
Vectorization

Paul Springer

Aachen Institute for Advanced Study in
Computational Engineering Science

Aachen, 20.04.14

Paul Springer (AICES) Vectorization 20.04.14 1 / 30

Outline

1 Auto-Vectorization with ICC

2 C/C++ Intrinsics
Arithmetic
In-Register Transformations
Other intrinsics

Paul Springer (AICES) Vectorization 20.04.14 2 / 30

Outline

1 Auto-Vectorization with ICC

2 C/C++ Intrinsics
Arithmetic
In-Register Transformations
Other intrinsics

Paul Springer (AICES) Vectorization 20.04.14 3 / 30

Example

3 VECTORIZATION

Verlet cutoff rV, with rV!rc. Atoms assigned to the Verlet
list of the pivot particle are searched within the above 27
cells, while interacting pairs are searched within the Verlet
list of the current atom. In every few time steps, the complete
hierarchy of lists must be renewed. Accordingly, the follow-
ing reordering algorithms will be operated everytime lists are
updated.

A first attempt to reordering can be based on the reverse
Cuthill-McKee !RCM" algorithm.10,11 In brief, RCM at-
tempts to assign consecutive labels to interacting atoms
which, in a MD simulation, is, in fact, the above Verlet list.
Therefore, in our implementation RCM uses Verlet lists to
assign atomic labels on the fly. In practice it is impossible to
make all of the labels pertaining to interacting particles to be
consecutive and, therefore, RCM is only able to reduce the
distance of interacting atoms in label space. The IM of Fig.
1!a" is reduced to the structure shown in Fig. 1!b". The effect
of RCM is to decrease the maximum distance between labels
from the initial value !as large as the number of particles in
the sample" down to half the bandwidth of the reduced IM.
This accounts to increasing the degree of locality.

Despite this step forward, RCM has two major weak-
nesses: !i" IM is still not very much localized and !ii" the
computational cost of RCM is very high !on average as large
as 5% of the computing time for the cases discussed here". In
particular, since the bandwidth is a large fraction of the ma-
trix size, the localization is not that good. In order to improve
the effectiveness of reordering, we relieve the constraint that
IM must be banded, which is of no interest for MD applica-
tions. Moreover, we devise a reordering algorithm in which
consecutive atomic labels are assigned to atoms belonging to
the same cell. This assignment must be performed on a regu-
lar path by the following procedure: at first, we attribute
consecutive labels to atoms belonging to the same row of
cells; then, we contiguously label atoms belonging to the
next row; and finally, we move to the next plane of cells and
proceed the labeling with the same criterion of contiguity.
This is illustrated in Fig. 2. We name our method as linked
cell based reordering !LCR" algorithm. It is worth noticing
that LCR scales linearly with the number of particles and
that its computational cost is rather small: on average 0.4%

of the CPU time for the cases discussed below. The IM ob-
tained applying LCR to the previous amorphous silicon
sample is shown in Fig. 1!c". It is no longer banded; how-
ever, it is by far much more clustered. The IM obtained ap-
plying LCR is very similar to that of a crystalline sample of
the same size and density #see Fig. 1!d"$, obtained by assign-
ing consecutive labels to atoms within the conventional
eight-atom cell of the diamond lattice and then replicating
this cell with a regular path throughout the space. Yao et al.6

recently introduced reordering in the context of MD. How-
ever, their method is not able to produce a crystal-like order-
ing of atomic labels. Mason7 also introduced reordering for
calculating neighboring lists. However, this method suffers
two major drawbacks: !i" its impementation in most MD
programs is not straighforward and !ii" it can be applied only
if the number of cells is given by a power of 2 !which is an
uncomfortable constraint on the size of the cells".

In order to illustrate the advantages produced by reorder-
ing, we performed a series of simulations with the Lennard-
Jones !LJ" potential on liquid argon12 systems containing
55 296, 186 624, and 442 368 atoms. In any case we set the
temperature T=100 K and the density "=0.025 at. /Å3. As
showcase for a many-body force field, we also ran simula-
tions with Stillinger-Weber !SW" potential on amorphous
silicon8 samples, containing as many as 128 000, 256 000,
and 512 000 atoms. In this case we set T=1500 K and "
=0.05 at. /Å3. The reason for testing these potentials is two-
fold: !i" the typical interaction cutoff of LJ potential is larger
than SW one, so that the average number of neighbors in
Verlet lists is about 100 for LJ and just 16 for SW, and !ii"
the computational complexity of the two- and three-body
terms of SW is higher than that of LJ. We also want to prove
that the gain in performance is portable across different kinds
of scalar computers. For this reason we ran the simulations
on IBM Power5 #1.9 GHz, random access memory !RAM"
8 Gbytes, cache memory: L1=32 kbytes, L2=1.9 Mbytes,
L3=32 Mbytes$, AMD Opteron !2.4 GHz, RAM 4 Gbytes,
cache memory: L1=64 kbytes, L2=1 Mbytes", and Intel
Pentium !2.8 GHz, RAM 2 Gbytes, cache memory: L1
=16 kbytes, L2=1 Mbytes". In Table I it is reported that the
CPU time per time step for several MD runs differs for
sample size, computer architecture, and actual reordering al-
gorithm. As a first remark, it should be noted that the
speedup !measured as the reduction of CPU time with re-
spect to the case without reordering" obtained using the LCR

FIG. 1. Interaction matrix for the case without reordering #panel !a"$, with
RCM reordering #panel !b"$, with LCR #panel !c"$, and for the case of a
crystal system with no reordering #panel !d"$.

FIG. 2. Graphical representation of LCR algorithm on a single plane of
cells.

121102-2 Meloni, Rosati, and Colombo J. Chem. Phys. 126, 121102 !2007"

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
134.61.102.45 On: Wed, 27 Nov 2013 22:15:06

(a) Linked-cell reordering [6]. (b) 2D Hilbert curve.

Figure 2: Particle labeling schemes.

Runtime [ms] Speedup L2 Texture hit-rate
LCR 100.8 - 61%
Hilbert 73.1 1.38 99.3%

Table 2: Force kernel performance. Average performance for 100 iterations of EAM potential on NVIDIA
K20X using a grid-size of 32⇥ 32⇥ 32.

3 Vectorization

This section describes the modifications and techniques required to vectorize the force kernel of the
Lennard-Jones (LJ) potential based on the cell-list Algorithm 3.1 and linked-cell Algorithm 3.2 (three
dimensional vectors are printed in bold).

Algorithm 3.1 Cell-List.
Force calculation for LJ potential
1: for all local-boxes iBox do
2: for all neighboring boxes jBox do
3: for all atoms i of iBox do
4: ri r[i]
5: fi 0
6: for all atoms j of jBox do
7: rj r[j]
8: dr = ri � rj

9: rsq = dot(dr,dr)
10: if rsq < rc then
11: sr2 = 1.0/rsq
12: sr6 = sr2⇥ sr2⇥ sr2
13: f = sr6⇥ (sr6� 0.5)⇥ sr2
14: fi fi � f ⇥ dr
15: force[j] force[j]+f⇥dr
16: end if
17: end for
18: end for
19: end for
20: end for

Algorithm 3.2 Linked-Cell.
Force calculation for LJ potential
1: for all local-boxes iBox do
2: for all atoms i 2 iBox do
3: ri r[i]
4: fi 0
5: for all neighbors k of i do
6: j Neighborsi[k]
7: rj r[j]
8: dr = ri � rj

9: rsq = dot(dr,dr)
10: if rsq < rc then
11: sr2 = 1.0/rsq
12: sr6 = sr2⇥ sr2⇥ sr2
13: fi = sr6⇥ (sr6� 0.5)⇥ sr2
14: fi fi � f ⇥ dr
15: force[j] force[j] + f ⇥ dr
16: end if
17: end for
18: force[i] force[i] + fi
19: end for
20: end for

3.1 Optimizations

Before starting with the vectorization, I first heavily optimized the code by doing the following steps:

• Storing the position and the forces of particle i in registers

3

Paul Springer (AICES) Vectorization 20.04.14 4 / 30

Outline

1 Auto-Vectorization with ICC

2 C/C++ Intrinsics
Arithmetic
In-Register Transformations
Other intrinsics

Paul Springer (AICES) Vectorization 20.04.14 5 / 30

C/C++ Intrinsics

Explicit vectorization

Advantage: Great control over vectorization

Sometimes it enables vectorization where it was not possible before
Sometimes it exceeds auto-vec speedups

Disadvantage: Programmability and Maintenance

Syntax

_mm256_op_suffix(...)

Paul Springer (AICES) Vectorization 20.04.14 6 / 30

Overview

Load/Store Arithmetic In-register Data
movement

Other

store[u] add blend[v] cmp

load[u] mul shuffle and

maskstore div permute or

maskload rcp permute2f128 . . .

stream dp insertf128

. . . hadd extractf128

. . . movehdup

moveldup

unpackhi

unpacklo

castps256 ps128

castps128 ps256

. . .

Paul Springer (AICES) Vectorization 20.04.14 7 / 30

Advanced Vector Extension

S
o
u
rc
e:

w
w
w
.r
ea
lw
or
ld
te
ch

.c
o
m

Figure: Intel Sandy Bridge Execution Units.

Sustain 16 SP or 8 DP
FP operations per cycles

1x Mul, 1x Add and 1x
shuffle per cycle

Paul Springer (AICES) Vectorization 20.04.14 8 / 30

Advanced Vector Extension

Type Meaning

m256 8 SP FP values

m256d 4 DP FP values

m256i 256-bit as integer (bytes, words, . . .)

m128 4 SP FP values

m128d 2 SP FP values

Paul Springer (AICES) Vectorization 20.04.14 9 / 30

µOperations

Intrinsics might consits of multiple µOps

More detailed information can be found at:

http://www.agner.org/optimize/instruction_tables.pdf

Number of intrinsics can only be used as a rough
performance estimate.

Paul Springer (AICES) Vectorization 20.04.14 10 / 30

http://www.agner.org/optimize/instruction_tables.pdf

Memory Load/Store

void mm256 store ps (float * mem addr, m256 a)

MEM[mem addr+255:mem addr] := a[255:0]

MEM must be aligned to 32byte

void mm256 maskstore ps (float * mem addr,

m256i mask,

m256 a)

FOR j := 0 to 7

i := j*32

IF mask[i+31]

MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i]

FI

ENDFOR

Paul Springer (AICES) Vectorization 20.04.14 11 / 30

Memory Load/Store

void mm256 storeu ps (float * mem addr, m256 a)

MEM[mem addr+255:mem addr] := a[255:0]

MEM does not need to be aligned

void mm256 maskstore ps (float * mem addr,

m256i mask,

m256 a)

FOR j := 0 to 7

i := j*32

IF mask[i+31]

MEM[mem_addr+i+31:mem_addr+i] := a[i+31:i]

FI

ENDFOR

Paul Springer (AICES) Vectorization 20.04.14 12 / 30

Memory Load/Store

m256 mm256 load ps (float const * mem addr)

dst[127:0] := MEM[mem addr+127:mem addr]

MEM must be aligned to 32byte

m128 mm maskload ps (float const * mem addr, m128i mask)

FOR j := 0 to 3

i := j*32

IF mask[i+31]

dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i]

ELSE

dst[i+31:i] := 0

FI

ENDFOR

Paul Springer (AICES) Vectorization 20.04.14 13 / 30

Memory Load/Store

m256 mm256 loadu ps (float const * mem addr)

dst[127:0] := MEM[mem addr+127:mem addr]

MEM does not need to be aligned

m128 mm maskload ps (float const * mem addr, m128i mask)

FOR j := 0 to 3

i := j*32

IF mask[i+31]

dst[i+31:i] := MEM[mem_addr+i+31:mem_addr+i]

ELSE

dst[i+31:i] := 0

FI

ENDFOR

Paul Springer (AICES) Vectorization 20.04.14 14 / 30

Arithmetic

m256 mm256 rcp ps (m256 a)

FOR j := 0 to 7

i := j*32

dst[i+31:i] := APPROXIMATE(1.0/a[i+31:i])

ENDFOR

Higher throughput than ordinary division

m256 mm256 hadd ps (m256 a, m256 b)

dst[31:0] := a[63:32] + a[31:0]

dst[63:32] := a[127:96] + a[95:64]

dst[95:64] := b[63:32] + b[31:0]

dst[127:96] := b[127:96] + b[95:64]

dst[159:128] := a[191:160] + a[159:128]

dst[191:160] := a[255:224] + a[223:192]

dst[223:192] := b[191:160] + b[159:128]

dst[255:224] := b[255:224] + b[223:192]

Paul Springer (AICES) Vectorization 20.04.14 15 / 30

Arithmetic

m256 mm256 dp ps (m256 a, m256 b, const int imm)

DP(a[127:0], b[127:0], imm[7:0]) {

FOR j := 0 to 3

i := j*32

IF imm[4+j]

temp[i+31:i] := a[i+31:i] * b[i+31:i]

ELSE

temp[i+31:i] := 0

FI

ENDFOR

sum[31:0] := (temp[127:96] + temp[95:64]) + (temp[63:32] + temp[31:0])

FOR j := 0 to 3

i := j*32

IF imm[j]

tmpdst[i+31:i] := sum[31:0]

ELSE

tmpdst[i+31:i] := 0

FI

ENDFOR

RETURN tmpdst[127:0]

}

dst[127:0] := DP(a[127:0], b[127:0], imm[7:0])

dst[255:128] := DP(a[255:128], b[255:128], imm[7:0])

Dot-Product

Paul Springer (AICES) Vectorization 20.04.14 16 / 30

In-Register Transformations

Help to reduce the amount of memory operations

Typical problems:

Transpose (e.g. row-major to column-major)

AoS to SoA

Avoid gather/scatter operations

Paul Springer (AICES) Vectorization 20.04.14 17 / 30

In-Register Transformations

m256 mm256 blend ps (m256 a, m256 b, const int imm)

FOR j := 0 to 7

i := j*32

IF imm[j]

dst[i+31:i] := b[i+31:i]

ELSE

dst[i+31:i] := a[i+31:i]

FI

ENDFOR

Paul Springer (AICES) Vectorization 20.04.14 18 / 30

In-Register Transformations

m256 mm256 permute2f128 ps (m256 a, m256 b, int imm)

SELECT4(src1, src2, control){

CASE(control[1:0])

0: tmp[127:0] := src1[127:0]

1: tmp[127:0] := src1[255:128]

2: tmp[127:0] := src2[127:0]

3: tmp[127:0] := src2[255:128]

ESAC

IF control[3]

tmp[127:0] := 0

FI

RETURN tmp[127:0]

}

dst[127:0] := SELECT4(a[255:0], b[255:0], imm[3:0])

dst[255:128] := SELECT4(a[255:0], b[255:0], imm[7:4])

Paul Springer (AICES) Vectorization 20.04.14 19 / 30

In-Register Transformations

m256 mm256 insertf128 ps (m256 a, m128 b, int imm)

dst[255:0] := a[255:0]

CASE (imm[1:0]) of

0: dst[127:0] := b[127:0]

1: dst[255:128] := b[127:0]

ESAC

m128 mm256 extractf128 ps (m256 a, const int imm)

CASE imm of

0: dst[127:0] := a[127:0]

1: dst[127:0] := a[255:128]

ESAC

Paul Springer (AICES) Vectorization 20.04.14 20 / 30

In-Register Transformations

m256 mm256 movehdup ps (m256 a)

dst[31:0] := a[63:32]

dst[63:32] := a[63:32]

dst[95:64] := a[127:96]

dst[127:96] := a[127:96]

dst[159:128] := a[191:160]

dst[191:160] := a[191:160]

dst[223:192] := a[255:224]

dst[255:224] := a[255:224]

Paul Springer (AICES) Vectorization 20.04.14 21 / 30

In-Register Transformations

m256 mm256 moveldup ps (m256 a)

dst[31:0] := a[31:0]

dst[63:32] := a[31:0]

dst[95:64] := a[95:64]

dst[127:96] := a[95:64]

dst[159:128] := a[159:128]

dst[191:160] := a[159:128]

dst[223:192] := a[223:192]

dst[255:224] := a[223:192]

Paul Springer (AICES) Vectorization 20.04.14 22 / 30

In-Register Transformations

m256 mm256 unpackhi ps (m256 a, m256 b)

INTERLEAVE_HIGH_DWORDS(src1[127:0], src2[127:0]){

dst[31:0] := src1[95:64]

dst[63:32] := src2[95:64]

dst[95:64] := src1[127:96]

dst[127:96] := src2[127:96]

RETURN dst[127:0]

}

dst[127:0] := INTERLEAVE_HIGH_DWORDS(a[127:0], b[127:0])

dst[255:128] := INTERLEAVE_HIGH_DWORDS(a[255:128], b[255:128])

Paul Springer (AICES) Vectorization 20.04.14 23 / 30

In-Register Transformations

m256 mm256 unpacklo ps (m256 a, m256 b)

INTERLEAVE_DWORDS(src1[127:0], src2[127:0]){

dst[31:0] := src1[31:0]

dst[63:32] := src2[31:0]

dst[95:64] := src1[63:32]

dst[127:96] := src2[63:32]

RETURN dst[127:0]

}

dst[127:0] := INTERLEAVE_DWORDS(a[127:0], b[127:0])

dst[255:128] := INTERLEAVE_DWORDS(a[255:128], b[255:128])

dst[MAX:256] := 0

Paul Springer (AICES) Vectorization 20.04.14 24 / 30

In-Register Transformations

m256 mm256 permute ps (m256 a, int imm)

SELECT4(src, control){

CASE(control[1:0])

0: tmp[31:0] := src[31:0]

1: tmp[31:0] := src[63:32]

2: tmp[31:0] := src[95:64]

3: tmp[31:0] := src[127:96]

ESAC

RETURN tmp[31:0]

}

dst[31:0] := SELECT4(a[127:0], imm[1:0])

dst[63:32] := SELECT4(a[127:0], imm[3:2])

dst[95:64] := SELECT4(a[127:0], imm[5:4])

dst[127:96] := SELECT4(a[127:0], imm[7:6])

dst[159:128] := SELECT4(a[255:128], imm[1:0])

dst[191:160] := SELECT4(a[255:128], imm[3:2])

dst[223:192] := SELECT4(a[255:128], imm[5:4])

dst[255:224] := SELECT4(a[255:128], imm[7:6])

Also allows to duplicate entries

Seperation between lower and upper 128bit

Paul Springer (AICES) Vectorization 20.04.14 25 / 30

In-Register Transformations

m256 mm256 shuffle ps (m256 a, m256 b, const int imm)

SELECT4(src, control){

CASE(control[1:0])

0: tmp[31:0] := src[31:0]

1: tmp[31:0] := src[63:32]

2: tmp[31:0] := src[95:64]

3: tmp[31:0] := src[127:96]

ESAC

RETURN tmp[31:0]

}

dst[31:0] := SELECT4(a[127:0], imm[1:0])

dst[63:32] := SELECT4(a[127:0], imm[3:2])

dst[95:64] := SELECT4(b[127:0], imm[5:4])

dst[127:96] := SELECT4(b[127:0], imm[7:6])

dst[159:128] := SELECT4(a[255:128], imm[1:0])

dst[191:160] := SELECT4(a[255:128], imm[3:2])

dst[223:192] := SELECT4(b[255:128], imm[5:4])

dst[255:224] := SELECT4(b[255:128], imm[7:6])

Paul Springer (AICES) Vectorization 20.04.14 26 / 30

Other Intrinsics

m256 mm256 cmp ps (m256 a, m256 b, const int imm)

FOR j := 0 to 7

i := j*32

dst[i+31:i] := (a[i+31:i] OP b[i+31:i]) ? 0xFFFFFFFF : 0

ENDFOR

Paul Springer (AICES) Vectorization 20.04.14 27 / 30

Other Intrinsics

m256 mm256 and ps (m256 a, m256 b)

FOR j := 0 to 7

i := j*32

dst[i+31:i] := (a[i+31:i] AND b[i+31:i])

ENDFOR

m256 mm256 or ps (m256 a, m256 b)

FOR j := 0 to 7

i := j*32

dst[i+31:i] := a[i+31:i] BITWISE OR b[i+31:i]

ENDFOR

Alternative for blending

Paul Springer (AICES) Vectorization 20.04.14 28 / 30

C/C++ Intrinsics

Multiply Example

Paul Springer (AICES) Vectorization 20.04.14 29 / 30

Example

3 VECTORIZATION

Algorithm 3.1 has on average only two full 8-wide iterations such that the remainder loop can be a
significant portion of the whole loop. In the worst case the remainder loop has 7 particles for which the
compiler generates a scalar loop (not always true). This would give a theoretical peak vectorization
efficiency of only 16/23 ⇡ 70%. One solution to this problem would be padding but it would introduce
a significant overhead since the number particles per cell is quite low. Another reason for the low
vectorization efficiency is the AoS to SoA conversion of the positions and forces.

The intrinsic implementation of Algorithm 3.1 is outlined in Algorithm 3.3. It vectorizes across both
the loops in line 5 and 6 of Algorithm 3.1.

Algorithm 3.3 Cell-List.
Force calculation for LJ potential
1: for all local-boxes iBox do
2: for all neighboring boxes jBox do
3: for all atoms i, i + 1 of iBox do
4: ri01 (r[i], r[i + 1])
5: fi01 0
6: for all atoms j, j + 1, j + 2, j + 3 of jBox do
7: rj01 (r[j], r[j + 1]) . aligned 256-bit load
8: rj23 (r[j + 2], r[j + 3]) . aligned 256-bit load
9: dr0011 = ri01 � rj01

10: dr0213 = ri01 � rj23

11: rj10 permute(rj01) . rj10 = {rj1, rj0}
12: rj32 permute(rj23) . rj10 = {rj3, rj2}
13: dr0110 = ri01 � rj10

14: dr0312 = ri01 � rj32

15: rsq = dot(dr0011, dr0213, dr0110, dr0312)
16: if rsq < rc then
17: sr2 = 1.0/rsq
18: sr6 = sr2⇥ sr2⇥ sr2
19: f = sr6⇥ (sr6� 0.5)⇥ sr2 . f = {f00, 02, 01, 03, f11, 13, 10, 12}
20: updateForces(force, f, dr0011, dr0213, dr0011, dr0312)
21: end if
22: end for
23: end for
24: end for
25: end for

Line 15 of Algorithm 3.3 is composed of four 256-bit-wide dot products5 and three bit-wise OR.
Moreover, the updateForce function is avoiding an Array-to-Structure (AoS) to Structure-of-Array
(SoA) conversion by utilizing the shuffle and permute intrinsics of the AVX instruction set. These
improvements leads to following advantages of this implementation:

• Fully operates on 256-bit registers

• Aligned 256-bit loads and stores

• No AoS to SoA conversion needed

• Reuse of particle positions across two neighboring particles of iBox

• Two times less padding than naive version

An additional optimization is the use of the _mm256_maskmove_ps intrinsic which is used to skip
the calculation of the forces if none of the particle pairs are interacting. This behaviour can be further

5not available for DP. DP implementation relies on horizontal adds

5

Paul Springer (AICES) Vectorization 20.04.14 30 / 30

	Auto-Vectorization with ICC
	C/C++ Intrinsics
	Arithmetic
	In-Register Transformations
	Other intrinsics

