Publications - Lucas Beyer
Peer Reviewed Conference Publication
- Streaming Data from HDD to GPUs for Sustained Peak PerformanceProceedings of the Euro-Par 2013, 19th International European Conference on Parallel and Distributed Computing, Lecture Notes in Computer Science, Volume 8097, pp. 788-799, Springer Berlin Heidelberg, May 2013.
@inproceedings{Beyer2013:618, author = "Lucas Beyer and Paolo Bientinesi", title = "Streaming Data from HDD to GPUs for Sustained Peak Performance", year = 2013, volume = 8097, series = "Lecture Notes in Computer Science", pages = "788-799", month = may, publisher = "Springer Berlin Heidelberg", doi = "10.1007/978-3-642-40047-6_78", url = "http://arxiv.org/pdf/1302.4332v1.pdf" }
abstractwebPDFbibtexIn the context of the genome-wide association studies (GWAS), one has to solve long sequences of generalized least-squares problems; such a task has two limiting factors: execution time --often in the range of days or weeks-- and data management --data sets in the order of Terabytes. We present an algorithm that obviates both issues. By pipelining the computation, and thanks to a sophisticated transfer strategy, we stream data from hard disk to main memory to GPUs and achieve sustained peak performance; with respect to a highly-optimized CPU implementation, our algorithm shows a speedup of 2.6x. Moreover, the approach lends itself to multiple GPUs and attains almost perfect scalability. When using 4 GPUs, we observe speedups of 9x over the aforementioned implementation, and 488x over a widespread biology library.
Thesis
- Exploiting Graphics Accelerators for Computational BiologyAachen Institute for Computational Engineering Science, RWTH Aachen, June 2012.webPDFbibtex
@mastersthesis{Beyer2012:400, author = "Lucas Beyer", title = "Exploiting Graphics Accelerators for Computational Biology", school = "Aachen Institute for Computational Engineering Science, RWTH Aachen", year = 2012, month = jun, url = "http://www.aices.rwth-aachen.de:8080/aices/preprint/documents/AICES-2012-06-01.pdf" }
Technical Report
- Streaming Data from HDD to GPUs for Sustained Peak PerformanceAachen Institute for Computational Engineering Science, RWTH Aachen, February 2013.
Technical Report AICES-2013/02-1.@techreport{Beyer2013:398, author = "Lucas Beyer and Paolo Bientinesi", title = "Streaming Data from HDD to GPUs for Sustained Peak Performance", institution = "Aachen Institute for Computational Engineering Science, RWTH Aachen", year = 2013, month = feb, note = "Technical Report AICES-2013/02-1", url = "https://arxiv.org/pdf/1302.4332" }
abstractPDFbibtexIn the context of the genome-wide association studies (GWAS), one has to solve long sequences of generalized least-squares problems; such a task has two limiting factors: execution time --often in the range of days or weeks-- and data management --data sets in the order of Terabytes. We present an algorithm that obviates both issues. By pipelining the computation, and thanks to a sophisticated transfer strategy, we stream data from hard disk to main memory to GPUs and achieve sustained peak performance; with respect to a highly-optimized CPU implementation, our algorithm shows a speedup of 2.6x. Moreover, the approach lends itself to multiple GPUs and attains almost perfect scalability. When using 4 GPUs, we observe speedups of 9x over the aforementioned implementation, and 488x over a widespread biology library.