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1 Introduction

Graphics processing units (GPUs) greatly improved their performance over the last ten
years. The first graphics cards have been developed in the late 90’s and were targeted for
the mass market. These first cards were special purpose hardware, designed to accelerate
graphic processing required in computer games. As the interest in computer games
continued, GPU developers such as Nvidia and AMD/ATI continuously improved the
performance and level of parallelism of their GPUs. To this end, it became desirable to
exploit this special purpose hardware for general purpose computing. Therefore, parallel
programming models such as CUDA and OpenCL are developed in order to utilize
the hundreds of cores of modern GPUs which yield a peak performance of up to 1331
GFLOP/s! on a single GPU. These programming models greatly decreased the effort

Lsingle precision floating point performance on Nvidia’s Tesla M2090



necessary to program these architectures. At their beginning in 2007 (CUDA) and 2008
(OpenCL), they suffered from drawbacks such as low double precision performance, few
debugging capabilities and the lack of atomic operations [37]. Today, the development
of these models and the underlying architectures are by no means completed.
Nevertheless, the fact that more and more heterogeneous clusters within the TOP500 [3]
consist of a mixture of CPUs and GPUs emphasizes the increasing importance of GPUs
in the field of scientific computing. Hence, it is crucial to provide new benchmark suites
which enable the evaluation of heterogeneous systems in order to evaluate and compare
the performance of these systems.

Asanovic et al. [4] introduces 13 computational kernels, so called Dwarfs, which are
believed to play an important role in future scientific computations. In the course
of this report, I will focus on existing GPU implementations of some selected Dwarfs
and introduce three benchmark suites which implement a subset of the 13 Dwarfs on
the GPU. The performance across these benchmark suites can guide computer system
researchers and indicate a first clue if an architecture is suited for future applications.
After all, one important question remains: Is it worthwhile to port an application to
the GPU considering the effort needed to learn the new programming paradigm and the
unique problems related to high performance GPU implementations. I will address this
question throughout this report.

This report is organized as follows: Section 2 briefly describes the CUDA programming
model and the underlying GPU architecture which is essential in order to develop high
performance applications. Section 3 introduces the 13 Dwarfs and lists some references
to existing GPU implementations. Section 4 discusses the performance and problems
related to some selected GPU Dwarfs. Section 5 describes the effort needed to become
familiar with the Compute Unified Device Architecture (CUDA) and carries out a case
study where I implement a simple application using CUDA. Section 6 draws a conclusion.

2 Compute Unified Device Architecture

CUDA was released on 15 February 2007. It is restricted to NVIDA GPUs and is compat-
ible with GPUs such as G80 and onwards. CUDA is being improved continuously, new
features such as atomic operations, ECC support, double precision support, debugging
capabilities and further tools and libraries emerge every year.

CUDA is designed such that a C/C++ programmer who is familiar with parallel
programming should be able to port an application to the GPU with little effort [17].
As we will see in section 5.2.2, depending on the application, it can be easy to port
an existing OpenMP application to CUDA. This initial GPU version however, does not
necessarily achieve high performance (see section 5.2.3). Furthermore, various different
optimization techniques make it difficult to find the optimal solution which achieves peak
performance [43]. In order to optimize an application, fundamental knowledge about the
underlying GPU architecture and optimization techniques is required.

The upcoming subsections briefly describe Nvidia’s current GPU architecture called
Fermi [41] and the very basic characteristics of the programming model, respectively.



See [37], [36], [12], [28], and [43] for further information.

2.1 Fermi Architecture
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Figure 2.1: Fermi’s 16 SM are positioned around a common L2 cache. Each SM is depic-
ted as a vertical rectangular strip that contains an orange portion (scheduler
and dispatcher), a green portion (execution units), a light green portion
(SFUs) and light blue portions (register file and L1 cache). Taken from [34].

Modern Nvidia GPUs consist of up to 512 cores which make these architectures well
suited for data-parallel applications. The cores are organized in multiple streaming
multiprocessors (SMs) and perform floating point operations. A Fermi graphics card such
as the TESLA M2090 consists of 16 SMs each having 32 cores and four special function
units (SFUs)?, an configurable shared memory of 48 KB/16 KB, a configurable L1 cache
of 16 KB/48 KB , 32K registers & 4 Bytes and further units for scheduling and memory
accesses (see Figure 2.1). Moreover, a Fermi GPU is capable of running 1536 threads
per SM simultaneously which results in very little storage per thread. Fortunately,
modern GPUs offer various solutions which can compensate this disadvantage such as
prefetching, task level parallelism, data level parallelism, a rich variety of memories, etc.
Prior to any computation the required data has to be transfered from the host to global
memory which resides on the graphics card. These transfers limit the use of GPUs for
applications which require very much data to carry out very few computations.

2Used to accelerate functions such as sin(), cos(), exp(), log(), etc. at the cost of numerical precision.



Global memory is accessible by all SMs and it comprises up to 6 GB of GDDR5 DRAM
with a memory bandwidth of up to 177 GB/s. Even though the bandwidth is quite high
compared to 24 GB/s of DDR3-1600, it is shared by all threads and becomes a limiting
factor for many high performance applications. In order to hide the high latency and
the limited memory-bandwidth of global memory, it is necessary to have a high compute
to global memory access ratio (CGMAR) [28], [43].

Fermi is the first architecture which tackles this problem by introducing a 1.2 cache of size
768 KB which caches all accesses to global memory. The full cache hierarchy of Fermi
is a further step towards general purpose computing. It can improve the performance of
applications such as sparse linear algebra, sorting, ray tracing, fluid physics applications,
etc. (see Figure 4.2).

2.2 Programming Model

CUDA is a Single Instruction Multiple Thread (SIMT) architecture, it wraps the com-
putation on the GPU in so called kernels. Each kernel is capable of running thousands
of threads simultaneously. The threads are locally organized in blocks, which are further
organized in warps. A warp is a logical unit of 32 consecutive threads, these threads
execute their operations in lock-step.

Furthermore, global memory accesses are issued by a warp as well. The threads
memory accesses of threads belonging to the same warp can be coalesced under certain
circumstances. For instance, if all the threads within the same warp access consecutive
4 byte elements in global memory, CUDA is capable to coalesce these 32 accesses to one
global memory access®.

Moreover, all threads within a block run on the same SM which enables these threads
to share data by using the on chip shared memory and further collaborate by synchron-
izing their execution by very light-weighted barriers.

3 Dwarfs

This section briefly describes the Dwarfs as introduced by Asanovic et al. [4]. I will
focus on the GPU implementation of some selected Dwarfs in section 4.

According to [4] a Dwarf is an algorithmic method that captures a pattern of computa-
tions and communication. Many researchers from various domains such as circuit design,
computer architecture, massively parallel computing, computer-aided design, embedded
hardware and software, programming languages, compilers, scientific programming and
numerical analysis meet over a period of two years to design a collection of 13 Dwarfs
which are believed to be the kernels for many future applications. They are designed to
guide the development of parallel architectures and novel programming models. A new
architecture should have good performance across all Dwarfs in oder to be suited for a
broad range of future applications, this is especially important since many applications

3Different GPU architectures have different coalescing requirements [37].
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can comprise several Dwarfs (e.g. computer graphics involves Sparse Linear Algebra,
Graph Traversal, etc.[4]).

Initially there have been only seven Dwarfs but further research has shown that at
least six more Dwarfs are necessary to cover a broader range of applications (see Table
3.1). Some of these Dwarfs such as Dense Linear Algebra or Monte Carlo seem to be
a perfect fit for multicore and manycore architectures whereas Dwarf 13 (Finite State
Machines) typically involves very little parallelism. Therefore it might be a good idea
to change the underlying algorithmic approach in order to achieve good performance
across all 13 Dwarfs.

Table 3.1 lists all the Dwarfs proposed by Asanovic et al. and provides references for
their GPU implementation, if available. Furthermore, I will discuss the GPU references
of Dwarf 1, 2, 3, 4, 5, 7 and 9 in section 4 in more detail.

Dwarf GPU References
1) Dense Linear Algebra 1][19][16][35][44][47]
2) Sparse Linear Algebra 1][19][40][10][7][9][14]

3
3
2

) [

B |
< | 3) Spectral Methods [21][25, p.6291][38]
& | 4) N-Body Methods [33, p.6771][25, p.75f][28, p.173f][46][8]
S [5) Structured Grids B1][16][17][12][32]

6) Unstructured Grids [16][17]

7) Monte Carlo [42][25, p247f, p.813f][39][23]

8) Combinational Logic (33, p.785f][17]
— | 9) Graph Traversal [31][29][16][25, p.75f, p.439f][22]
g | 10) Dynamic Programming [16][17][13][30]
% 11) Back-track and Branch & Bound
2 12) Graphical Models

13) Finite State Machine [15]

Table 3.1: 13 Dwarfs introduced by Asanovic et al. [4].

4 GPU Dwarfs

This section introduces three available GPU benchmark suites which implement many
of the aforementioned Dwarfes, lists typical problems related to efficient GPU imple-
mentations and depicts the problems and performance of some selected Dwarfs.

4.1 Benchmark Suites

Benchmark suites provide a good mean to compare different architectures with each
other and exhibit their strengths and weaknesses.
Current benchmark suites such as SPEC CPU 2006 [2], SPLASH-2 [50] or Parsec [11]



typically only support CPU architectures but neglect accelerators such as GPUs or the
implemented kernels do not span across a wide range of applications (e.g. BioParallel
[26] for biomedical applications, MediaBench [1] for multimedia applications).

In order to overcome these limitations heterogeneous benchmark suites such as Rodinia
benchmark suite [16], Parboil benchmark suite [31] and Scalable Heterogeneous Com-
puting Benchmark Suite (SHOC) [19] have being developed.

Rodinia is an open source benchmark suite which implements a wide range of ap-
plications with different computation and communication patterns. The implemented
applications can be mapped to a subset of the 13 Dwarfs. Rodinia uses OpenMP and
CUDA in order to compare multicore CPUs vs. manycore GPUs. Rodinia is still un-
der development, therefore, new applications are being added which cover even more
Dwarfs. As the development of Rodinia proceeds even OpenCL versions of certain ap-
plications are added. A drawback of this benchmark suite is that it is barely documented.

Parboil is an open source benchmark suite which implements a subset of the 13
Dwarfs on the GPU. The suite itself is not well documented. Nevertheless the descrip-
tion of some kernels refers to published papers which describe the GPU implementation
in more detail. Moreover, most of these applications are only implemented in CUDA,
however some are having a basic CPU implementation as well. Thus, this benchmark
suite does not seem to be a good choice if one wants to compare the performance of a
CPU-based system vs. a GPU-based system.

In comparison to Rodinia and Parboil the SHOC benchmark suite is not open source,
but it is however freely available. SHOC is divided in three parts:

e Level 0 measures low level characteristics of the GPUs such as memory bandwidth,
peak FLOPS, etc.

e Level 1 implements eight computational kernels such as FFT, MD, Reduction,
Scan, SGEMM, SpMYV, Sort, Stencil2D and Triad which can be mapped to a
subset of the 13 Dwarfs.

e Stability Tests stress the system with continuous computations and data trans-
fers to exhibit problems related to bad cooling, overclocked GPUs, etc.

In contrast to Rodinia and Parboil, this benchmark suite targets CUDA and OpenCL
alike. Therefore, SHOC is well suited to compare the performance between CUDA
and OpenCL but it is not suited for comparing CPU vs GPU since it lacks a CPU
implementation. A major advantage of SHOC is that it uses MPI to distribute the
computation among several nodes each having one or more graphics cards. Hence SHOC
is able to scale from a single node to a large cluster. Moreover, it is very easy to setup
and well documented. Figure 4.1 depicts the performance differences between CUDA
and OpenCL with respect to some GPU Dwarfs running on NVIDA’s C2050%.

“With a peak performance of 1030 GFLOP/s and 515 GFLOP/s for single and double precision,
respectively.




Max Peak SGEMM SpMV FFT

Single CUDA 998 617 10 350
OpenCL 1005 427 5 62

Double CUDA 501 297 9 176
OpenCL 505 171 4 27

Table 4.1: SHOC: Performance comparison between CUDA and OpenCL. All values are
expressed in GFLOP/s.

4.2 Typical Problems

For brevity, this subsection only describes the most common problems involved with
GPU implementations. I will focus on specific problems with respect to the GPU Dwarfs
in the following sections.

A problem common to some GPU Dwarfs is the time needed to offload the data from
the CPU to the GPU. Depending on the algorithm and its memory access pattern it can
be a good idea to chop up the communication into smaller pieces which can be processed
in parallel (this is only possible if there are no further data dependencies between these
blocks). Thus, some algorithms require fundamental changes to ease the problem of
CPU to GPU communication.

Even though the global memory bandwidth of the Tesla C2050 is quite high (i.e.
144 GB/s) it is a limiting factor for many data-intensive applications. Therefore it is
desirable to coalesce data transfers and reuse data as much as possible. Coalescing the
memory accesses sometimes require non trivial reorganization of data structures (e.g.
it is not preferable to access a row of a matrix in a row wise fashion per thread, since
this would result in many uncoalesced data transfers). Another technique to improve
the memory bandwidth is the efficient use of different memories (i.e. registers, shared
memory, texture memory and constant memory) which then again requires further non
trivial rearrangement of the algorithm.

There are even further limitations since registers and shared memory are scarce re-
sources and extensive use of these resources could limit the number of threads/ blocks
which can be executed on a SM simultaneously. This, on the other hand, would result in
less thread level parallelism which could expose the high memory latencies of the global
memory. A solution to this problem could be to subdivide a large kernel into few smaller
ones.

But this is not a remedy to this problem as it poses two new problems. First, each kernel
call involves a non negligible overhead. Second, shared memory is not persistent during
kernel calls.

Moreover, some GPU Dwarfs (e.g. N-Body Methods and Graph Traversal) suffer from
the lack of an inter-block synchronization mechanism [51]. A widely used solution to
this problem is to stop the current kernel and relaunch it after a global synchronization
by the host. Even though the Fermi architecture reduces the overhead of kernel launches



by up to 10x with respect to older GPUs [41], data within shared memory is still not
persistent between kernel calls. This induces potentially unnecessary memory transfers.

Another problem common to some GPU Dwarfs is the problem of thread divergence,
due to the SIMT nature of CUDA. Threads are said to diverge if they belong to the same
warp and follow different execution paths. Thread divergence results in serialization
of the diffrent execution paths. Hence, it can serverely impact the performane of an
application.

4.3 Dense Linear Algebra

The first Dwarf the I will address in this report is dense linear algebra.

Due to its inherent parallelism DLA is one of the best analyzed GPU Dwarfs, it offers
a variety of GPU implementations. In the course of this subsection, I will list some of
these implementations and conclude with a CPU vs GPU comparison.

All benchmark suites mentioned above implement some DLA Dwarf(s). SHOC and
Parboil both implement an ordinary GEMM, whereas Parboil’s implementation uses the
algorithm as described by V. Volkov et al. [47]. Rodinia on the other hand includes a
LU decomposition and clustering algorithms such as K-means and Stream Cluster.

More important than the DLA Dwarfs of the benchmark suites are available libraries
such as CUBLAS [35], MAGMA [44] and CULA [24]. CUBLAS is Nvidia’s implement-
ation of BLAS (Basic Linear Algebra Subprograms) based on CUDA which is currently
limited to one GPU only.

MAGMA and CULA are heterogeneous libraries which implement a subset of LAPACK
(Linear Algebra PACKage). Both rely on CUBLAS and CUDA to accelerate their func-
tions. The main difference however is that CULA is a commercial library which covers
a larger subset of LAPACK than MAGMA. MAGMA on the other hand is freely avail-
able and it also offers great speedups over pure CPU LAPACK implementations such as
Intel’s MKL (see Figure 4.1).

Both libraries offload computationally intensive parts which stress the functional units
and at the same time require few memory accesses to the GPU, while computing small
operations which do not offer sufficient parallelism (e.g. panel factorizations) on the
CPU.

All of the libraries are constantly evolving, thus it is likely to see a CUBLAS with
multi GPU support as well as more LAPACK functions implemented in both CULA and
MAGMA.

4.4 Sparse Linear Algebra

Even though sparse linear algebra (SLA) is yet another important domain for scientific
computing, there are not as many SLA libraries and algorithms available which use the
GPU to accelerate their computation as we have seen for DLA. One reason for this is
that SPA typically allows few arithmetic operations per memory access which is not
favorable for a modern GPU. The two most notable SLA libraries for CUDA are CUSP
[10] and CUSPARSE [40].
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Figure 4.1: Performance of LU, Cholesky and QR decomposition of a square matrix using
double precision.

CUSPARSE is Nvidia’s implementation of the sparse BLAS routines (i.e. vector-
vector, matrix-vector and matrix-matrix). Furthermore, it offers routines to convert
different matrix formats to one another (e.g. dense to csr, dense to csc, crs to csc, etc.).
CUSPARSE is designed for a single GPU and does not autoparallelize across multiple
GPUs.

CUSP in comparison to CUSPARSE is an open source library which only implements
a subset of the sparse BLAS routines but it offers iterative solvers based on Krylov
subspace methods. Moreover, it offers I/O functions which can load an mtx-file directly
into a sparse matrix container such as coo, csr, dia, ell or hyb.

The sparse matrix vector product SpMV (i.e. A x x = y, where A is sparse matrix
and x is dense vector) is one of the most important kernels within the SLA domain. It is
the most compute intensive kernel in Krylov subspace methods which are used to solve
linear equations of large systems which evolve from applications such as finite element
methods, structural engineering, linear programming, etc. Henceforth I will discuss the
problems involved with an efficient SpMV implementation as described by Baskaran et
al. [7].

The greatest problem involved with an efficient SpMV implementation is that it is
a inherently memory bound kernel. This has different reasons. (1) It has irregular
and indirect memory accesses. (2) It does not exhibit much data reuse (i.e. only data
reuse of z is possible). (3) It has a bad memory access to compute ratio. With these
problems in mind Baskaran et al. [7] developed a SpMV algorithm that utilizes the
different memories of a modern graphics card to hide memory latency. The efficient

10



implementation involves padding of matrix rows to avoid non-aligned memory accesses,
usage of the cached texture memory for vector z, avoidance of synchronizations, etc.
Further applied optimizations are described in [7]. The benefit of using caches is depicted
in Figure 4.2. Moreover, the performance of SHOC’s SpMV implementation is shown in
Table 4.1.

Br Without cache BB With cache
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Figure 4.2: SpMV Performance shown by Baskaran et. al [7] running on a GeForce GTX
280.

4.5 Spectral Methods

Spectral methods are used in many different fields such as applied mathematics and
scientific computing. They often involve the use of a fast fourier transform (FFT).
The most notable library for accelerated FFTs on the GPU is Nvidia’s CUFFT [38].
Furthermore, Parboil implements a FFT according to the description of Govindaraju et
al. [21]. SHOC implements the FFT as described by V. Volkov et al. [48] (see Table
4.1).

According to Govindaraju et al. FFTs on the GPU face typical problems such as avoid-
ance of bank conflicts, non coalesced memory accesses, efficient use of various memories,
etc. Solutions to these problems involve padding of shared memory, reorganization of
the algorithm, and so forth.

Moreover, Govindaraju et al. [21] empirically determined that it is beneficial to reduce
the shared memory usage per block at the cost of more synchronizations in order to
increase the amount of blocks which can run simultaneously on a GPU (i.e. increased
thread level parallelism to hide memory latency). They also computed small FFTs en-
tirely in shared memory and used the registers of the GPU extensively. With all these
applied optimizations, they are able to achieve speedups of up to 61x for large FFTs

11



running on a GTX 280 w.r.t. Intel’s MKL version 10.2 running on an Intel QX9650. Nev-
ertheless, MKL produced slightly lower errors than the GPU implementation. Detailed
plots can be found in [21].

It is worth mentioning that all the implementations mentioned in this subsection
are at least two years old and do not autoparallelize across multiple GPUs. A newer
FFT implementation which utilizes multiple GPUs is described in [25, p.629f]. This
version targets ,,large-scale” FFTs which do not fit into one GPU’s global memory. It
outperforms Intel’s MKL by 7x using single precision and 5x using double precision.

4.6 N-Body Methods

N-Body methods arise in many scientific computations such as astrophysical simulations
(e.g. movement of stars or galaxies), molecular dynamics and turbulent fluid simulations.
The system of an N-Body method comprises N bodies which induce different forces f;;
(e.g. gravitational, electrical or magnetic) upon each other. A simple all-pair imple-
mentation has O(N?) computational complexity which is typically impractical because
of the large number of bodies.

There are various N-Body GPU implementations available such as floding@home [8],
direct coulomb summation (DCS) [28, p.173f], and many more. During this subsection I
will briefly introduce some of these applications, mention their performance on the GPU
but refer the reader to the respective references for detailed information.

Folding@home [8] is a distributed application for biophysical processes such as protein
folding. Its computing power is comprised of ordinary desktop clients, Playstation 3
gaming consoles and various GPUs whereas the GPUs contribute the most to its peak
performance.

Nvidia describes a detailed implementation of a simple all-pair implementation of a
astrophysical simulation in [33, p.677f]. They implement a blocked algorithm to util-
ize shared memory and data reuse. Moreover, they apply many other optimization
techniques to achieve high performance (e.g. loop unrolling, coalescing, ...). With all
optimizations applied, they achieve a peak performance of 204 GFLOP/s for a system
with 16384 bodies on a 8800 GTX®. Bear in mind that the mentioned performance might
not be a fair comparison as Nvidia as the author is biased. Furthermore, Nvidia neglects
reciprocal forces® in order to achieve higher performance in terms of total GFLOP/s.

Kerk et al. [28, p.173f] describe the implementation of direct coulomb summation
(DCS) in CUDA. They describe various optimization techniques and achieve a speedup
of 44 w.r.t. an optimized single core CPU implementation. Moreover, Stone et al. [46]
describe the implementation of the multilevel summation method (an approximation
method for DCS) and compares it to optimized CPU and GPU DCS implementations.

Wen-Mei W. Hwu [25, p.75f] describes the most recent implementation of the Tree-
Based Barnes Hut N-Body Algorithm which runs entirely on the GPU. This algorithm
hierarchically subdivides the space into cells until a certain threshold is reached (e.g.

®peak performance of 345.6 GFLOP/s.
6
fis = —fii
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less than k bodies in a cell). This hierarchy is stored in an octree. Only particles of
nearby cells interact with each other directly, particles in cells farther away are treated
as one large particle centered at its center of mass. This approximation reduces the
computational complexity O(N?) of the precise all-pair interaction to O(NlogN). The
implementation faces three main problems. (1) Building and traversing an irregular
tree-based data structure. (2) Cope with many indirect memory accesses. (3) Avoiding
recursions as they are not supported by today’s GPUs. Wen-Mei W. Hwu employs old
and new optimization techniques which overcome these problems. The description of
these new optimization techniques is beyond the scope of this report, please refer to [25,
p.75{] for further details.

Moreover, Wen-Mei W. Hwu implemented three different versions for better comparison.
(1) A serial, barnes hut CPU version, (2) an all-pair GPU version and (3) a barnes hut
GPU version. All versions are optimized and use single precision. The GPU barnes
hut version achieves speedups of 5, 35, 66, 75 and 53 over the serial CPU version.
Furthermore, even though the performance in terms of pure GFLOP/s of the all-pair
GPU version is much higher than the GPU barnes hut version (304.9 GFLOP /s compared
to 75.8 GFLOPs/s [25, p.91]) it trails the barnes hut version w.r.t. runtime (see Figure
4.3).

10,000,000

—~&— CPU Barnes Hut algo.
1,000,000 - —jll— GPU Barnes Hut algo.
GPU O(n*2) algorithm
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Figure 4.3: Runtime for a singe time step in milliseconds w.r.t. varying input sizes.
Running on Nvidia Quadro FX 5800 and a 2.53GHz Intel Xeon E5540 re-
spectively. [25, p.90]

4.7 Structured Grids

Structured grid algorithms appear in many scientific domains such as medical imaging,
physics simulations or image processing. They subdivide the computational region into
subspaces where updating an element within these subspaces depends on its neighboring



elements. Hence, these applications offer much spatial locality which allows efficient
use of the shared memory. Furthermore, due to their inherent parallelism and compute
intense nature, structured grid applications are typically a good fit for the manycore ar-
chitectures such as the GPU. Nevertheless, a major problem common to most structured
grid algorithms comes from those elements at the boundary of neighboring subspaces. A
trivial solution to this problem would be to terminate the kernel after one iteration and
relaunch it after a global synchronization. This ,,solution” however, would not result in
high performance because of the ramifications mentioned in section 4.2.

Meng et al. [32] addresses this problem and proposes a solution w.r.t. GPU imple-
mentations. They argue that it is beneficial to load redundant data (ghost data) in order
to avoid synchronizations after each iteration at the cost of redundant computations.
E.g. if a 4x4 block needs to be computed a 16x16 block” is loaded and the update for
the inner 14x14 block is computed. The next iteration only computes valid updates for
the inner 12x12 block and so on (see Figure 4.4). This approach allows the kernel to
process 6 iterations before it writes the inner most 4 x4 block back to global memory and
synchronizes its execution. Furthermore, they state that it is advantageous to update
the whole ghost zone even though it shrinks from one iteration to another. This choice is
hardware dependent as it avoids thread divergence and further boundary checking and
might not be the best choice for every underlying architecture.

In the remainder of this section I will briefly introduce three structured grid applica-
tions and related GPU references. Their performance is depicted in Figure 4.5.
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Speckle Reducing Anisotropic Diffusion (SRAD) is an image processing ap-
plication for ultrasonic and radar images. It reduces the noise of an given image while
maintaining its important features. Moreover, each element of the structured grid rep-
resents a pixel of the image. The implementation outlined by Che et al. [17] comprises
three kernels. While each successive iteration over these three kernels produces an in-
creasingly smoother image. Further GPU implementations are described in [16].

HotSpot thermal simulation which estimates the temperature of a processor based
on its floor plan and simulated power measurements. Moreover, each grid cell represents
the temperature of the corresponding area of the processor. GPU versions are discussed
in [16], [17] and [32]. According to [17] and [32] HotSpot benefits from the use of ghost
zones [32].

Leukocyte tracking (LC) detects and tracks leukocytes (white blood cells) in in-
travital microscopy videos [12]. A detailed GPU implementation including various op-
timization techniques is described by Boyer et al. [12] (also included in the Rodinia
benchmark suite [16]). Boyer et al. applied standard optimizations such as utilization
of the shared and texture memory but further improved the performance by more not-
able optimizations like the avoidance of register spilling (i.e. they are using a different
algorithm for variance calculations [49]).

Further structured grid applications such as heart wall, particle filter, cell, myocyte
and lavaMD can be found in the Rodinia benchmark suite [16].

4.8 Monte Carlo

Monte Carlo algorithms typically involve many parallel computations which can be easily
mapped to separate threads running on the GPU. Applications such as Monte Carlo
Photo Transport (MCPT) [25, p.247] or Fast Simulation of Radiographic Images Using
a Monte Carlo X-Ray Transport (FSRIMC) [25, p.813], [5], [6] strongly rely on accurate
random number generators which are already availabe for CUDA [39], [23].

The challenges of these algorithms however, lie in an efficient implementation which
can cope with various problems common to both algorithms. The most notable problems
are related to the fact that the execution path of each thread® depends on random events.
Such problems are [25, p.247, p.813]:

e Thread divergence
e Uncoalesced memory accesses
e Bad cache utilization

e Warp incoherence, the execution time of the warp depends on the length of the
longest photon path?

8A thread computes the path of one photon. Note, this is a simplification and does not hold for the
actual implementation.
9A photon can be absorbed. Hence, the length of different paths can vary.



Further problems arise from the lack of atomic operations (i.e. only the Fermi architec-
ture offers atomic operations for floating point variables. Moreover, atomic operations of
previous architectures are less efficient.) and the need for new random number sequences
for each photon.

Despite these problems [25, p.247] and [25, p.813] were able to achieve remarkable
speedups as shown in Table 4.2.

MCPT FRSIMC
GTX 260 | GTX 480 | GTX 285 | GTX 480
’ Speedup 90 415 15 34

Table 4.2: The reference CPU version for MCPT and FRSIMC is an optimized single
threaded version running on an Intel Xeon processor and an optimized multi
threaded version running on an Intel Q8200 processor, respectively. The data
for this table is taken from [25, p.247, p.813].

4.9 Graph Traversal

Graph algorithms play a fundamental role in many scientific applications. Even though
graph algorithms typically do not fit the GPU as good as other Dwarfs, there are many
scientific papers available, which tackle exactly this problem [27], [29], [20], [22], [25,
p.439], etc. Where [29] is probably the most notable one, as it introduces a hierarchical
data structure to avoid costly synchronizations.

In the course of this section I will refer to existing GPU implementations of classical
graph algorithms, show performance results, if available and comment on some problems
common to most efficient graph algorithms on the GPU.

A graph G=(V,E) is typically represented as a set of adjacency lists. A mapping of
this graph representation to the GPU is described by Harish et al. [22]. Moreover, most
graph algorithms only provide poor spatial locality due to irregular memory accesses
and data structures. Thus, coalescing and data-reuse is hard to achieve (i.e. Harish et
al. did use shared memory for any of their graph algorithms). Another problem men-
tioned by Luo et al. [29] is the lack of global synchronizations. I like to point out that
Xiao et al. [51] circumvent this problem as they introduce an inter-block barrier which
runs entirely on the GPU. Moreover, as mentioned in section 4.6 it is necessary to cope
with the fact that the GPU does not support recursion, as many graph-algorithm are
naturally expressed recursively.

Breadth First Search (BFS) visits all nodes in a graph G=(V,E) which can be reached
from a particular node in G. The most notable papers which outline a GPU implement-
ation of BFS are [22], [20] and [29]. It is worth mentioning that the implementations of
[22] and [20] increase the computational complexity of the best known serial algorithm
whereas [29] does not do so. Thus, Table 4.3 shows the results achieved by Luo et al.
[29] while leaving the results of [22] and [20] unnoticed.
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| Graph type | #Vertex IIT-BFS | CPU-BFS | UIUC-BFS | Speedup
Regular 10M 11019.8ms 5023.0ms 488.0ms 10.3
Real World 6,3M 2579.4ms 1323.0ms 236.6ms 5.6
Scale-free 10M 2252.8ms 506.9ms 483.6ms 1.05

Table 4.3: Runtime of three different BFS implementations. IIIT-BFS, CPU-BFS and
UIUC-BFS denote the GPU implementation of Harish et al., an efficient CPU
implementation by Cormen et al. [18] and the GPU implementation of Luo
et al., respectively. Results taken from [29].

All Pairs Shortest Path (APSP) finds the shortest path in a weighted Graph G=(V,E)
between all nodes. The GPU implementation of APAP is outlined by Katz et al. [27]
and Harish et al. [22]. The implementation of Katz et al. runs up to 6.5x faster that
the implementation of Harish et al., this is mostly due to shared memory utilization.
Please refer to [22] and [27] for further information.

Single Source Shortest Path (SSSP) finds the shortest path in a weighted Graph
G=(V,E) between one particular node to all other nodes. An efficient GPU imple-
mentation for SSSP is outlined by Harish et al. [22]. They achieved speedups up to
70x, please refer to [22] for more detailed information.

Mazimum Flow (MF) finds the maximum flow in a flow network N=(V,E) from a
source s € V to a sink ¢ € V. The push-relabel algorithm is one of the most efficient
algorithms to compute the MF, its GPU implementation is outlined by Narayanan et
al. [25, p.439f]. They stated that it maps well to the CUDA and it exhibits good data
parallelism. Their GPU implementation of the push-relabel algorithm improved over a
different CPU implementation'® on average by 12x across different inputs [25, p.4391].

5 Effort

This section describes the effort needed by an newcomer to CUDA to become familiar
with the API, the fundamental principles of GPGPU and the time needed to port an
existing CPU application to CUDA. This section is described from the view of the author.

5.1 The Learning Period

Since the CUDA API follows the style of C/C++, it is relatively easy to write basic
GPU applications such as SAXPY, SDOT, etc.

I started out by reading [45] (approx. 300 pages) which took me around one week
to work through it. By that time, I had written my first GPU applications but I have
only gained very basic expirience with the underlying architecture and optimization
techniques. Hence, I decided to read [28], which comprises another 250 pages. After

0The comparison is still valid as MF finds a global optimal solution. Hence, the results are the same.
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reading the second book, I was familiar with further optimization techniques and parts
of the underlying hardware. In order to reinforce my knowledge of CUDA and GPGPU,
I opt to skim through [37] and [36]. This only took a very moderate amount of time
since they mostly recapitulate [45] and [28] but still offer deeper insights into certain
areas such as the different GPU architectures, memories, etc.

Unfortunately, none of the literature mentioned above covers topics such as debugging
or libraries in detail. This requires even further learning effort. Nevertheless, Nvidia
provides a rich amount of documentations and webinars which cover these topics. I want
to stress that Nvidia’s documentations and their webniars are easily comprehensible.
Moreover, Nvidia offers many programming examples in the CUDA SDK which further
eases the use of CUDA.

All in all, it is fair to say that CUDA is easy to learn since this whole process took
me just a little more than two weeks of full-time labor.

5.2 Case Study

I carried out a case study to depict the time involved in order to port an existing CPU
implementation to CUDA. Moreover, I started out by a naive GPU implementation
and illustrate the importance of different optimization techniques and their impact on
performance. I want to stress that this case study is not meant to be a fair comparison
between GPU and CPU since I did not spent an equal amount of time on the optimization
of the CPU and GPU implementation.

5.2.1 Problem Description

The problem can be described as follows:
Given a matrix A € R"t*¥k two vectors b € R"*, z € R* and a norm p € N compute

IA x & — blp

whereas k > n and A and b have structures as depicted in Figure 5.1. Furthermore, all
the entries of the ,lower diagonal” of A are equal (i.e. ajin; = A€ R Vi € {1,2,...,k}).
Moreover, n is typically very small (e.g. n = 128), whereas k can reach some hundred
thousends.

The problem mainly involves three parts, a dense part, a sparse part and a reduction.
Hence, it comprises Dwarf 1 and 2.

5.2.2 GPU Implementation

In order to show the tremendous impact of optimization techniques on the execution time
I decided to implement several versions, where each succeeding version will improve over
its predecessor. Since this report does not focus on optimization techniques I will just
name the applied techniques and focus on the effort. The interested reader is referred to
[28], [12] or [36] for further details. All GPU versions are run on a Nvidia Tesla C2050
graphics card. Depending on the version, they mainly consist of two to three kernels
(i.e. dense, sparse and reduction).

18



Figure 5.1: Structure of A, x and b. Green denotes zero entries, where orange denotes
non-zero entries.

I also parallelized the existing CPU version using OpenMP. This version is compiled
with gcc 4.5 with the optimization flag -O3 and it runs 4 threads on an Intel E5620
processor. 1 like to stress that the resulting execution times of the CPU version should
not be understood as a fair GPU vs CPU comparison since I did not spent equally much
time in optimizing the CPU and GPU version.

A brief overview of all GPU implementations is shown in Table 5.1.

Version 1 is a naive GPU implementation which is quite similar to the CPU imple-

mentation except that it runs several hundred threads whereas each threat computes
only one entry y; = |A; *xx — b(7)|P where A; denotes a row of A. After the computation
the data is transfered back to the CPU which in turn is responsible for the sum reduction
over all y;.
The implementation was straight forward and took only some minutes. Nevertheless,
as mentioned before, n is very small, thus this naive implementation does not utilize all
the 14 SMs of the Telsa C2050 (i.e. with a blocksize of 64 threads only 128/64 = 2 of
14 SMs are used, leaving 12 SMs idle).

Version 2 is a blocked version of dense kernel of version 1. Hence, it is able to
utilize all the cores of the GPU. As it is shown in Table 5.2 it yields a major increase in
performance.

Concerning the effort, this version involved a major redo of the algorithm. In my opinion
the implementation using CUDA is no more difficult than it is with OpenMP.

Version 3 ports the reduction of the sparse part (i.e. result+ = (Axx(i +n))P Vi €
{1,2,...,k}) to the GPU. The reduction was a little more complicated than it would be on
a CPU since CUDA does not allow synchronization across different blocks. Moreover,
one has to pay attention to so called thread divergence [28] in order to attain high
performance.

Version 4 is another major step towards high performance as it introduces shared
memory usage for the dense part of the computation. The availability of shared memory
on the GPU requires different algorithms than those for a CPU. Even though one has
be be familiar with the memory hierarchy of the GPU and the possibility of coalescing
memory accesses to global memory, these concepts are not very difficult. Furthermore,
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[36] depicts many good programming examples which make the implementations of own
algorithms quite easy.

Version 5 is yet another improvement over wversion 4. Version 5 pads the shared
memory to avoid so called bank conflicts [28]. Once, one has understood how the GPU
accesses shared memory this implementation is obvious.

Version 6 applies loop unrolling which results in more task level parallelism [28]. The
underlying concept and implementation of loop unrolling is very easy.

Version 7 makes use of streams which allow simultaneous execution of the dense and
sparse kernel. Moreover, it uses so called pinned memory [37] for asynchronous memory
transfers. These concepts are also available in OpenMP. Thus, a programmer familiar
with OpenMP will not have any difficulties using these concepts in CUDA.

With the good speedups achieved by version 7 the reduction of the dense part takes
up a large fraction of the execution time. Thus, it becomes necessary to perform the
reduction in parallel on the GPU which results version 8. Since the data is already
on the GPU no extra data transfer is required. The implementation was quite simple
because the reduction is similar to the one of version 3.

Version 9 is not really a new version for itself since it merely tweaks the parameters
such as blocksizes, loop unrolling level, etc. The parameter seemed to be chosen in a
decent way already since version 9 does not yield a significant speedup. Nevertheless
tuning the parameter is an important part since suboptimal settings can drastically
affect the performance of an application.

Version ‘ Description

1 Dense and Sparse computation on GPU
Dense part is now blocked

Reduction of the sparse part on GPU

Uses shared memory and coalesced memory accesses

Padding of shared memory avoids bank conflicts

Loop unrolling increases task level parallelism

Streams allow simultaneous execution and memory transfers
Reduction of the dense part on GPU
Tweaking of the parameters

O 0| | O U | W N

Table 5.1: Overview of the different optimization techniques of the GPU versions

5.2.3 Results

Table 5.2 shows the speedups achieved by the different GPU versions over the parallelized
CPU implementation. The speedups shown in this table do not account for the initial
memory transfer between host and device. This table clearly shows the importance of
the optimization techniques as the performance of each successive version increases. All
in all, the implementation of all versions took little less than two days, but it required a
lot of preparation in advance to get to know all these optimization techniques as men-
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tioned in section 5.1.

During the implementation phase, I spent a large amount of time debugging using Al-
linea’s DDT. DDT is a graphical debugger which also incorporates cuda-memcheck which
allows to find bad memory accesses. It was quite handy and I was able to find most of
the bugs but it still seems to be little buggy itself as it sometimes shows wrong values
of variables.

Finally, the speed up of version 2 over its predecessor requires a little explanation as
it seems to be unusually high. This is due to the fact that most of the cores used by
version 1 are idle, whereas version 2 utilizes all cores and further introduces thread level
parallelism|[28].

A further version which utilizes the constant memory for x and versions with double
precision support are left as future work.

n =128k = 32,000 | n = 128 k = 3,200,000

| Time [ms] | Speedup | Time [ms] | Speedup
CPU ) - 320 -
GPU 1 32.02 0.16 4852.6 0.07
GPU 2 3.35 1.49 371.5 0.86
GPU 3 2.77 1.81 257.4 1.24
GPU 4 1.86 2.69 174.1 1.84
GPU 5 0.89 5.62 2.7 4.4
GPU 6 0.57 8.77 44 7.27
GPU 7 0.47 10.64 37.6 8.51
GPU 8 0.32 15.63 22.8 14.04
GPU 9 0.31 16.13 224 14.29

Table 5.2: Speedups achieved over the parallelized CPU implementation using single
precision.

6 Conclusion

During the course of this report we have seen ...
e ... very promising speedups over traditional CPU implementations.

e ... that it remains challenging to overcome the problems related to an efficient
GPU implementations.

e ... some optimization techniques and novel data structures

.. available GPU benchmark suites.

.. available GPU Dwarfs and related libraries.
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Moreover, section 5 outlined the effort involved becoming familiar with CUDA and to
port an existing CPU application to the GPU. Furthermore, despite the good speedups
there is no clear answer whether it is beneficial to port an application to the GPU or
,just” write an efficient parallelized CPU version. This is mostly due to the additional
effort needed to write a GPU application and the fact that some applications are natur-
ally a better fit for the GPU than others (e.g. dense linear algebra algorithms are often
much easier to port than graph algorithms).

Finally, I think that the trend towards GPGPU is likely to continue. Hence, we will
see new data structures and new optimization techniques which will allow to port even
further applications to the GPU. Moreover, I think that the concepts of GPUs and
CPUs are likely to converge. The Fermi architecture with its full memory hierarchy,
ECC, improved double precision performance, etc. was a major step towards general
purpose computing. CPUs on the other hand tend to improve their vector processing
powers. More precisely, Intel announced its next architecture called Haswell which is
expected to further improve its vector capabilities by supporting AVX 2.
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