugger and Intel’s
OpenCL SDK Debugger. While gDEBugger is a stand-alone debugger supporting dif-
ferent operating systems (e.g. Microsoft Windows 7, Linux and Mac OS X 10.6), Intel’s
OpenCL SDK Debugger, on the other hand, is only available as a Microsoft Visual
Studio 2008 plug-in.

Further useful tools for Intel’s OpenCL SDK are the Intel Offline Compiler and Intel’s
VTune Amplifier XE 2011. The Offline Compiler can be used to verify whether a kernel
has been vectorized and to inspect the generated assembly code. However, I recommend
to use VTune for such analysis since it can show the generated assembly code with
respect to profiling information or the source code. For example, it allows the user to
inspect the assembly code of hotspots1. For further information regarding Intel’s tool
support for OpenCL, please refer to Intel’s OpenCL User Guide [12].

Additionally, even though Intel’s OpenCL SDK achieves comparable performances to
OpenMP (see Table 3.6) the effort needed to achieve these results is much higher than

1portions of the code that require much time

32

3 Central Processing Units (CPUs)

using OpenMP directly. Furthermore, OpenCL required the work-group size to be finely
tuned, which needed some extra work.

Nevertheless, the GPU versions run on the CPU immediately results in a performance
increase of 2.4× to 5.6× over the serial C versions (see Table 3.5 and 3.6), hence OpenCL
on the CPU might be a good choice in situations where the GPU implementation already
exists or portability is required1. However, if one wants to write CPU-based applications,
I recommend to use OpenMP + auto-vectorization, since it is a more intuitive way to
program for a CPU and offers a better tool support than Intel’s OpenCL.

The effort involved in learning the most important optimization techniques for Intel’s
OpenCL API is very low, since it is concisely explained in Intel’s documentation [13].
Nevertheless, additional knowledge of OpenCL is required. Hence, I consider the learning
effort for a C/C++ programmer (who has never used OpenCL before) relatively high.

Finally, I point out that AMD offers the AMD Accelerated Parallel Processing SDK
(APP) which incorporates OpenCL support for AMD’s GPUs and CPUs alike. I am
planing to investigate APP with respect to its performance and productivity in the near
future.

1these speedups do not include any optimizations tailored for the CPU

33

4 Graphics Processing Units (GPUs)

4. Graphics Processing Units (GPUs)

This section describes the GPU-side implementations of the routines of Section 2 using
NVIDIA’s APIs for the Compute Unified Device Architecture (CUDA) and OpenCL.
Since the CUDA and OpenCL implementations of the different routines are essentially
the same, I do not distinguish between CUDA and OpenCL in Section 4.4. Nevertheless,
Section 4.5 shows the performance results for CUDA and OpenCL separately.

The graphics card used throughout this section is NVIDIA’s Quadro 60001, which is
based on NVIDIA’s Fermi architecture. Section 4.1 and 4.2 describe the Fermi archi-
tecture and the execution model of NVIDIA’s CUDA and OpenCL APIs, respectively.
To show the effort involved in writing high-performance GPU applications and to sum-
marize a subset of the applied optimization techniques, I outline some programming
guidelines in Section 4.3.

Furthermore, in order to avoid the new terminology that comes with CUDA, I will
restrict to the OpenCL terms, which I have introduced in Section 3.5.

4.1. Fermi Architecture

NVIDIA GPUs based on the Fermi architecture consist of up to 512 cores (PEs) which
make these architectures well suited for data-parallel applications. The PEs are organ-
ized in multiple CUs and can perform floating point or integer operations. A Fermi
graphics card comprises a global memory of up to 6 GB GDDR5 and up to 16 CUs
(compare with the OpenCL platform model (see Figure 3.12)). The global memory is
accessible by all CUs, which in turn consist of 32 PEs (i.e. 512 PEs in total), special
function units (SFUs)2, a configurable on-chip local memory of 48 KB/ 16 KB, a con-
figurable L1 cache of 16 KB/ 48 KB, 32768 registers á 4 byte and further units for
scheduling and memory accesses (see Figure 4.1). Moreover, a Fermi GPU is capable
of running up to 1536 work-items per CU simultaneously. Hence, all work-items run-
ning on the same CU need to share the available resources, this leads to little storage
per work-item. However, work-items can circumvent this limitation by using the global
memory at the cost of higher memory latencies and lower bandwidth. Modern GPUs
offer various solutions, which can compensate this disadvantage, such as prefetching,
task level parallelism or a rich variety of memories.

Prior to any computation, the required data has to be transferred from the host to
global memory that resides on the graphics card (i.e. the device). These transfers
often limit the use of GPUs for applications which require much data to carry out few
computations.

Even though global memory offers a bandwidth of up to 177 GB/s, which is quite
high compared to 51.2 GB/s of DDR3-1600 (quad-channel) of the host, it is shared by
all work-items and becomes a limiting factor for some high-performance applications [1].
For instance, if 448 work-items run on an NVIDIA’s Quadro 6000 GPU simultaneously,

1Performance of 1030.4 GFLOPS/ 515.2 GFLOPS for single precision/ double precision.
2Used to accelerate functions such as sin(), cos(), exp(), log(), etc. at the cost of numerical precision.

34

4 Graphics Processing Units (GPUs)

Figure 4.1: Fermi architecture: 16 CUs positioned around a common L2 cache. Each
CU is depicted as a vertical rectangular strip that contains an orange por-
tion (scheduler and dispatcher), a green portion (PEs), a light green portion
(SFUs) and light blue portions (register file and L1 cache). Taken from [16].

each working on different single-precision data elements, they would require a global-
memory bandwidth of 448 · fPE · 4 byte/cyclesPerInstruction = 1030.4 GB/s 1 in order
to avoid idling cores due to the limited memory bandwidth. To hide the high latency
and the low memory bandwidth of global memory, it is often necessary to have a high
compute to global-memory access ratio (CGMAR) [14], [20].

Fermi is NVIDIA’s first GPU architecture which tackles this problem by introducing
an L2 cache of size 768 KB which can cache all accesses to global memory (additionally
to the user-managed local memory). The full cache hierarchy of Fermi is a further step
towards general-purpose computing. It can improve the performance of applications
such as sparse linear algebra, sorting, ray tracing, fluid physics applications, and many
more [21].

4.2. Execution Model

In the course of this section, I discuss the execution model of NVIDIA’s CUDA and
OpenCL APIs on the example of OpenCL. Nevertheless, all information apply to CUDA
and OpenCL alike.

NVIDIA’s OpenCL API is analogous to the execution model from Section 3.5. Hence, a
single program is executed by multiple work-items simultaneously which are organized
in work-groups. In comparison to Intel’s OpenCL API, NVIDIA divides each OpenCL

1fPE = 1.15 GHz and cyclesPerInstruction = 2

35

4 Graphics Processing Units (GPUs)

work-group into so called warps (i.e. 32 consecutive work-items).
Warps within the same work-group are scheduled on the same CU, which enables work-

items belonging to the same work-group to share data by using the on-chip local memory
and further collaborate by synchronizing their execution via light-weighted barriers. The
warp-scheduling is done by a warp scheduler, which is able to efficiently schedule the
warps, since the whole execution context (e.g. program counter, registers) is kept on the
CU throughout the lifetime of the warp [18].

Moreover, NVIDIA OpenCL employs the Single Instruction Multiple Thread (SIMT)
architecture, meaning that all work-items belonging to the same warp execute the same
instruction in lock-step. Work-items within the same warp are still allowed to issue
different operations (i.e. follow different execution paths). However, this results in
serialization of the different execution paths.

Furthermore, global-memory accesses are issued by a warp as well. For instance, if
all the work-items of a warp access consecutive words (four consecutive bytes) in global
memory, OpenCL is capable of coalescing these 32 accesses to one global-memory access1.

Local memory is divided into 32 banks, each storing multiple words. Local-memory
accesses of work-items belonging to the same warp can be coalesced under certain cir-
cumstances as well. For details, refer to [18].

Concerning correctness, the programmer does not have to worry about the SIMT-
behavior (execution-path divergence, memory coalescing, ...) of the GPU, but it becomes
crucial to achieve good performance. This is comparable to the caching and vectorization
capabilities of today’s CPUs, which do not affect the correctness but can improve the
performance.

4.3. Programming Guidelines

The guidelines mentioned in this section apply to NVIDIA’s CUDA and OpenCL APIs
alike.

Since multiple warps are executed on one CU, they need to share the available re-
sources such as registers and local memory. Even though these resources are quite large,
they become scarce if many work-items run simultaneously. For instance, if 48 warps2

(i.e. 1536 work-items) run simultaneously, each work-item has only 21 registers to work
on. However, if more than 21 registers are required by each work-item, the number of
concurrently running warps on a single CU is reduced (the same holds for local-memory
usage). As a result, the available parallelism decreases. Hence, the usage of shared
resources needs to be taken into account to utilize the underlying hardware as good as
possible. For further information regarding an effective use of shared resources, please
see [24].

In order to overcome the low global-memory bandwidth and high latency, it is of high
priority to leverage the much faster, on-chip local memory of the CU (for performance
results see Figure 4.7).

1Different GPU architectures have different coalescing requirements [18].
2This is the maximum number of concurrently running warps on a single CU.

36

4 Graphics Processing Units (GPUs)

As mentioned in the previous section, memory-access coalescing for global and local
memory is another important feature of NVIDIA’s GPUs. For instance, it is possible
to coalesce multiple memory accesses to local memory to one memory access, if all
accesses can be served by different banks (see Figure 4.2). On the other hand, work-
items accessing different words within the same bank have to be serialized (i.e. they
suffer an n-way serialization penalty). The impact of bank conflicts on performance is
shown in Figure 4.7.

Warp

Banks

Warp

Banks

(a) No Conflict

(b) 2-Way Conflict

Figure 4.2: Exemplary accesses to local memory. The work-items belonging to the same
warp are highlighted in orange , while the local-memory banks are highlighted
in green. (a) 32 accesses to different banks, resulting in only one coalesced
memory access. (b) 32 accesses to different words within 16 banks resulting
in 2 memory accesses.

Execution-path divergence is yet another limiting factor for high-performance GPU
applications. Even though work-items within the same warp are allowed to follow differ-
ent execution paths, it would result in an n-way performance decrease. Hence, divergence
within the same warp should be avoided. Execution-path divergence of work-items be-
longing to different warps, on the other hand, does not imply performance penalties
(e.g. the reduction operations outlined in the upcoming section pay attention to this
property).

For further optimization techniques regarding GPU applications, refer to [17] or [20].

4.4. Implementation

This section outlines the GPU implementations of the routines of Section 2. While it
does not show code snippets, it still conveys the control flow and work distribution among
the work-groups. Furthermore, due to the fact that the sparse kernels are essentially
equal to the CPU kernels and the fact that they have only minor impact on the runtime,
I omit detailed descriptions about the sparse kernels.

Additionally, all compute-intensive loops within the kernels are unrolled. We will see
the performance implication of loop-unrolling in Section 4.5.

37

4 Graphics Processing Units (GPUs)

Eval Routine. In the course of this section, I discuss the implementation of a more
advanced algorithm of the eval routine, which is suited to show the effect of local-memory
usage and bank conflicts (for a naive GPU implementation, please see Appendix A.1).

In comparison to the CPU versions, the GPU implementation of the eval routine can
be split into three kernels. A sparse kernel (gpuEvalSparse), a dense kernel (gpuEval-
Dense) and a reduction kernel (gpuEvalReduce) which reduces the temporary result of
the kernel gpuEvalDense. Moreover, Kernel gpuEvalSparse and Kernel gpuEvalDense
(along with Kernel gpuEvalReduce) are queued to different command-queues, which en-
able the warp scheduler to interleave their execution and keep the GPU busy.

gradHead

L

k

n

h

32

nGroupsx

Local Memory

32

Private Memory
+=

1

2

3

4

5

Figure 4.3: Exemplary control flow and work distribution of Kernel gpuEvalDense. Each
color denotes a different work-group. The numbers indicate the control flow
of each work-group. nGroups denotes the number of work-groups per row.

The control flow and workload distribution of Kernel gpuEvalDense is illustrated in
Figure 4.3. Each work-group starts by loading its chunks of L and x from global memory
to local memory (step (1) and (2)). The process of fetching the chunks of L and x has
to be carefully designed in order to utilize Fermi’s coalescing capabilities as good as
possible. Hence, consecutive work-items load consecutive data elements of L and x. This
process is illustrated in Figure 4.4 (a), it shows that all work-items cooperate in order
to load the chunk of L to local memory. Thus, each load of 32 consecutive elements
in a row of L can be served by one coalesced memory access for single precision and
two coalesced accesses for double precision. On the other hand, if I had neglected the
coalescing requirements and accessed L with a stride of k (matrix is stored in row-major
order), it would have required 32 independent memory accesses and have decreased
the effective memory bandwidth by a factor of 32 or 16 for single precision or double
precision, respectively. Section 4.5 shows the performance difference between these two
approaches.
After loading the chunks to local memory, each work-group starts to process its own

38

4 Graphics Processing Units (GPUs)

32 × 32 chunk of L, stores the result to its private memory (step (3)) and continues
with the next chunks of L and x (denoted by the dashed arrows, step (4)). After each
work-group has processed all its chunks of L, the final result is stored to the auxiliary
array h (step (5)). More precisely, each work-item within the same work-group operates
on its own row of the local-memory chunk (i.e. 32 consecutive elements). Following
this execution scheme, however, causes a 32-way bank conflict (refer to Section 4.3). A
solution to this problem is to increase the number of columns by one (padding), such that
all elements which are required during the same step reside in different memory banks
(i.e. no bank conflicts) (see Figure 4.4 (b)). The effect of bank conflicts on performance
is shown in Figure 4.7.

Moreover, this procedure allows all work-items within the same work-group to reuse x.
However, this version still suffers from two main disadvantages: First, x is redundantly
loaded by work-groups processing the same columns of L and second, the extensive
local-memory usage reduces the number of concurrently running work-groups per CU.
An optimized version of this kernel is outlined in Appendix A.2.

k

n

h

32

32

Workload
nGroups

x

Local Memory

2

1

*
5 +=

3

3

4

32

n

Local Memory

numBlocks

h
reduced

1 2

3

4

h

h

256

n

k

256

32

32

1

Local MemoryGlobal Memory

2

32

33

bank 1 2 32

(a) Loading Scheme (b) Padding

Local Memory

Figure 4.4: Local-memory loading scheme (a). Padding (b), avoids bank conflicts. Dif-
ferent colors denote the relevant elements for different work-items within the
same work-group. Black elements denote the padding.

Another advantage of this algorithm is that all work-groups operate independently
of each other, which results in high parallelism and enables the GPU to hide memory
latencies.

Kernel gpuEvalReduce reduces the auxiliary array h ∈ Rn×nGroups of Kernel gpuEval-
Dense to hreduced ∈ Rn. This approach has two main advantages. Firstly, the reduction
can benefit from the massively parallel GPU architecture and secondly, the amount of
data that needs to be transferred from the device to the host is reduced by a factor of
nGroups.

The simplified1 work distribution and control flow of Kernel gpuEvalReduce is illus-

1the real implementation uses several warps per row with a warp-size of 32

39

4 Graphics Processing Units (GPUs)

trated in Figure 4.5. The execution scheme is as follows:

k

n

h

32

32

Workload
nGroups

x

Local Memory

2

1

*
5 +=

3

3

4

32

n

Local Memory

nGroups

h
reduced

1 2

3

4

h

h

256

n

k

256

32

32

1

Local MemoryGlobal Memory

2

32

33

bank 1 2 32

(a) Loading Scheme (b) Padding

Local Memory

Figure 4.5: Exemplary work distribution and control flow of Kernel gpuEvalReduce with
an exemplary warp-size of 4. The orange colored elements denote different
work-items belonging to the same work-group (green analogous). Each row-
sum is computed by a single work-group.

1. Step 1 + 2 : Each work-item computes its local sum.

2. Step 3 : The result is reduced in local memory per work-group.

3. Step 4 : The final result is stored to hreduced.

This algorithm pays attention to work-item divergence, since work-items belonging to
the same warp follow the same execution path as long as possible.

Finally, the final sum-reduction of hreduced ∈ Rn is computed by the host, since the
computation on the device would require an additional kernel-invocation which does not
exhibit sufficient parallelism.

Grad Routine. This routine can be split into one sparse kernel (gpuGradSparse),
one reduction kernel (gpuGradReduce) and two dense kernels (gpuGradDense1 and gpu-
GradDense2). The control flow and workload distribution of Kernel gpuGradDense1
and Kernel gpuGradReduce is similar to Kernel gpuEvalDense and Kernel gpuEvalRe-
duce, respectively.

Kernel gpuGradDense2 is a transposed matrix-vector product (i.e. hTreduced · L)1 and
is comparable to Kernel ompGradDenseInner2Blocked (3.3.6) and Kernel cpuOCLGrad-
Dense2 (see Figure 3.14 (a)).

The workload distribution and control flow of Kernel gpuGradDense2 with respect
to its GPU implementation is outlined in Figure 4.6. The kernel launches several (i.e.
dk/BLOCKDIMe) independent work-groups. Each work-item operates on its own

1hreduced denotes the auxiliary array computed by Kernel gpuGradReduce

40

4 Graphics Processing Units (GPUs)

BLOCKDIM BLOCKDIM

L

k

h
reduced

n

tmp

z

* *

1 1

2 2

3 3

+= +=

Figure 4.6: Control flow and workload distribution of Kernel gpuGradDense2. BLOCK-
DIM denotes the number of work-items within a work-group. Different colors
denote the responsibilities of different work-items.

column. Since all work-items within a warp operate on successive elements, all accesses
to global memory (i.e. accesses to L) can be coalesced. Hence, in comparison to the
CPU implementations, the GPU implementation does not suffer a performance penalty
for accessing the matrix L with a stride of k. Moreover, each work-item uses the private1,
auxiliary variable tmp for intermediate results. The final result of each column is added
to z in step (3).

Hesse Routine. This routine is split into four kernels as well. One sparse ker-
nel (gpuHesseSparse), one reduction kernel (gpuHesseReduce), and two dense kernels
(gpuHesseDense1 and gpuHesseDense2). All of these kernels contain only slight modi-
fications to the kernels of the GPU implementation of the grad routine. Hence, they are
not explicitly listed again.

4.5. Performance Results

All kernels are run on an NVIDIA Quadro 6000 using either OpenCL 1.1 or CUDA 4.0
(compiler flags: -O3 and -arch sm=20 2). The host-sided computations are executed by
Intel’s Xeon X5650 processor (codename Westmere). They are single threaded and only
account for a very small fraction of the runtime (roughly 0.5%).

Moreover, to provide a fair comparison between the CPU and the GPU, all time
measurements include all memory transfers3 between host and device, except for the
transfer of the matrix L, since L is constant for several hundred kernel invocations of
the MEG application.

1only visible to the work-item
2only used with CUDA
3memory transfers account for roughly 10-20% of the runtime

41

4 Graphics Processing Units (GPUs)

Local Padding

0
1
2
3
4
5
6
7
8
9

S
p

ee
d

u
p

(a) Single precision

Local Padding

0
1
2
3
4
5
6
7
8
9

S
p

ee
d

u
p

(b) Double precision

Figure 4.7: Kernel gpuHesseDense1 using CUDA. Speedup due to local-memory usage
and local-memory usage in combination with padding.

All dense kernels make extensive use of the local memory. Figure 4.7 shows the impact
of the usage of local memory and padding on the runtime of Kernel gpuEvalDense using
CUDA (OpenCL behaves similarly). As mentioned earlier, the theoretical bandwidth
increase due to local-memory usage would be 32× for single precision and 16× for double
precision. Hence, it is not surprising, that the double-precision computations benefit less
from local-memory usage than the single-precision computations. Moreover, padding
resolves bank conflicts and increases the performance even further. Nevertheless, the
performance increase is not even close to the theoretical speedups. This could be due
to Fermi’s L1 and L2 caches, which cache accesses to global memory in these runs. A
further explanation is the high parallelism of the kernels, which enables the architecture
to hide high memory latencies.

1 2 4 8 16 32
0

5

10

Loop-unrolling depth

R
u

n
ti

m
e

(m
s)

(a) Single precision

1 2 4 8 16 32
0

10

20

Loop-unrolling depth

R
u

n
ti

m
e

(m
s)

(b) Double precision

Figure 4.8: Kernel gpuHesseDense1 using CUDA. Impact of loop-unrolling on the
runtime.

Another important property is task-level parallelism and prefetching. Loop-unrolling

42

4 Graphics Processing Units (GPUs)

is one technique which can be used to exploit these properties. Hence, all dense kernels
make use of loop-unrolling. Figure 4.8 illustrates the performance increase of Kernel
gpuHesseDense1 using different loop-unrolling depths. Further analysis revealed the
following characteristics:

1. Speedup due to loop-unrolling is substantial.

2. Register pressure increases with increasing loop-unrolling depth.

3. OpenCL is more modest in terms of register usage than CUDA.

4. CUDA and OpenCL compilers can optimize more aggressively, if the loop trip
count is known at compile-time.

5. Double-precision calculations require more registers than single-precision calcula-
tions1.

To be more precise, CUDA requires 62 registers at a loop-unroll depth of 32, while
OpenCL uses only 22 registers2. Even though this behavior does not result in perform-
ance implications for the analyzed kernels, it could easily become a limiting factor for
some high-performance applications, since all work-items, running on the same CU, need
to share the available resources. Therefore, extensive use of registers could decrease the
number of parallel running work-groups on one CU.

For instance, Kernel gpuHesseDense1 runs 32 work-items per work-group. Further-
more, Fermi provides 32768 4-byte registers, thus the register usage of CUDA would
restrict the number of concurrently running work-groups to b32768/(62 · 32)c = 16,
while OpenCL would allow b32768/(22 · 32)c = 46 work-groups to run concurrently.
Even though this difference is substantial and would allow the warp scheduler to hide
memory-access latencies more efficiently, it does not lead to performance implications
for Kernel gpuHesseDense1. This is due to the fact, that the number of concurrently run
work-groups is not limited by the register pressure but by its extensive local-memory
usage. For instance, Kernel gpuHesseDense1 uses 4352 byte of local memory using single
precision (8704 byte for double precision), which restricts the number of concurrently
running work-groups to b49152/4352c = 11 (5 work-groups for double precision)3 . In
practice, however, only 8 work-groups per CU can run simultaneously. This would allow
each work-item to use b32768/(8 · 32)c = 127 registers. According to [24], CUDA im-
poses a soft-limit of 63 registers per work-item, which limits the use of prefetching and
task-level parallelism.

Table 4.1 concludes this section. It shows that CUDA and OpenCL yield roughly
the same performances. A final comparison between the performance of the GPU and
the CPU is given in Section 5.1. Moreover, a performance comparison between Kernel
gpuEvalDense and NVIDIA’s cuBLAS library is outlined in Table 5.1.

1a double-precision element requires two registers, while a single-precision element only requires one
register

2this observation holds for all loop-unrolling depths
3each CU has 49152 byte of local memory

43

4 Graphics Processing Units (GPUs)

Single Double
eval grad hesse eval grad hesse

CUDA
Runtime (ms) 4.8 8.6 8.7 10.6 17.8 17.9
GFLOPS 27.7 31.1 45.6 12.6 15.0 22.2

OpenCL
Runtime (ms) 4.9 9.3 9.9 9.8 17.9 19.6
GFLOPS 27.2 28.7 40.1 13.6 14.9 20.2

Table 4.1: Runtime and GFLOPS of routines discussed in this section using either CUDA
or OpenCL.

4.6. Productivity

OpenCL and CUDA roughly require the same programming effort (i.e. the kernels look
almost the same). The only notable difference is the context creation of OpenCL.

Moreover, the learning effort involved in writing high-performance applications with
OpenCL and CUDA with respect to NVIDIA’s Fermi architecture is roughly the same,
since both offer more or less the same functionalities and good documentations. Still,
OpenCL is more verbose than the CUDA runtime API and requires additional knowledge
(e.g. explicit context creation). However, this additional learning effort is negligible.

As far as tool support is concerned, both CUDA and OpenCL offer tools such as
debuggers and profilers. The most notable tools are:

• Graphic Remedy gDEBugger : Debugger and performance analyzer for OpenCL.

• NVIDIA parallel Nsight : Debugger1 and performance analyzer for CUDA.

• NVIDIA Visual Profiler : Performance analyzer for CUDA and OpenCL.

• Rouge Wave Totalview : Debugger for CUDA.

• Allinea DDT : Debugger for CUDA.

• AMD APP : Performance analyzer for AMD’s GPUs.

Additionally, both CUDA and OpenCL offer rich sets of available libraries (e.g. BLAS,
FFTs) which utilize the GPU. However, in comparison to CUDA2, OpenCL still lacks
an LAPACK implementation.

1only for CUDA
2CUDA offers two LAPACK implementations: MAGMA and CULA

44

5 Comparison GPUs and CPUs

5. Comparison GPUs and CPUs

This section gives a final comparison between the productivity and performance of the
CPU implementations and GPU implementations of Section 3 and Section 4.

5.1. Performance

Figure 5.1 shows the performance results of the CPU implementations and the GPU
implementations side-by-side for different problem sizes using either OpenMP or CUDA.

eval grad hesse
0

10

20

30

40

G
F

L
O

P
S

OpenMP (512k) CUDA (512k) OpenMP (2048k) CUDA (2048k)

(a) Single precision

eval grad hesse
0

5

10

15

20

G
F

L
O

P
S

(b) Double precision

Figure 5.1: GFLOPS of the implemented routines using either CUDA or OpenMP with
respect to different problem-sizes. 512k/ 2048k denotes the size of the matrix
L ∈ Rn×k with k = 512000/ k = 2048000.

The results show that the performance differences between the CPU and GPU im-
plementations is small across all routines. However, the OpenMP implementations1

outperform the CUDA implementations for a smaller problem-size, while the GPU im-
plementations trump the CPU implementations for a larger problem-size. Additionally,
as it is demonstrated in Appendix A.2, the GPU versions still offer room for further
optimizations.

Moreover, the double-precision performance is roughly half of the single-precision per-
formance for CPU and GPU implementations alike, this shows the improved double-
precision capabilities of today’s graphics cards.

In comparison to the results outlined in this work, the performance results shown by
Bordawekar et al. [1] and Wienke et al. [26] favour the GPU over the CPU (performance
difference of 2× to 9×, depending on the used architecture). The salient difference
between their results and the results of this study are due to different compute to memory
access ratios. For instance, the algorithms used in this work require O(nk) memory
accesses to carry out O(nk) computations, while the computations in [1] perform O(n4)
operations on O(n2) data elements.

1the grad routine using double-precision is an exception here. A similar behaviour of this routine is
outlined in Figure 3.9. Further investigation of this anomaly is left as future work.

45

5 Comparison GPUs and CPUs

Additionally to the performance results outlined so far, Table 5.1 presents the per-
formance results of Kernel ompEvalDense 1 (CPU) and Kernel gpuEvalDense 1 (GPU)
using single precision in comparison to an sgemv2 operation using either Intel’s Math
Kernel Library (MKL) or NVIDIA’s cuBLAS 3 library. The results indicate that the
implementations outlined in this study outperform the implementations of well known
libraries by a factor of roughly 13× or 25× for the CPU or GPU, respectively.

ompEvalDense MKL gpuEvalDense cuBLAS

Runtime 3.3 44 3.7 94

Table 5.1: Runtime (in ms) of Kernel ompEvalDense and gpuEvalDense compared to a
sgemv operation using either MKL (CPU) or cuBLAS (GPU). All computa-
tions are using single precision and a matrix L of size 128 × 5120000.

Further analysis showed that even though the MKL uses all physical cores, it does
not utilize the vectorization capabilities and does not benefit from parallelization (i.e.
the performance using 1 thread and the performance using 16 threads is almost the
same). Moreover, the poor performance of the cuBLAS implementation is most likely
due to the structure of the matrix (i.e. L has only 128 rows but 512000 columns).
More precisely, cuBLAS only launches 128 work-items, which is not enough in order to
saturate NVIDIA’s Fermi GPU.

5.2. Productivity

As an quantitative attempt to measure the productivity, Figure 5.2 illustrates the number
of modified or added SLOCs for each routine using different programming paradigms
with respect to the original C version. Figure 5.2 only accounts for SLOCs directly
related to the routines (i.e. SLOCs related to operations such as OpenCL context-
creation or verification of the results are not counted). OpenMP was the only paradigm
which essentially allowed to reuse the original code. This is due to the fact that OpenMP
is a directive-based paradigm, which allows incremental parallelization.

The main reasons for the high number of SLOCs for OpenCL and CUDA are:

• Computations have to be wrapped in kernels.

• Appropriate index space sizes have to be determined.

• Memory needs to be allocated.

• Memory needs to be transferred between host and device4.

In addition, OpenCL requires the kernel arguments to be specified via explicit func-
tions. Hence, the OpenCL implementations yield yet another overhead over the CUDA

1matrix-vector multiplicaion with small computational overhead
2single precision general matrix-vector multiplication
3CUDA implementation of BLAS
4does not apply to Intel OpenCL

46

5 Comparison GPUs and CPUs

eval grad hesse
0

50

100

150

200

250

#
S

L
O

C
s

OpenMP
Intel AVX
Intel OpenCL
NVIDIA CUDA
NVIDIA OpenCL

Figure 5.2: Code expansion. Measured added or modified SLOCs. The original C version
uses 30, 50 and 45 SLOCs for the eval, grad and hesse routine, respectively.

implementations. One possibility to reduce the effort needed to port an application
from the CPU to the GPU are directive-based approaches such as PGI Accelerator [26]
or OpenACC [27], which (similarly to OpenMP) allow incremental parallelization.

Even though the SLOCs give a good initial overview of the effort involved in writing
the routines, I spent most of the time tuning the kernels for the respective architec-
tures. Moreover, it felt easier to design the algorithms for the CPU than for the GPU
because the CPU implementations required less optimization techniques than the GPU
implementations (i.e. the programmer has to take care of: registers usage, local memory
usage, coalescing requirements, high thread-level parallelism, ...).

Taking the learning-effort and the time spent to design and implement the algorithms
into account, I rank the productivity of the programming paradigms with respect to the
routines used in this thesis as follows:

1. OpenMP (CPU)

2. Intel intrinsics AVX (CPU)1

3. NVIDIA CUDA/ OpenCL (GPU)

4. Intel OpenCL (CPU)

As mentioned in Section 3.5 and outlined in Table 3.5, the NVIDIA OpenCL versions
resulted in poor performance on the CPU and would have required many changes, which
made is necessary to rewrite the NVIDIA OpenCL versions for the CPU. Moreover, using
Intel OpenCL for the CPU felt counterintuitive.

Despite the increased effort for the GPU implementations compared to the CPU im-
plementations and their similar performance results with respect to the results of this
study, there are certain areas where GPUs achieve substantial speedups over their CPU

1please note that I only implemented the eval routine with intrinsics AVX. Hence, this rank might have
changed if I had implemented more complex routines with intrinsics AVX. My decision to rank it
second, is based on the fact, that it required only one afternoon to learn the necessary AVX intrinsics
and to implement the intrinsics AVX version based on the existing OpenMP version.

47

5 Comparison GPUs and CPUs

counterparts [25], [21]. Therefore, GPUs can be of interest, if either maximum perform-
ance is desired or one considers productivity as a ratio of speedup over programming
effort. Hence, the decision whether to use the CPU or the GPU very much depends on
the underlying problem.

Moreover, an additional naive GPU implementation of Kernel gpuEvalDense (see Ap-
pendix A.1) only required little effort and still yields good performance results (see
Appendix A.2). Hence, the design of GPU implementations with good -performance res-
ults does not necessarily require more time than the design of CPU implementations.
However, if peak performance is desired, additional effort is required in order to pay
attention to the many architectural features (e.g. coalescing, local memory, bank con-
flicts). The troublesome process of designing such an enhanced algorithm is outlined in
Appendix A.2.

As far as tool and library support is concerned, the GPU-based paradigms start to
catch up with the versatile support for CPUs. OpenCL and CUDA (for GPUs) of-
fer GUI-based debuggers, profilers and an increasing number of libraries (e.g. cuFFT,
cuBLAS, MAGMA1, ViennaCL2, AMD Accelerated Parallel Processing Math Libraries
(APPML)).

1work in progress. CUDA implementation of some LAPACK routines
2OpenCL GPU linear algebra library

48

6 Conclusion

6. Conclusion

In the course of this thesis, I have evaluated the performance and productivity of modern
vector processors on the example of a real-world MEG application. With respect to this
application, the CPU and the GPU yield comparable performance both for single and
double precision. Hence, I recommend OpenMP if productivity - as a ratio of speedup
over programming effort - is the main goal and NVIDIA’s CUDA or OpenCL APIs if
maximum performance (for large problem sizes) is desired.

As it is evident from the results of this study, the key to achieve peak performance is a
fundamental knowledge of the underlying CPU/GPU architecture and its optimization
techniques. Looking at productivity, I consider the development of high-performance
GPU applications more difficult than the development of high-performance CPU applic-
ations, since GPU implementations are sensitive to many parameters such as work-group
size, coalescing requirements, shared-resource usage and many more. Nonetheless, high-
performance CPU implementations require further attention as well, especially if the
application should benefit for the SIMD capabilities of modern CPUs. However, the
performance results demonstrate that despite the additional endeavours to utilize the
increased SIMD capabilities of the used CPU, the routines examined in this study did
not notably improve their performance due to vectorization.

Moreover, the question on whether to use the CPU or the GPU remains open. As
this decision very much depends on the problem at hand. One solution to this question
could be to analyze the problem in terms of available parallelism (i.e. does the problem
exhibits enough parallelism to exploit massively parallel architectures like the GPU?)
or its compute to memory access ratio (i.e. will the algorithm be memory bound?) and
compare it to similar applications for which their CPU and GPU performance is known
[21].

Furthermore, improved auto-vectorization and auto-parallelization capabilities of fu-
ture CPU compilers could further ease the utilization of the increasing number of cores
and the increasing vector-width of future CPUs. On the other hand, directive-based
approaches like OpenACC and PGI Accelerator could decrease the effort involved in
writing high-performance GPU applications.

I think that it is likely that the trend towards massively parallel architectures con-
tinues. For example, Intel’s Many Integrated Core (MIC) architecture will have more
than 50 cores and a SIMD-width of 512-bit. Furthermore, Intel’s next CPU architecture
called Haswell will increase its vector capabilities even further and support the AVX 2.
GPUs tend to further increase their number of cores. While AMD/ATI already offers
GPUs with more than 2000 cores per GPU (e.g. Radeon HD 7870, based on AMD’s
Graphics-Core-Next architecture), NVIDIA just introduced the GeForce GTX 680 which
is based on NVIDIA’s new GPU architecture called Kepler and increases its core-count
to 1536.

In the future, I plan to investigate the performance of AMD’s Graphics-Core-Next
architecture and NVIDIA’s new Kepler architecture.

49

A Further GPU Versions

A. Further GPU Versions

This section outlines two additional GPU versions of Kernel gpuEvalDense. A naive
version requiring only little effort is outlined in Section A.1, while Section A.2 illustrates
a more laborious approach.

A.1. Naive Eval Routine

This version is split into two kernels, one sparse kernel (exactly the same as kernel
gpuEvalSparse) and a dense kernel (gpuEvalDenseNaive). The control flow and workload
distribution of this kernel is outlined in Figure A.1.

L

2

256

n

k

256

h

x

3

256

1

Figure A.1: Exemplary control flow and work distribution of two work-groups of kernel
gpuEvalDenseNaive. The orange colors denote the responsibilities of differ-
ent work-items within the same work-group (green analogous).

The control flow of each work-group is as follows:

• Step 1 : Multiply the current chunk of the row with the current chunk of x.

• Step 2 : Proceed with the next chunk until the end of the row is reached.

• Step 3 : Store the private result1 of each work-item to the auxiliary array h.

The auxiliary array h is then transferred to the host and reduced on the CPU-side.
Even this naive implementation requires knowledge about the underlying GPU archi-

tecture, as it pays attention to (1) the coalescing requirements and (2) the maximum
utilization of the CUs. As depicted in Figure A.1 all work-items within a warp access
consecutive data elements (1) of the matrix L and the vector x, which enables the archi-
tecture to coalesce these memory accesses. Furthermore, the work-group size is chosen
to be 256, which allows for maximum utilization of the CUs (2). More precisely, if the
usage of shared resources of a kernel does not limit the amount of parallel executing
work-items (which is the case for this kernel), Fermi limits the number of concurrently
running work-groups, warps and work-items to 8, 48 and 1536, respectively [18, p.137].

1residing in registers

50

A Further GPU Versions

Hence, b1536/256c = 6 work-groups suffice to saturate a CU, while 128 work-items per
work-group would require b1536/128c = 12 work-groups per CU which is not possible
due to the aforementioned limitations of the architecture. Performance analysis showed,
that 256 work-items per work-group yield roughly 40% performance increase over the
same kernel running only 128 work-items per work-group (compare: theoretical speedup:
(8 · 128)/(6 · 256) = 1.5).

This kernel is very simple and provides a good performance (see Table A.1). However,
it does not reuse the x vector for consecutive rows1. Kernel gpuEvalDense (see Section
4.4) and Kernel gpuEvalDenseImproved (see Appendix A.2) try to overcome this problem
at the cost of additional local-memory usage and reduction operations.

A.2. Kernel gpuEvalDenseImproved

Despite of the good performance results shown in this section this version is not used
by other routines, since it was originally considered as future work and has been imple-
mented at the very end of my study.

Kernel gpuEvalDense (see Figure 4.3) suffers from two main disadvantages.
First, it only uses 32 work-items per work-group (i.e. one warp). Hence, only 8 warps

can reside on one CU at a time. This is not enough to hide the memory latency of global
memory [18, p.79]. Moreover, the extensive use of local memory would limit the number
of residing warps on a CU to 11 for single precision and 5 for double precision (refer to
Section 4.5), hence it is desirable to reduce the usage of local memory per warp but at
the same time do not violate the coalescing requirements.

Second, work-groups of Kernel gpuEvalDense, processing the same columns of the
matrix L, load x redundantly.

These two disadvantages are eliminated by the improved Kernel gpuEvalDenseIm-
proved (see Figure A.2). Kernel gpuEvalDenseImproved reduces the use of shared
memory per warp, while at the same time it increases the number of work-items per
work-group from 32 to nRows × 32, nRows ∈ {4,8}, so that each work-group consists of
at least 4 warps. This allows to have more warps per CU than the original kernel, so that
memory latencies can be hidden more efficiently. Additionally, divergence is restricted
to work-items belonging to different warps (i.e. no performance penalty).

Additionally each work-group works on whole columns, such that x is not redundantly
loaded.

The steps of Kernel gpuEvalDenseImproved are as follows:

• Step 1 : One warp loads a portion of x to local memory2.

• Step 2 + 3 : Each warp processes its chunk of the current row (i.e. Workload (=
16) many chunks of the same row).

• Step 4 : Each warp reduces the elements of its chunk to a single value and stores
it to hreduced.

1except for some cached elements in Fermi’s L1 and L2 caches
2the exact size of the portion of x requires further evaluation, because it directly affects the used local

memory and hence the available parallelism for each CU.

51

A Further GPU Versions

Workload

5

3

Local Memory
32

32 32 32

Workload

1 1

L

x

k

n

nR
ow
s

nR
ow
s

2

4

5

h
Reduced

32

4

32

2

3

Figure A.2: Exemplary control flow and work distribution of two work-groups of Kernel
gpuEvalDenseImproved. Workload denotes the number of blocks, each warp
has to process. The orange colors denote the responsibilities of different
warps within the same work-group (green analogous).

• Step 5 : Each warp proceeds to the next row and continues with step 1 until all
rows have been processed.

The performance of this improved version is compared to the other two eval routine
versions in Table A.1.

Single Double
Naive Original Improved Naive Original Improved

Runtime 4.8 4.8 4.2 11.3 10.6 7.7

Table A.1: Runtime (in ms) of three different versions of the eval routine using
CUDA. Naive, Original and Improved denote the eval routine using Kernel
gpuEvalDenseNaive, gpuEvalDense or gpuEvalDenseImproved, respectively.

Table A.1 shows, that the eval routines using Kernel gpuEvalDenseNaive and gpu-
EvalDense yield roughly the same performance, Kernel gpuEvalDenseImproved, on the
other hand, outperforms the original implementation by 14% and 38% for single and
double precision, respectively.

52

References

References

[1] R. Bordawekar, U. Bondhugula, and R. Rao. Can CPUs Match GPUs on Perform-
ance with Productivity?: Experiences with Optimizing a FLOP-intensive Applic-
ation on CPUs and GPU. Research Report RC25033, IBM TJ Watson Research
Center, 2010.

[2] H. M. Bücker, R. Beucker, and C. H. Bischof. Using automatic differentiation for
the minimal p-norm solution of the biomagnetic inverse problem. In A. W. Heemink,
L. Dekker, H. de Swaan Arons, I. Smit, and T. L. van Stijn, editors, Shaping Future
with Simulation, Proceedings of the 4th International Eurosim 2001 Congress, Delft,
The Netherlands, June 26–29, 2001. Dutch Benelux Simulation Society, 2001.

[3] H.M. Bücker, R. Beucker, and A. Rupp. The NINA Software Package: Software for
the Solution of Neuromagnetic Inverse Large-scale Problems. Preliminary Manual,
2011.

[4] H.M. Bücker, R. Beucker, and A. Rupp. Parallel Minimum p-Norm Solution of the
Neuromagnetic Inverse Problem for Realistic Signals Using Exact Hessian-Vector
Products. SIAM Journal on Scientific Computing, 30(6):2905–2921, 2008.

[5] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming, volume 10. The MIT Press, 2007.

[6] A.R. Conn, N.I.M. Gould, and P.L. Toint. Trust-region methods, volume 1. Society
for Industrial Mathematics, 2000.

[7] Khronos Group. The OpenCL Spezification.
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf, March 2012. Ver-
sion 1.1.

[8] M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, and O.V. Lounasmaa. Mag-
netoencephalography—Theory, Instrumentation, and Applications to Noninvasive
Studies of the Working Human Brain. Reviews of modern Physics, 65(2):413, 1993.

[9] Intel. A Guide to Auto-Vectorization with Intel C++ Compilers.
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-
compilers/, October 2011.

[10] Intel. Introduction to Intel Advanced Vector Extensions.
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-
extensions/, October 2011.

[11] Intel. Using AVX Without Writing AVX Code. http://software.intel.com/en-
us/articles/using-avx-without-writing-avx-code/, October 2011.

[12] Intel. Intel OpenCl SDK User’s Guide. http://software.intel.com/file/39188, Feb-
ruary 2012.

53

References

[13] Intel. Writing Optimal OpenCL Code with Intel OpenCL SDK.
http://software.intel.com/file/39189, February 2012.

[14] D.B. Kirk and W.H. Wen-mei. Programming Massively Parallel Processors: A
Hands-on approach. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA,
2010.

[15] A. Munshi, B. Gaster, T.G. Mattson, J. Fung, and D. Ginsburg. OpenCL Program-
ming Guide. Addison-Wesley Professional, 2011.

[16] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
NVIDIA Whitepaper, 2009.

[17] NVIDIA. CUDA C Best Practices Guide, March 2012. Version 4.0.

[18] NVIDIA. CUDA C Programming Guide, March 2012. Version 4.0.

[19] OpenMP. OpenMP Application Program Interface. http://www.openmp.org/mp-
documents/OpenMP3.1.pdf, March 2012. Version 3.1.

[20] S. Ryoo, C.I. Rodrigues, S.S. Baghsorkhi, S.S. Stone, D.B. Kirk, and W.W.
Hwu. Optimization Principles and Application Performance Evaluation of a Multi-
Threaded GPU using CUDA. In Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pages 73–82. ACM,
2008.

[21] P. Springer. Seminararbeit - Berkeley Dwarfs on CUDA. 2011. RWTH Aachen
University. HPC-Group.

[22] P. Springer. Vectorization of Kegelspan’s Intersection Method. 2011. RWTH Aachen
University. HPC-Group. Internal documentation.

[23] C. Terboven, D. Schmidl, H. Jin, T. Reichstein, et al. Data and Thread Affinity in
OpenMP Programs. In Proceedings of the 2008 Workshop on Memory Access on
Future Processors: A solved Problem?, pages 377–384. ACM, 2008.

[24] V. Volkov. Better performance at lower occupancy. In Proceedings of the GPU
Technology Conference, GTC, volume 10, 2010.

[25] V. Volkov and J.W. Demmel. Benchmarking GPUs to Tune Dense Linear Al-
gebra. In High Performance Computing, Networking, Storage and Analysis, 2008.
SC 2008., pages 1–11. IEEE, 2008.

[26] S. Wienke, D. Plotnikov, D. an Mey, C. Bischof, A. Hardjosuwito, C. Gorgels, and
C. Brecher. Simulation of Bevel Gear Cutting with GPGPUs—Performance and
Productivity. Computer Science-Research and Development, pages 1–10, 2011.

[27] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC - First Experiences
with Real-World Applications. 2012. Submitted for publication.

54

	Introduction
	Magnetoencephalography Application
	Central Processing Units (CPUs)
	Sandy Bridge Architecture
	Original C Version
	Implementation
	Performance Results

	OpenMP with Auto-Vectorization
	Programming Guidelines
	Implementation
	Performance Results
	Productivity

	Intel Intrinsic AVX
	Programming Guidelines
	Implementation
	Performance Results
	Productivity

	Intel OpenCL
	Programming Guidelines
	Implementation
	Performance Results
	Productivity

	Graphics Processing Units (GPUs)
	Fermi Architecture
	Execution Model
	Programming Guidelines
	Implementation
	Performance Results
	Productivity

	Comparison GPUs and CPUs
	Performance
	Productivity

	Conclusion
	Further GPU Versions
	Naive Eval Routine
	Kernel gpuEvalDenseImproved

